KIT | KIT-Bibliothek | Impressum | Datenschutz

Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

Katheder, Julia; Kaufmann, Michael; Pupyrev, Sergey; Ueckerdt, Torsten 1; Beyersdorff, Olaf [Hrsg.]; Pilipczuk, Michał [Hrsg.]; Pimentel, Elaine [Hrsg.]; Thắng, Nguyễn Kim [Hrsg.]
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Some of the most important open problems for linear layouts of graphs ask for the relation between a graph’s queue number and its stack number or mixed number. In such, we seek a vertex order and edge partition of G into parts with pairwise non-crossing edges (a stack) or with pairwise non-nesting edges (a queue). Allowing only stacks, only queues, or both, the minimum number of required parts is the graph’s stack number sn(G), queue number qn(G), and mixed number mn(G), respectively.
Already in 1992, Heath and Rosenberg asked whether qn(G) is bounded in terms of sn(G), that is, whether stacks "can be transformed into" queues. This is equivalent to bipartite 3-stack graphs having bounded queue number (Dujmović and Wood, 2005). Recently, Alam et al. asked whether qn(G) is bounded in terms of mn(G), which we show to also be equivalent to the previous questions.
We approach the problem by considering separated linear layouts of bipartite graphs. In this natural setting all vertices of one part must precede all vertices of the other part. Separated stack and queue numbers coincide, and for fixed vertex orders, graphs with bounded separated stack/queue number can be characterized and efficiently recognized, whereas the separated mixed layouts are more challenging. ... mehr

Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-3-9597736-5-2
ISSN: 1868-8969
KITopen-ID: 1000180363
Erschienen in 42nd International Symposium on Theoretical Aspects of Computer Science; Jena, 4th-7th March 2025
Veranstaltung 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025), Jena, Deutschland, 04.03.2025 – 07.03.2025
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten Art.-Nr.: 56
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 327
Vorab online veröffentlicht am 24.02.2025
Schlagwörter Separated linear Layouts, Stack Number, Queue Number, mixed Number, bipartite Graphs, Mathematics of computing → Graph theory, Mathematics of computing → Combinatorics
Nachgewiesen in OpenAlex
Scopus

Verlagsausgabe §
DOI: 10.5445/IR/1000180363
Veröffentlicht am 24.03.2025
Originalveröffentlichung
DOI: 10.4230/lipics.stacs.2025.56
Seitenaufrufe: 7
seit 24.03.2025
Downloads: 5
seit 02.04.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page