KIT | KIT-Bibliothek | Impressum | Datenschutz

Completeness Theorems for k-SUM and Geometric Friends: Deciding Fragments of Linear Integer Arithmetic

Gokaj, Geri 1; Künnemann, Marvin 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

In the last three decades, the k-SUM hypothesis has emerged as a satisfying explanation of long-standing time barriers for a variety of algorithmic problems. Yet to this day, the literature knows of only few proven consequences of a refutation of this hypothesis. Taking a descriptive complexity viewpoint, we ask: What is the largest logically defined class of problems captured by the k-SUM problem?
To this end, we introduce a class FOP_ℤ of problems corresponding to deciding sentences in Presburger arithmetic/linear integer arithmetic over finite subsets of integers. We establish two large fragments for which the k-SUM problem is complete under fine-grained reductions:
1) The k-SUM problem is complete for deciding the sentences with k existential quantifiers.
2) The 3-SUM problem is complete for all 3-quantifier sentences of FOP_ℤ expressible using at most 3 linear inequalities. Specifically, a faster-than-n^{⌈k/2⌉ ± o(1)} algorithm for k-SUM (or faster-than-n^{2 ± o(1)} algorithm for 3-SUM, respectively) directly translate to polynomial speedups of a general algorithm for all sentences in the respective fragment.
Observing a barrier for proving completeness of 3-SUM for the entire class FOP_ℤ, we turn to the question which other - seemingly more general - problems are complete for FOP_ℤ. ... mehr

Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-3-95977-361-4
KITopen-ID: 1000180414
Erschienen in 16th Innovations in Theoretical Computer Science Conference : ITCS 2025, January 7-10, 2025, Columbia University, New York, NY, USA. Ed.: R. Meka 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)
Veranstaltung 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), New York City, NY, USA, 07.01.2025 – 11.01.2025
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 55.1-55.25
Serie Leibniz international proceedings in informatics ; 325
Schlagwörter fine-grained complexity theory, descriptive complexity, presburger arithmetic, completeness results, k-SUM, Theory of computation → Complexity theory and logic
Nachgewiesen in Scopus

Verlagsausgabe §
DOI: 10.5445/IR/1000180414
Veröffentlicht am 25.03.2025
Originalveröffentlichung
DOI: 10.4230/LIPIcs.ITCS.2025.55
Seitenaufrufe: 13
seit 26.03.2025
Downloads: 9
seit 28.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page