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Abstract
New local ultrametricity measures for finite metric data are proposed through the viewpoint
that their Vietoris-Rips corners are samples from p-adic Mumford curves endowed with a
Radon measure coming from a regular differential 1-form. This is experimentally applied to
three datasets.

Keywords Local ultrametricity · p-adic numbers · Finite data · Mumford curves ·
Vietoris-Rips complex · Data analysis

1 Introduction

Ultrametricity is appealing for many reasons, and in particular, the simplicity of tree struc-
tures encoded in ultrametric spaces seems attractive to data analysts. Because of this, they
would like to see how close to an ultrametric space a given data set is in order to extract
something meaningful out of a hierarchical classification of the data. With this in mind,
ultrametricity indices have been proposed, e.g., by Rammal et al. (1986) or Murtagh (2004).
F.Murtagh observed experimentally that samples which are sparse and random in hypercubes
become more and more ultrametric as dimension increases, using his ultrametricity index
(Murtagh, 2004). Explanations for this are given in Bradley (2016) and Zubarev (2014).
Also, ultrametricity can be related to topological data analysis (Bradley, 2017), and a cor-
responding ultrametricity index has a logistic behaviour (Bradley, 2019). This index relies
on the Vietoris-Rips complex developed in Vietoris (1927), which is important in studying
the persistent homology of data. Cf., e.g., Zomorodian (2010) for a fast construction of the
Vietoris-Rips complex.

The p-adic numbers, having an inherent regular hierarchical structure, provide a frame-
work for analysing hierarchical data, and thus, p-adic encoding methods were devised,
Murtagh (2016) or Bradley (2010), either in order to bring them closer to ultrametricity
or to apply p-adic methods to their already existing hierarchical structure. This leads to the
applicability of p-adic analysis outlined, e.g., in Vladimirov et al. (1994) to the investigation
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of data. Applications outside of physics of p-adic analysis can be found in theoretical biol-
ogy (cf. the review article (Dragovich et al., 2021), video data recognition (Benois-Pineau
& Khrennikov, 2010), or medical diagnostics (Shor et al., 2021)). What is common to those
applications is that they encode a hierarchical classification of a dataset. Since a hierarchical
classification aims to find a suitable ultrametric for given data, the result is an embedding of
hierarchically classified data into the p-adic numbers via a p-adic encoding. The main prob-
lemwith a hierarchical classification of a whole dataset is that in reality, the actual similarities
within data might be only of a local nature. That is why in this article a locally hierarchical
classification is advocated. This also leads to p-adic encodings, like in the globally hierar-
chical case, but here, it leads to ones in which a hierarchical organisation of the “clusters”,
i.e., the maximal hierarchical pieces, within the space of p-adic numbers, is ignored. For this
reason, the term local ultrametricity is used in this article.

The scope of this article is to introduce newmeasures for local ultrametricity, arguing that
the clusters appearing as connected components of the Vietoris-Rips graphs from topological
data analysis are likely to be more ultrametric than the whole dataset, which can be seen in
an example case taken from the well-known iris dataset. Whether or not this argument is
generally valid or not, the viewpoint induced by this approach leads to the idea that data
can be seen as being sampled from Mumford curves. These are p-adic compact algebraic
manifolds of dimension 1. Locally, they are holed discs in the p-adic number field, on which
there is a natural Haar measure. However, the irregular tree structure of the local data leads
to a more natural Radon measure coming from an algebraic regular differential 1-form on
the Mumford curve, as constructed in Bradley and Ledezma (2024). There, the subdominant
ultrametric associated with a finite metric space is used, which can be calculated with the
method of Rammal et al. (1986). In fact, any ultrametric can be used to approximate the finite
metric dataset, i.e., any hierarchical classification method can be used in order to obtain an
ultrametric in this approach.

Mumford curves are objects studied in p-adic algebraic and rigid geometry and are exten-
sively covered in Gerritzen and van der Put (1980) and Fresnel and van der Put (2004). What
is needed from this relatively deep theory is, however, only the fact that they are algebraic
and have an underlying 1-dimensional compact p-adic manifold structure which allows for
regular differential 1-forms ω, which are in fact algebraic. Locally, they are of the form

ω(x) = f (x) dx

with an analytic p-adic-valued function f defined on the local piece U , and that these give
rise to Radon measures on the Mumford curve outside the zeros of ω.

The following Section 2 defines local ultrametrics aswell as local p-adic data encoding via
tree embeddings and uses the Vietoris-Rips graph from topological data analysis in order to
define new data invariants and associated Mumford curves endowed with a Radon measure.
This is followed by Section 3 consisting of experiments. A conclusion is given in Section 4.

2 Finite Locally Ultrametric Spaces

After defining local ultrametrics in the following subsection, and local p-adic encodings of
data via tree embeddings, new invariants of a finite metric space are defined via the Vietoris-
Rips graphs and associating Mumford curves and Radon measures to local pieces in the last
subsection of this section.
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2.1 Local Ultrametrics

Let X be a finite set with a metric d on it. Fix ε > 0, and let�ε be the associated Vietoris-Rips
graph with vertex set X . Let

dε : X × X → R≥0

be the partial function which on each connected component C of �ε is an ultrametric dom-
inated by d . One can use for dε , e.g., the subdominant corresponding to the distance on X
restricted to C × C . But any other ultrametric dominated by d can also be used. Certain
hierarchical clustering methods provide such an ultrametric, among which single-linkage
clustering yields the subdominant ultrametric.

Let C(�ε) be the set of connected components of �ε . Define a distance d ′
ε on C(�ε) as

d ′
ε(C,C ′) = min

{
ε′ | ε′ ≥ ε : ∃ an edge in�ε′ connectingC andC ′} ,

whenever C �= C ′. Then, define the function

δε : X × X → R≥0, (x, y) �→
{
dε(x, y), ∃C ∈ C(�ε) : x, y ∈ C
d ′
ε(C(x),C(y)), C(x) �= C(y) ,

where C(z) ∈ C(�ε) is the connected component containing z ∈ X . Clearly, δε is a distance
on X .

Definition 2.1 The distance δε is called a local ultrametric on X . The pair (X , δε) is called a
locally ultrametric space.

A criterion for ultrametricity in terms of the Vietoris-Rips graphs is given in Bradley
(2016, Lem. 2.2): the connected components of the Vietoris-Rips graphs are always cliques
iff dataset is ultrametric. The subdominant ultrametric can also be described in terms of the
Vietoris-Rips graphs (cf. Bradley (2016, Prop. 5.2)).

Example 2.2 Figure 1 (left) shows a graph with five vertices as a metric space. The Vietoris-
Rips graph for ε = 1 has four connected components (called clusters), and the inter-cluster
graph obtained by identifying clusters with vertices of a new graph is depicted in Fig. 1
(middle). The corresponding local ultrametric δ1 can be read off the two figures as follows:
The only non-singleton cluster is {a, b} where the distance between a and b is read off the

Fig. 1 Left: A graph as a metric space. Middle: The Vietoris-Rips inter-cluster graph for ε = 1 (named �3
1

according to Section 2.3). Right: The Vietoris-Rips inter-cluster graph for ε = 2 (named �3
2 according to

Section 2.3)
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left graph as 1. The other inter-cluster distances can be read off the graph in the middle by
taking the length of the shortest path between clusters. The same holds true in the case ε = 2,
where now there are four clusters, two of which are non-singletons. Notice that the first Betti
number of the two inter-cluster graphs is equal to one. This will be used to illustrate invariants
in Section 2.3 below.

2.2 Local p-adic Encodings

In Bradley and Ledezma (2024, §3.3) a Radon measure on a compact open subset of Qp

is constructed from a finite ultrametric space. Here, an embedding of the corresponding
ultrametric tree into the Bruhat-Tits tree of a suitable p-adic number field necessary for that
method is constructed in a more precise manner. This produces a p-adic data encoding, as
already observed in Bradley (2010).

Let C ∈ C(�ε) be given, and view (C, dε) as an independent ultrametric space for the
moment. The set B(C) of all non-trivial balls on C is a finite poset with precisely one top
element C and in fact is a tree. Let

ρ : B(C) → R>0, B �→ radius of B ,

whose image R(C) = ρ(B(C)) is a finite ordered set of real numbers. Order this set with a
function

ϕ : R(X) → N

in decreasing order with consecutive natural numbers beginning in 0. Fix a prime number p,
and let

m = max ϕ ,

and assign to each c ∈ C a distinct disc ac + p(m+1)Zp inside the ringZp of p-adic integers
inside the field of p-adic numbers Qp , where p is bounded from below by the maximal
number of children in any ultrametric tree of (C, δε) for any C ∈ C(�ε) plus the number of
elements in C(�ε). Assume thereby that all discs in Zp have equal radius

p−(m+1)

for this assignment. The condition about p enables an embedding of any spanning tree of
the graph �ε into the Bruhat-Tits tree for Qp . The latter tree is explained, e.g., in Bradley
(2006).

The ultrametric diffusion considered in Bradley and Ledezma (2024) necessitated the
replacement of the p-adic Haar measure on the compact open set obtained by such an
embedding as above with a Radon measure νC which ensures that the volume of any disc
corresponding to a vertex B ∈ B(C) in the ultrametric tree for (c, dε) is equally distributed
among the child vertices of B, cf. Bradley and Ledezma (2024, Lem. 3.8), where such a
Radon measure is constructed on the subset

	C =
⊔

c∈C

(
ac + pm+1Zp

)

of Qp .

Definition 2.3 The measure νC is called the equity measure on 	C induced by (C, dε).
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Now, Bradley and Ledezma (2024, Lem. 3.9) show that νC is of the form

ν(x) = φ(| fC (x)|) |dx |p ,

where |dx |p is the Haar measure on Qp , fC ∈ Qp[X ] a polynomial nowhere vanishing on
	C , and φ : pZ → R>0 a strictly increasing function. The proof of Bradley and Ledezma
(2024, Lem. 3.9) uses p-adic polynomial interpolation.

Example 2.4 Continuing Example 2.2, Fig. 2 (left) shows a global 2-adic encoding of the five
vertices of the graph in Fig. 1 (left) which locally induces the subdominant ultrametric on
the Vietoris-Rips clusters for ε = 2. More precisely, a binary number encoding a vertex v is
given by the geodesic path from root to v, and then taking

c(v) =
3∑

i=0

αi2
i ,

where αi is the number attached to the i-th edge downwards from the root vertex along this
path. The local ultrametric distance within each cluster coincides with

d1(x, y) = 23 · log |x − y|2
in this example. The normalised Haar measure gives each vertex equal volume. In case the
2-adic unit disc is assumed to have volume 1, each vertex corresponds to a 2-adic disc of
volume 1

8 . An equity probability measure on the dataset is given by assigning equal volume
to each branch attached to a vertex in the ultrametric tree associated with each cluster. Since
there are many possible choices for this, as it is only locally defined, this has been for the
global dendrogram of all vertices given by the 2-adic encoding of Fig 2 (right) corresponding
to the g ultrametric.

2.3 Invariants of a Finite Metric Space

Let δ ≥ ε. Define the graph �δ
ε whose vertex set is C(�ε), and its edges are pairs (C,C ′)

with C �= C ′ and d(C,C ′) ≤ δ. We call this the coarse ε-δ graph of (X , d).

Fig. 2 Left: A 2-adic encoding with Haar measure values assigned to data points. Right: The corresponding
dendrogram of the whole dataset with equity probability measure values assigned to data points
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Fig. 3 Average and maximal Murtagh ultrametricity index values across the larger clusters

For x ∈ X define

Cδ
ε (x) = the connected comp. of�δ

ε containingC(x) ∈ C(�ε) ,

where C(x) ∈ C(�ε) is the connected component of �ε containing x ∈ X . The local ε-δ-
genus is the function

gδ
ε : X → N, x �→ b1(C

δ
ε (x)) ,

where Cδ
ε is viewed as a subgraph of �δ

ε .

Lemma 2.5 It holds true that

0 ≤ gδ
ε (x) ≤ 1

2

∣∣Cδ
ε (x)

∣∣2 − 3

2

∣∣Cδ
ε (x)

∣∣ + 1

for δ ≥ ε > 0. (X , d) is ultrametric, if and only if for all δ ≥ ε > 0, the right-hand side is
an equality.

Proof The ε-δ-genus is non-negative and is maximal, when Cδ
ε (x) is a complete graph, in

which case the first Betti number equals the right-hand side of the asserted inequality. The last
statement now follows immediately from Bradley (2016, Lem. 2.2) applied to the quotient
metric on the set C(�ε) induced by d . 
�

Such a connected component C = Cδ
ε (x) for x ∈ X can be viewed as a coarse graph

structure on the connected components of �ε . Now, replacing, as in the previous subsection,
the distanced , restricted to each element ofC(�ε)which is contained inC ,with an ultrametric,
leads to a local tree structure on C . Now, the previous subsection tells us that locally, there

Fig. 4 A 3-adic dendrogram of the set
{
0, 1, 1 + 32, 1 + 32 + 33

}
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is a Radon measure ν(x) coming from a p-adic differential 1-form ωε which is algebraic.
The local pieces can now be “glued” to a covering of the p-adic points of a Mumford curve
Cε minus the zeros of the regular algebraic differential 1-form ωε , whose genus equals the
first Betti number of C . Notice that the gluing process takes place beyond the mere points
whose coordinates are inQp , in the category of p-adic rigid analytic spaces, as laid out, e.g.,
in Fresnel and van der Put 2004, Ch. 5). The method from the previous subsection fills a gap
of Bradley and Ledezma (2024, §3.3) by explicitly constructing the equity measure on the
Mumford curve, which according to Bradley and Ledezma (2024, Lem. 3.9) comes from an
algebraic differential 1-form ωε .

Hence, apart from the local ε-δ-genus, there is also the equity measure |ωε |p on each
connected component of �δ

ε as a further set of invariant of the dataset (X , d). As another
invariant, we suggest also the minimal value δ for which �δ

ε is connected, together with the
now global ε-δ-genus and equity measure for this δ.

Example 2.6 In the toy example of Fig. 1, the coarse graphs �3
1 (middle) and �3

2 (right) are
depicted. Observe that the invariants gδ

ε are constant in these cases:

g31 = 1, g32 = 1 ,

but also
g21 = 0

is constant, since all three connected components of �2
1 do not contain any cycles.

Fig. 5 Top row: Vietoris-Rips graphs �ε (iris) for ε = 0.64, 0.7, 1.640, ε = 1.650 (from left to right). Middle
row:�ε (wine) for ε = 36.8, 40, 51, 70 (from left to right), having 5, 4, 3, 2 clusters, respectively. Bottom row:
�ε (heart failure) for ε = 10, 000, 15, 000, 20, 000, 40, 000, respectively. All rows: Only the non-singleton
connected components are shown
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3 Experiments

The following datasets were investigated: the iris dataset (Fisher, 1936), wine (Aeberhard
& Forina, 1992), and heart failure (Chicco & Jurman, 2020). The Vietoris-Rips graph �ε

was calculated in R (R Core Team, 2021) for ε between 0 and the maximal distance value,
using the TDApplied package (Fasy et al., 2015). A visual inspection of the number of
connected components (i.e., clusters) of �δ

ε via their barcodes leads to identifying ε-values
with a relatively small number of clusters. Average and maximal Murtagh ultrametricity
index values across larger clusters were computed, cf. Fig. 3. Dendrograms are p-adically
encoded like in Fig. 4 in order to compute invariants.

Fig. 6 Evolution of small coarse graphs �δ
ε starting at genus 2 w.r.t. ε. Top row: The coarse graphs

�δ
ε (iris) for (ε, δ) = (0.7, 4), (0.8, 4), (0.9, 4) (from left to right) jump immediately down to genus

zero. Middle row: The coarse graphs �δ
ε (wine) for (ε, δ) = (55, 305), (70, 305), (80, 305) (from left

to right) have an intermediate graph of genus 1. Bottom row: The coarse graphs �δ
ε (heart failure) for

(ε, δ) = (50, 000, 23, 000), (95, 000, 230, 000), (120, 000, 230, 000) (from left to right) have an interme-
diate graph of genus 1
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Fig. 7 The cluster hierarchy of the graphs in Fig. 6. From left to right: iris, wine, heart failure

Figure 5 shows Vietoris-Rips graphs for four selected values of ε, where singleton clusters
are removed from the visualisation. In the iris data case, the graph�1.650 is connected,whereas
in the other two cases, the shown graphs are not connected.

Figure 6 shows the two quotient graphs �δ
ε for values of (ε, δ) such that initially, it is

connected with four vertices, and the corresponding Mumford curve has genus 2. Increasing
ε then either leads to a direct jump down to genus 0 in the iris data case or a descent into genus
0 via an intermediate Mumford curve of genus 1. In the iris dataset case, this means that it
contains cycles at a relatively coarse level which is finer than the usual classification into three
clusters. This indicates that the three-cluster classification hides some topological structure
which only becomes revealed after subdividing the largest cluster into three subclusters. In
the other two datasets, this hidden topological structure begins to reveal itself already at a
coarser level. The hierarchical structure of the clusters for the corresponding ε-values is given
in Fig. 7. Tables 1, 2, and 3 show the distances between the clusters of the respective largest
coarse graphs of Fig. 6.

Our choice of an ultrametricity is biased according toMurtagh (2004, §3.3)who introduced
his ultrametricity index also because of the chaining effect problem of the ultrametricity index
from Rammal et al. (1986) based on the subdominant ultrametric, and applied it also to the
iris dataset. TheMurtagh ultrametricity index values of the not-too-small clusters of the three
datasets studied here were calculated using the method below. Figure 3 shows the averages
and the maximal values on clusters having at least size 6, whereby ignoring those clusters
withMurtagh index precisely zero. The rationale behind this is that a reasonablemulti-variate
dataset should have at least someultrametric triangles, and if a dataset is too small, then having
relatively few such triangles immediately means that there are none. It was observed that for
certain values of ε, there is an occasional cluster with exceptionally high ultrametricity value.
In the iris and wine datasets, it even happens that the last singleton to be captured into the
one big cluster for large ε is at a large distance from the other points, and this leads to a very

Table 1 Cluster distances at
ε = 0.7 (iris)

ε = 0.7 C1 C2 C3 C4

C1 0 1.64 3.14 5.46

C2 1.64 0 0.735 0.819

C3 3.14 0.835 0 3.79

C4 5.46 0.819 3.79 0
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Table 2 Cluster distances at
ε = 55 (wine)

ε = 55 C1 C2 C3 C4

C1 0 132 360 60.9

C2 132 0 133 75.1

C3 360 133 0 305

C4 60.9 75.1 305 0

large amount of additional almost ultrametric triangles, so that the Murtagh index value has
a sharp jump upwards at the end. In any case, variation in ultrametricity across the clusters
occurs for all the datasets. There is no immediate explanation for the fluctuation patterns of
the values.

The method of Murtagh (2004, §3.3) of calculating the Murtagh ultrametricity index
consists in counting almost ultrametric triangles as follows:

1. Randomly sample the coordinates for triples of three distinct points.
2. Check for possible degenerate triangles and exclude these.
3. The cosine of the angle facing a side of length x is as follows:

y2 + z2 − x2

2yz
,

where y and z are the other side lengths.
4. For the two other angles, seek an angular difference of at most 2◦ (0.03490656 radians).
Murtagh’s ultrametricity index is then the fraction α of such almost ultrametric triangles.

The 3-adic Radon measure leading to the equity measure on one cluster is now computed
as an exemplary study of the iris dataset. More precisely, it is a cluster consisting of four
points in the graph�0.64, and it is called hereC0.64,3. The subdominant ultrametric (computed
using the method of Rammal et al. 1986) of clusterC0.64,3 can be depicted as the dendrogram
w.r.t. single-linkage clustering, and is shown in Fig. 8 (top left). As an alternative method,
the Ward hierarchical classification was used. The dendrograms for both methods applied to
more clusters of the three datasets are shown in Fig. 8 and Fig. 9. In cluster C0.64,3, the Ward
classification method leads to point 61 being closer to the set {58, 94} than 99, which is not
the case for the single-linkage dendrogram.

Since the unlabelled trees corresponding to the different ultrametrics are isomorphic, it is
possible to obtain a 3-adic equity measure for all of them as follows: assign to each point of
C0.64,3 a 3-adic ball of radius 3−2, centred in

0, 1, 1 + 32, 1 + 32 + 33,

Table 3 Cluster distances at
ε = 50, 000 (heart failures)

ε = 50000 C1 C2 C3 C4

C1 0 78,000 307,000 199,000

C2 78,000 0 229,000 121,013

C3 307,000 229,000 0 108,105

C4 199,000 121,013 108,105 0
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Fig. 8 Dendrograms of the iris data clusters C0.64,3 in �0.64, C1 in �0.9, and C̃ in �0.9 using single-linkage
(left column), and Ward (right column) hierarchical classification methods, respectively
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Fig. 9 Dendrograms of the clusters C in �70 (wine), C4 in �80 (wine), and C1 in �50000 (heart failures),
using single-linkage (left column) and Ward (right column) hierarchical classification methods, respectively
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Table 4 3-adic encodings of the
elements of cluster C0.64,3 in
�0.64 of the iris dataset for the
used hierarchical classifications

3-adic number 0 1 1 + 32 1 + 32 + 23

Single-linkage 99 61 58 94

Ward 61 99 58 94

a set which has the 3-adic tree structure of Fig. 8. The equity measure leads to the assignment

0 �→ 1

2
, 1 �→ 1

4
, 1 + 32 �→ 1

8
, 1 + 32 + 33 �→ 1

8
,

having a dendrogram as in Fig. 4.
This leads to the 3-adic interpolation problem

f (0) = 1, f (1) = 3, f (1 + 32) = 32, f (1 + 32 + 33) = 32 ,

with the solution

f (X) = 31

9990
X3 − 1683

9990
X2 + 10811

4995
X + 1 ∈ Q3[X ]

for the new measure
|ω(x)|3 = | f (x)|3 |dx |3

approximating the equity measure for x ∈ C0.64,3. Now, make the assignment as in Table 4.

4 Conclusion

Hierarchical classification aims at finding a suitable ultrametric in a dataset which resembles
as closely as possible the metric or similarity structure inherent to the given data. The idea
behind this present work is that an actual inherent similarity structure in data could possibly
only be local. Hence, following this idea, it should be better to find a suitable locally ultramet-
ric approximation to given metric data instead of a global ultrametric. This then opens a way
for revealing hidden inter-cluster topology in data, which is impossible to detect with a global
ultrametric, i.e., by hierarchically classifying the whole dataset. The findings suggest that
this idea is justified. In particular, the variation in local ultrametricity indicates that a dataset
in general cannot be expected to be homogeneous with respect to its inherent hierarchical
structure.

In the theoretical part of this work, a local ultrametric is associated with a finite metric
space (given the meaning of a dataset) via its Vietoris-Rips graph. The equity measure was
defined on the local ultrametric parts of the spacewhich, by the result of recent previouswork,
can be seen as coming from a differential 1-form on a p-adic Mumford curve. These can be
viewed as compact algebraic p-adic manifolds, and this approach leads to new invariants for
finite metric data by taking a double filtration with ε- and δ-balls in the finite metric. Like in
the case of topological or multi-topological data, this means a p-adic manifold interpretation
of data via the indexing structure defined for accessing purposes through the subdominant
ultrametric of the graph distance proposed in Bradley and Ledezma (2024), generalising the
approach of Bradley and Jahn (2022) to higher dimensional structures, and that actually any
ultrametric can be used.

In the experimental part of this work, it is conceivable from the findings with the iris
dataset that local ultrametricity could be increased within some clusters of the Vietoris-Rips
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graphs in comparisonwith the ultrametricity of the whole dataset, whereas in other clusters, it
could be significantly lower. This resembles Simpson’s paradox in statistics. Even if this may
not be always the case for general datasets, this nevertheless provides a means for classifying
different types of datasets. Exemplary, Vietoris-Rips graphs were taken, and some values of
the new invariants were calculated. The findings suggest that the double filtration approach
can reveal more inherent topological properties of data in their ultrametric approximation via
p-adic encoding. This suggests that in the future, a hierarchical or p-adic version of manifold
learning could emerge from further investigations in this direction,which is appealing because
of its potential for a reduced computational complexity.

Potential applications are those situations in which the hierarchical classification of whole
datasets does not make sense, either for reasons inherent to the dataset or computationally
due to the data size. Ongoing research in this direction is motivated by applications in geoin-
formatics where temperature flows are to be simulated on large city models on distributed
processing systems.
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