
SM-SIM: A Simulator for Analyzing
Selfish Mining Attacks in Blockchain Systems

Yannik Sproll∗, Robert Heinrich∗, Lan Bao Quang Le∗, Niclas Kannengießer∗
∗Karlsruhe Institute of Technology, Karlsruhe, Germany

{contact.research.ys}@gmail.com
{robert.heinrich, lan.le, niclas.kannengiesser}@kit.edu

Abstract—Selfish mining attacks threaten the tamper-
resistance of blockchain systems with consensus mechanisms
based on proof-of-work and probabilistic finality. Optimizing
blockchain system configurations can mitigate these attacks. This,
however, requires software architects to thoroughly understand
the influence of such configurations on the success probability of
selfish mining attacks. This work presents SM-SIM, a discrete
event simulator to analyze blockchain system configurations and
estimate the success probability of selfish mining attacks. SM-
SIM includes a meta-model for representing blockchain system
configurations and a simulation model for mimicking blockchain
operations and attacks. We demonstrate the plausibility and
utility of SM-SIM by conducting experiments with different
configurations, such as network topologies, block size, laten-
cies, and number of attackers. SM-SIM enables more flexible,
architecture-focused analyses and optimization of blockchain
system configurations, reducing their vulnerability to selfish
mining attacks.

Index Terms—blockchain, security, selfish mining, simulation,
software engineering.

I. INTRODUCTION

Many proof-of-work–based blockchain systems with proba-
bilistic finality, such as Bitcoin, rely on the longest-chain rule
to determine the mainchain. Such systems keep blockchains
tamper-resistant rather than immutable: attackers can tamper
with blockchains by performing selfish mining attacks [1]–
[3]. In a selfish mining attack, an attacker secretly works on
a private branch of the blockchain and only publishes it when
it surpasses the public branch in length. In successful selfish
mining attacks, all honest nodes in the blockchain system will
accept the attacker’s private branch as the public one. Attackers
may engage in selfish mining to earn block rewards, causing
other nodes to waste resources on invalid blocks, or to double-
spend tokens [2], [4].

The success of selfish mining attacks strongly depends on
the configuration of the attacked blockchain system, such
as the system’s network topology and the hashing power of
attacker nodes [2], [3], [5]. Software architects can decrease
the success probability of selfish mining attacks through
optimized configurations of blockchain systems. However,
finding optimal configurations is challenging due to inherent
trade-offs between system characteristics. [3], [6]. To better
protect blockchain systems from selfish mining by design,
software architects must thoroughly understand the influence
of blockchain system configurations on the success probability
of selfish mining attacks.

Analyses of real-world blockchain systems can be a pow-
erful means to better understand the influence of blockchain
system configurations on the success probability of selfish
mining attacks. In large-scale blockchain systems like the
Bitcoin system, however, such analyses often produce only
rough estimates because it is difficult to monitor and control
the blockchain system behavior. For example, the topology of
the Bitcoin system—which can strongly influence the likeli-
hood of selfish mining attacks [1], [3], [7], [8]—is dynamic
and hard to manipulate in controlled experiments. Private
test networks offer an alternative by allowing more control
over blockchain system configurations, such as in terms of
block size and network topology. However, benchmarking in
private test networks is often resource-intensive, which limits
in-depth analyses to only a few configurations. To overcome
these shortcomings, simulations offer a powerful and resource-
efficient approach to blockchain system analysis. Simulations
enable controlled experiments, allowing researchers to test
different configurations and attack scenarios. Simulations also
reduce the effort required to deploy real-world blockchain
systems and adjust their configurations.

Although many simulation tools [9]–[11] help better un-
derstand the influence of blockchain system configurations
on system performance, only a few tools [8], [12], [13]
support investigations of the influence of different blockchain
system configurations on the success probability of selfish
mining attacks. Simulators that support analyses of such
attacks, however, fall short in terms of flexibility in configuring
blockchain systems on the software architecture level. To
support more thorough analyses of the influence of blockchain
system configurations on the success probability of selfish
mining attacks, we approach the following research question:
What is a design of a flexible simulation tool for investigating
the influence of different blockchain system configurations on
the success probability of selfish mining attacks?

We developed SM-SIM1, a simulation tool composed of a
meta-model and a simulation model. Based on the meta-model,
we developed concrete blockchain system models. Using the
blockchain system model in combination with the simulation
model, we simulated selfish mining attacks on blockchain
systems with different configurations to demonstrate the plau-
sibility and utility of SM-SIM.

1SM-SIM is available at https://tinyurl.com/yadc7bam

This is a preprint of an article accepted for presentation and publication at the IEEE International Conference on Blockchain and
Cryptocurrency 2025 (IEEE ICBC'25). Copyright holder is IEEE.

https://tinyurl.com/yadc7bam

Our main ambition in this work is to support more thorough
analyses of the influence of blockchain system configurations
on the success probability of selfish mining attacks. The
main contributions of this work are as follows. First, we
introduce a meta-model that captures the abstract software
architecture of blockchain systems with proof-of-work con-
sensus mechanisms and probabilistic finality, utilizing the
longest chain rule to determine the mainchain. The meta-model
helps develop representations of such blockchain systems for
simulations. Second, by presenting a simulation model, we
enable the use of blockchain system models derived from the
meta-model for flexible simulations in several configurations.
SM-SIM provides a novel toolset for in-depth analysis of
how blockchain system configurations influence the success
probability of selfish mining attacks.

The remainder of this work is structured into five sec-
tions. Section II describes foundations of selfish mining
in blockchain systems and summarizes the state-of-the-art
blockchain simulators on selfish mining. We elucidate the
meta-model used in SM-SIM to develop blockchain system
models in section III. Section IV describes how SM-SIM
uses blockchain system models to simulate blockchain sys-
tem behavior. Next, we demonstrate the plausibility of the
results produced by SM-SIM and the utility of SM-SIM for
investigating the influence of blockchain system configurations
on the success probability of selfish mining in section V.
In section VI, we discuss our principal findings and explain
the contributions and limitations of this work. Moreover, we
outline future research directions.

II. SELFISH MINING ATTACKS

Selfish mining attacks can compromise blockchain systems
that operate as replicated state machines, rely on proof-of-
work, and determine the mainchain based on the longest
branch. A prominent blockchain system vulnerable to selfish
mining attacks is Bitcoin [2], [14]. A basic selfish mining
attack unfolds in three phases, as described below.

In the first phase, an attacker node A waits until it receives
an honest block and appends it to its local blockchain. This
block is referred to as the attack-origin-block.

In the second phase, starting from the attack-origin-block,
A forks its local blockchain into a public and private branch
(see Figure 1). A appends blocks from honest nodes to its local
public blockchain while simultaneously extending its private
branch. To replace the public branch, A continues working on
the private branch until it exceeds the public one by m blocks.

In the third phase, A publishes its private branch and waits
for the majority of nodes to adopt it as the mainchain.

The success probability of selfish mining attacks strongly
depends on blockchain system configurations and attacker
capabilities, such as hashing power and network topology posi-
tion [3], [7], [8]. Previous simulation approaches help generate
valuable insights into how blockchain system configurations
influence selfish mining success, but often neglect critical
aspects of software architecture, limiting their flexibility for
detailed system-level analysis. This limitation makes thorough

… Attack-
Origin-Block

Block-to-
Overwrite BPublic,M

Malicious
Block BPrivate,M BPrivate,N

BPublic,N…

…

Public Branch

Private Branch

Fig. 1: Forked local blockchain on an attacker node with a
public branch, composed of blocks BPublic, and a private
branch, composed of blocks BPrivate.

and flexible analysis challenging. Most simulators focus on
network-layer behavior [3], [8] or directly estimate attack
success probability [13], yet they lack the ability to model and
manipulate blockchain system configurations at the software
architecture level. This restricts their utility for investigat-
ing how architectural design choices impact the robustness
of blockchain systems against selfish mining attacks. More
flexible and architecture-focused simulation tools are needed
to enable more thorough investigations of blockchain system
configurations and their security implications.

III. BLOCKCHAIN SYSTEM MODEL

As a foundational part of SM-SIM, we developed a meta-
model that represents the core components of the software
architecture of blockchain systems. The meta-model serves as
a foundation for modeling blockchain systems with different
configurations. To develop the meta-model, we extended the
Palladio Component Model (PCM) [15], a general meta-model
for representing component-based software architectures.

To develop blockchain system models, the meta-model
offers four view types: repository, node system, blockchain
system, and deployment. These views are interconnected and
collectively define the structure of a blockchain system [16].
In model-driven software engineering, a view type defines the
elements and relationships that a view can contain [17].

The repository view type describes components and their
interfaces. Within the repository view type, we introduce the
BlockchainSystemNodeComponent, a new component type that
represents the functionalities of nodes in blockchain systems.
Other than conventional clients, validating nodes operate on
the replicated state machine concept and utilize proof-of-work
consensus with the longest chain fork resolution rule. Figure 2
illustrates the structure of a validating node.

Within the BlockchainSystemNodeComponent are the Min-
ingProcessComponent and BlockValidatorComponent. A Min-
ingProcessComponent represents the block production process
based on proof-of-work (mining) executed on a node. The
attribute IsMiningProcessEnabled controls whether the com-
ponent computes block hashes in block production to propose
new blocks [18]. This allows differentiation between validating
and non-validating nodes. A BlockValidatorComponent repre-
sents a component that implements the validation of blocks a
node receives from its adjacent node.

Fig. 2: Structure of the blockchain system node entity.

The node system view type describes which BlockchainSys-
temNodeComponents are assembled on a blockchain system
node. The root element of the node system view type is
the BlockchainSystemNodeSystem. It represents the software
system that is running on a blockchain system node. It
has a reference to a NodeBehaviorSpecification and has a
reference to two BlockchainSystemNodeAssemblyContexts for
the node’s MiningProcessComponent and BlockValidatorCom-
ponent. A BlockchainSystemNodeAssemblyContext rep-
resents an instance of a BlockchainSystemNodeComponent.
A NodeBehaviorSpecification specifies if the node system
behaves maliciously.

The blockchain system view type describes a full blockchain
system by referencing all other view types and specifying
behavior constraints that apply system-wide. The Blockchain-
System is the root model element and represents an entire
blockchain system. The BlockchainSystemSpecification spec-
ifies behavioral constraints that apply system-wide.

The deployment view type describes how the system will be
deployed, including the network connections between nodes.
It has the following three sub-view types.

The node environment sub-view type describes the exe-
cution environment to which a node system is deployed.
The NodeEnvironment represents the execution environment
in which a BlockchainSystemNodeSystem is deployed. It is
the root model element of the node environment view type.
The NodeResourceContainer represents a container that can
process workloads.

The node allocation sub-view type describes the exe-
cution environment for the blockchain node system and
how its components are mapped to the node resource con-
tainers. The NodeAllocationContext represents an alloca-
tion of a BlockchainSystemNodeComponent to a NodeRe-
sourceContainer. The NodeAllocation represents the allocation
of a BlockchainSystem-NodeSystem in a NodeEnvironment.
A NodeAllocationRepository represents a collection of
reusable allocation definitions, each specified in one NodeAl-
location.

The P2P network sub-view type describes the topology
of the P2P network of a blockchain system and the nodes’
positions in the P2P network. LinkSpecification specifies
the transmission properties of the links that connect nodes in
the P2P network. NetworkTopology represents the structure
of the P2P network.

IV. SIMULATION USING SM-SIM
This section describes the simulation model that SM-SIM

uses to mimic blockchain system behavior and the simulation
process. Then, the computation of success probabilities of
selfish mining attacks is explained.

A. Blockchain System Simulation
This section describes the foundations of the simulation

model for blockchain systems used in SM-SIM. Then, the
entities of the simulation model are discussed in section IV-A2.
Section IV-A3 details the behavior of honest nodes.

1) Simulation Model: The discrete event simulation model
represents the state of a blockchain system over time. We
denote the current simulation time tc as a global discrete
state variable CLOCK. An event is represented as a tuple
e = (et, to), where et denotes the event type and to specifies
the time of occurrence. We use a future event list (FEL) to
schedule events e:

FEL = {(e1, t1), . . . , (en, tn)|t1 ≤ · · · ≤ tn} (1)

2) Simulation Behavior: The mining process refers to the
process of producing new blocks. In the simulation, we assume
a constant mining difficulty. However, the mean block time
is an input parameter to the simulation. Because the realis-
tic inter-arrival times of blocks are exponentially distributed
[19], we model the block times with a Poisson process [13]
{N(t), t ≥ 0}. Suppose λ = 1

t mean is the Poisson parameter
of N(t), where tmean is the desired mean block time. The
desired mean block time equals the expected block time:
E[N(t)] = λ ∗ t = 1

tmean
∗ t.

g(λ) is a generator function that returns an exponentially
distributed value with the parameter λ. When a validating node
starts the mining process, a block mined event eblock mined =
(block mined, CLOCK + g(λ)) will be added to FEL =
FEL ∪ {eblock mined}.

In addition to proposing blocks, validating nodes validates
block hashes and transactions batched into blocks. Validating
nodes compute the occurrence time to by adding the block
validation duration dvalidation to the current simulation time
to = CLOCK + dvalidation.

The P2P network interface of a node n computes the
transmission time ttime = tt + l + size of(m) ∗ th, where
l is latency and th denotes the throughput of the link between
n and its adjacent node.

The block transmission protocol defines how a node trans-
mits a block to another node. The block transmission protocol
uses three types of messages: inv message, get data message,
and block message. Figure 3 illustrates a block transmission
between two nodes.

Blockchain is a simulation entity that reflects the local
blockchain maintained on a node. For honest nodes, the
blockchain is a chain of linked blocks without forks. For
attackers, the simulation entity stores the public branch and
private branch as a fork (see Figure 1).

A stale block pool stores blocks that arrive out of order,
such as when a block is received before its previous block.

Time

receive
Node A

Node B
Block Validation Time Block Transmission Time

data

inv

get_data

Fig. 3: Communication between nodes in block propagation.

3) Honest Node Behavior: When an honest node receives a
new block, a BlockReceivedEvent is scheduled by the block
transmission protocol. After an honest node has validated a
block, the protocol schedules a blockvalidatedevent. If the
node has the required previous block, the block is stored in
the blockchain; otherwise, the node stores the block in its stale
block pool. The blockminedevent is triggered when an honest
node has produced a block. Then, the node adds the block to
its local blockchain. Honest nodes multicast each validated
and produced block to their adjacent nodes using the block
transmission protocol.

B. Simulation Process

The simulation process starts with generate initial events(),
a block mined event for each honest blockchain system node
is generated. Until either the future event list (FEL) is empty
or the should terminate() call evaluates to true, this pro-
cess continues to generate events (see Algorithm 1). The
simulation terminates when its state variables, checked by
should terminate(), meet the following conditions:

• The attacker published its private branch.
• All nodes must have received all produced blocks from

the attacker.
• All honest nodes have an unforked blockchain in which

the longest chain is n blocks longer than the second-
longest chain.

When a node has a blockchain of at least length x, the
should terminate() triggers an event to stop the process. First,
all events from the FEL are scheduled in the simulation at
the time t. Second, the state changes of the events are applied
by the simulation. Before updating the global time variable
CLOCK to the next scheduled event, the simulation schedules
the changed events. The simulation executes the next iteration
of the loop after updating CLOCK. Since we simulate selfish

Algorithm 1 Event Processing Loop
1: procedure RUN SIMULATION()
2: generate initial events()
3: while |FEL| > 0 AND NOT should terminate() do
4: t← get current time()
5: events← FEL.get events at(t)
6: on events occured(events)
7: advance clock()
8: end while
9: determine results()

10: end procedure

mining attacks, the result of a simulation is either an attack
success or an attack failure.

C. Simulation of Selfish Mining Attacks

We simulate a specific type of selfish mining attack that is
used for double-spending and tampering with the blockchain.
Double-spending refers to the fraudulent multiple spending
of the same tokens [6]. That type of selfish mining attack
is performed in four phases. In the first phase, the attacker
waits until it receives an attack-origin-block, or an honest
block. Because the selfish mining attack is created immediately
behind the attack-origin-block by forking, the attack-origin-
block has two successor blocks: one is part of the public
branch, and the other belongs to the private branch.

In the second phase, A creates a private branch by producing
a successor block immediately after the attack-origin-block
We term this successor the block-to-overwrite, as the attacker
intends to replace it after it has been accepted into honest
nodes’ blockchains. A appends the block-to-overwrite to its
local blockchain and publishes it on the network.

In the third phase, the attacker creates a private branch that
is envisioned to replace the public branch. The first block of
the private branch is a successor of the attack-origin-block.
The attacker produces blocks to be appended to the private
branch until the following conditions are met. First, the public
branch must contain at least n successor blocks of the block-
to-overwrite. n is the number of blocks that confirm the
transaction in the block-to-overwrite. n specifies how long the
recipient of the malicious transaction waits before releasing
the product the attacker bought. Second, the private branch
must be m blocks longer than the public branch.

In the fourth phase, the attacker publishes its private branch.

D. Computation of the Success Probability

We use the Monte Carlo simulation method to estimate the
success probability of selfish mining attacks [20]. Using the
Monte Carlo method, the execution of a simulation round
corresponds to an evaluation of the random value genera-
tor function. In SM-SIM, a simulation round is a mapping
Sround : X → {0, 1,#}, where X is the space that contains
all blockchain system models. The attack is successful if
Sround = 1 and unsuccessful if Sround = 0. The result
of the simulation round is not defined when Sround = #.
We denote N as the number of simulation rounds for a
simulation run. A simulation run is defined as a mapping
Srun : X × N → [0, 1], (x, n) 7→ E[Sround(x)]. Next, we
computed a sample S of N simulation round evaluations using
S = {Sround,1(x), ..., Sround,N (x)}. Then, we computed the
success probability as the ratio of successful selfish mining
attacks to the total number of unambiguous simulation rounds:

E[Sround(x)] =
Σx∈S1{1}(x)

Σx∈S1{1,0}(x)
(2)

V. DEMONSTRATION

We conducted experiments to demonstrate the plausibility
of the results produced by SM-SIM. For the plausibility
demonstration, we used three network topologies (see Fig-
ure 4): Net, R3, and Ring. We compared the simulation
results with those from existing research on selfish mining
to demonstrate that the results are consistent and plausible.
To demonstrate the utility of SM-SIM, we examined how
different blockchain system configurations affect the success
probabilities of selfish mining attacks. The following section
outlines the experimental design and presents the results.

A. Experimental Design

As SM-SIM uses a stochastic simulation model, we ran mul-
tiple simulation rounds until the results converged. We sim-
ulated blockchain systems with three configurations: Net 12,
Net 21, and Net 40. The configurations correspond to the Net
topology with hashing power shares ranging from 12% to 40%,
respectively. The network topology of the Net model consists
of a large, single subgraph defined by specific constraints.
We assume this system model leads to a high deviation in
the calculated attack success probabilities. For each variation
of the Net system model, we ran 500, 1000, 2000, and
5000 simulation rounds. Per number of simulation rounds, we
collected a sample of ten in each system model. For each
simulation round, we generated a new network with the same
topology to reduce bias from individual network configurations
(e.g., positions of nodes).

We used the coefficient of variation (CV) to compute
the convergence of the simulation results. CV is defined as
CV = σ

µ , where σ and µ are the standard deviation and
mean of the sample. When the number of simulation rounds
increases, a decreasing CV value indicates convergence. We
set the threshold for the CV value to 0.05. After 15,000
simulation rounds per simulation run, if the CV does not fall
below this threshold, we used the absolute standard deviation
to assess the convergence of the simulation model. In Net 40
model, for example, the CV value at 500 rounds was 0.0315,
which is below the threshold of 0.05. It remained below 0.05,
indicating strong convergence. Starting with 0.2304 at 500
rounds, the CV value of Net 21 model decreased to below
0.05 between 10,000 and 15,000 rounds. In the Net 12 model,
the CV value at 500 rounds was 1.527, well above the 0.05
threshold. This value gradually decreased to 0.195 at 15,000
rounds but never fell below the threshold.

1) Plausibility Demonstration: We conducted a plausibility
test to demonstrate that SM-SIM accurately captures the
impact of blockchain system configurations on the success
probability of selfish mining attacks. For the plausibility
demonstration, we manipulated three common parameters of
blockchain system configurations that influence the success
probability of selfish mining attacks [7], [8], [21]. The first
parameter is the attacker’s share of hashing power, which
directly affects the attacker’s ability to produce a new blocks.
The second parameter is block propagation delay. The last

parameter, network topology, influences the success proba-
bility based on the position of the attacker in the network.
Table I provides an overview of the naming conventions for
the simulated blockchain system models, based on topology
and attacker hashing power share.

As we varied the block propagation delay, we simulated a
base version and a delayed version for each blockchain system
model presented in Table I. To ensure practical execution
times, we limited the maximum blockchain length to 35. The
total hashing power in the simulations was 20 MH/s, and
the number of nodes in the network was 15. The latency
and throughput of the base version are 100ms and 10kb/s,
respectively. They are 200ms and 5kb/s in the delayed version.
We used those configurations as they enable comparability of
the simulation results with extant research (e.g., [22]).

2) Utility Demonstration: For each blockchain system
model, we collected the success probability of the base ver-
sion, the delayed version, and the difference between their
probabilities. The block transmission and validation time were
modified in the simulations to vary the block propagation
delay. To the best of our knowledge, no publicly available
and sufficient reference data exists to validate the results of
the simulation model, nor is there a formal definition of the
success probability of selfish mining attacks on blockchain
systems. Therefore, we used a binary variable with the values
expected and unexpected.

We manipulated the blockchain system configurations by
varying the block creation interval (10 min, 2.5 min, 1 min,
and 20 s) and seven block sizes (0.075 MB, 0.25 MB, 0.5 MB,
1 MB, 2 MB, 4 MB, and 8 MB) as per [3]. In the simulations
using these configurations, the attacker has the same hashing
power as the honest nodes.

The lower bound for successful selfish mining attacks
is approximately 21% to 23% of the hashing power of a
blockchain system [14]. We simulated two scenarios with
different hashing power of honest nodes and attackers. In the
first scenario, the honest nodes control 21% of the hashing
power, while the attacker nodes control 50%. In the second
scenario, these roles are reversed. In both scenarios, we used a
block size of 0.075 MB for the block creation intervals 10 min,
2.5 min, 1 min, and 20 s.

In the simulations with multiple competitive attackers, we
used a simulation model with a block creation interval of
10 min and a block size of 0.075 MB. We simulated 1, 2,
and 3 simultaneous and competing attackers using the network
topologies Net, R3, and Ring (see Figure 4).

Hashing Power Share of the Attacker

12% 21% 30% 40% 50%

To
po

lo
gy Net Net 12 Net 21 Net 30 Net 40 Net 50

R3 R3 12 R3 21 R3 30 R3 40 R3 50

Ring Ring 12 Ring 21 Ring 30 Ring 40 Ring 50

TABLE I: Overview of blockchain system models based on
network topologies and share of an attackers’ hashing power
per topology.

(a) Net topology (b) R3 topology (c) Ring topology

Fig. 4: Overview of exemplary network topologies used in the demonstration. H denotes an honest node, A denotes an attacker,
and P indicates a proxy node.

B. Experimental Results

This section presents the experimental results of the plausi-
bility and utility demonstrations.

1) Plausibility Demonstration: The profitability threshold
for the attack is 25% of hashing power [2]. SM-SIM demon-
strates that this threshold can be lowered to 21% (see Fig-
ures 6-9), which is consistent with extant research [4], [23],
[24]. This threshold can be reduced to around 14% when the
attack is carried out by multiple attackers (see Figure 5). When
attackers have more hashing power than honest nodes, the
success probability of selfish mining attacks increases (see
Tables II). When the overall hash power of the attackers
exceeds 50%, the success probability increases strongly, which
is consistent with existing research [2], [12]. If honest nodes
have a total hashing power higher than that of attackers
(see Figure 10, the success probability decreases. This shows
that SM-SIM produces plausible simulation results, compared
to influences of blockchain system configurations on selfish
mining success reported in previous research [7].

In line with prior research [2], [12], [14], [24], the sim-
ulation results indicate that the network topology influences
the success probabilities of selfish mining attacks (see Fig-

Hashing Power Share of the Attacker and Honest Nodes

12% 21% 30% 40% 50%

Net

Base 0.001178 0.36578 0.197644 0.407006 0.483752

Delayed 0.002667 0.61333 0.270244 0.449252 0.492434

Difference 0.001489 0.24756 0.0726 0.042246 0.008682

R3

Base 0.001267 0.0424 0.21744 0.423839 0.4887

Delayed 0.0028 0.072067 0.299247 0.461754 0.49535

Difference 0.001533 0.029667 0.081807 0.037915 0.0065

Ring

Base 0.001222 0.046022 0.242439 0.443019 0.491667

Delayed 0.001333 0.0464 0.262733 0.4508 0.484852

Difference 0.000111 0.000378 0.020294 0.007781 0.006816

TABLE II: Comparison of success probabilities of selfish
mining attacks in different blockchain systems with different
network topologies (i.e., Net, R3, and Ring), hashing power
of the attacker, and network delays.

ures 5-10). The demonstration results indicate that the benefit
threshold for the selfish mining attack is at least 21% of
hashing power, which is aligned with the value of 25% in the
original description of the selfish mining attack [2]. Consistent
with [24], the results of SM-SIM demonstrate the success
probability of the attack will be sharply increased when the
hashing power of the attacker reaches 50%. As the results
produced by SM-SIM are consistent with those of existing
research, we consider SM-SIM to produce plausible results.

2) Utility Demonstration: To demonstrate the added value
of SM-SIM, the following presents simulation results regard-
ing the influence of exemplary network topologies and hashing
power distributions on the success probability of selfish mining
attacks.

a) Influence of Network Topologies on Success Probabil-
ities of Selfish Mining Attacks: Table II presents the simulation
results for a blockchain system with a block size of 0.075 MB
and a block creation interval of 1.5 seconds, for the network
topologies Net, R3, and Ring. The simulation results show that
blockchain systems with Ring topology are most vulnerable
to selfish mining attacks. Blockchain systems with the Net
topology seem less prone to successful selfish mining attacks.

For multiple competing attackers, the success probability
per attacker strongly increases (see Figures 5a, 5b, and 5c),
especially in blockchain system models with Ring topology.

b) Influence of Hashing Power Distribution on Success
Probabilities of Selfish Mining Attacks: From 0.1178% at 12%
hashing power share in the basic version of the Net System,
the success probability reaches 48.3752% at 50% hashing
power share. In the delayed system, the attacker has higher
success probabilities. The increase in success probabilities for
delayed systems compared to base systems is expected because
a higher block propagation delay can favor the attacker by
favoring forks in the system [4]. When increasing the hashing
power share, the probability of success in the delayed system
is greater than in the base system in most cases for three
topologies, as we expected. In the case of 50% hashing power
share in the Ring network topology, the success probability
for the base model is greater than for the delayed system.

12% 21% 30% 40% 50%
Hashing power per share

0.0

0.1

0.2

0.3

0.4

0.5
Pr

ob
ab

ilit
y

of
 su

cc
es

s

Multiple attackers on Net topology
No. Attackers

1 Attacker
2 Attackers
3 Attackers

(a) Multiple attackers on Net topology

12% 21% 30% 40% 50%
Hashing power per share

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Multiple attackers on R3 topology
No. Attackers

1 Attacker
2 (1 proxy and 1 no proxy) Attackers
3 (1 proxy and 2 no proxies) Attackers
3 (2 proxies and 1 no proxy) Attackers

(b) Multiple attackers on R3 topology

12% 21% 30% 40% 50%
Hashing power per share

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Multiple attackers on Ring topology
No. Attackers

1 Attacker
2 Attackers
3 Attackers

(c) Multiple attackers on Ring topology

Fig. 5: Multiple attackers on three topologies.

12P_Net 21P_Net 30P_Net 40P_Net 50P_Net
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 10 minutes in Net (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(a) Net topology

12P_R3 21P_R3 30P_R3 40P_R3 50P_R3
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 10 minutes in R3 (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(b) R3 topology

12P_Ring 21P_Ring 30P_Ring 40P_Ring 50P_Ring
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 10 minutes in Ring (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(c) Ring topology

Fig. 6: Bitcoin system with block creation interval 10 min, latency 100 ms, block size from 0.0075 MB to 8 MB.

12P_Net 21P_Net 30P_Net 40P_Net 50P_Net
Hashing power per share

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 20 seconds in Net (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(a) Net topology

12P_R3 21P_R3 30P_R3 40P_R3 50P_R3
Hashing power per share

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 20 seconds in R3 (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(b) R3 topology

12P_Ring 21P_Ring 30P_Ring 40P_Ring 50P_Ring
Hashing power per share

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 20 seconds in Ring (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(c) Ring topology

Fig. 7: Bitcoin system with block creation interval 20 sec, latency 100 ms, block size from 0.075 MB to 8 MB.

12P_Net 21P_Net 30P_Net 40P_Net 50P_Net
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 2.5 minutes in Net (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(a) Net topology

12P_R3 21P_R3 30P_R3 40P_R3 50P_R3
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 2.5 minutes in R3 (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(b) R3 topology

12P_Ring 21P_Ring 30P_Ring 40P_Ring 50P_Ring
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 2.5 minutes in Ring (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(c) Ring topology

Fig. 8: Bitcoin system with block creation interval 2.5 min, latency 100 ms, block size from 0.075 MB to 8 MB.

12P_Net 21P_Net 30P_Net 40P_Net 50P_Net
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 1 minute in Net (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(a) Net topology

12P_R3 21P_R3 30P_R3 40P_R3 50P_R3
Hashing power per share

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 1 minute in R3 (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(b) R3 topology

12P_Ring 21P_Ring 30P_Ring 40P_Ring 50P_Ring
Hashing power per share

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Block interval 1 minute in Ring (base)
Block Size
75000 bytes
100,000 bytes
250,000 bytes
500,000 bytes
1,000,000 bytes
2,000,000 bytes
4,000,000 bytes
8,000,000 bytes

(c) Ring topology

Fig. 9: Bitcoin system with block creation interval 1 min, latency 100 ms, block size from 0.075 MB to 8 MB.

600000 150000 60000 20000
Interval times (milliseconds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Pr

ob
ab

ilit
y

of
 su

cc
es

s

Differrent hashing power per share on Net
21% per honest nodes, 50% per attacker node
50% per honest nodes, 21% per attacker node

(a) Net topology

600000 150000 60000 20000
Interval times (milliseconds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Differrent hashing power per share on R3
21% per honest nodes, 50% per attacker node
50% per honest nodes, 21% per attacker node
21% per honest nodes, 50% per attacker node
50% per honest nodes, 21% per attacker node

(b) R3 topology

600000 150000 60000 20000
Interval times (milliseconds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Differrent hashing power per share on Ring
21% per honest nodes, 50% per attacker node
50% per honest nodes, 21% per attacker node

(c) Ring topology

Fig. 10: Relationship between the hashing power of honest nodes and the attacker influences the success probability of selfish
mining attacks.

If honest nodes and attackers have different hashing power
(see Figure 10), the success probability increases with a
decreasing block creation interval. Moreover, if the attacker
has more hashing powers than the honest nodes, the probability
is significantly higher than its counterpart. Block size does not
seem to significantly affect the success probability.

The simulation results showcase the utility of SM-SIM for
investigating success probabilities of selfish mining attacks
in blockchain systems with different configurations, including
software architectures, network topologies, and number of
competing attackers.

VI. CONCLUSIONS

This paper presents SM-SIM, a blockchain system simulator
that enables software architects to evaluate how blockchain
configurations influence the success of selfish mining attacks.
SM-SIM comprises a meta-model for developing blockchain
system models for simulations and a simulation model itself.
We demonstrate the plausibility and utility of SM-SIM by
simulating selfish mining attacks on blockchain systems with
different configurations. The simulations reveal that block size
has minimal impact on selfish mining success probabilities,
whereas a higher number of attackers significantly increases
their effectiveness. Among tested configurations, blockchain
systems with a Ring topology are the most vulnerable.

Our primary ambition is to enable more thorough and
efficient investigations into the influence of various blockchain
system configurations on the success probability of selfish
mining attacks. By presenting a meta-model focused on
blockchain system software architecture, we lay a foundation
for the flexible development of custom blockchain models for
simulations. This meta-model defines the key components of
blockchain systems and their relationships, supporting detailed
modeling of blockchain systems with custom configurations.

SM-SIM also offers a simulation tool for software architects
to evaluate the success probability of selfish mining attacks in
blockchain systems that use proof-of-work-based consensus
mechanisms. It enables the evaluation of different blockchain
system configurations in terms of their robustness against
selfish mining attacks, which can support the development of
blockchain systems that are more robust by design.

While SM-SIM offers flexibility in modeling blockchain
configurations, its current scope is limited to proof-of-work-
based systems using the longest chain fork resolution rule,

such as Nakamoto consensus [18]. Since selfish mining pri-
marily targets proof-of-work–based blockchain systems, this
focus is justified. In order to make SM-SIM more versa-
tile, future work could extend the meta-model to simulate
blockchain systems with alternative consensus mechanisms
that use other leader election protocols and fork resolution
rules. This would enable analyses of the influence of a larger
number of blockchain system configurations on the success
probabilities of different attacks.

We validated the meta-model and the blockchain system
model based on software architectures of established systems
like Bitcoin. However, we did not quantitatively verify the sim-
ulation results in terms of accuracy. Instead, we used existing
literature on selfish mining to demonstrate the plausibility of
outputs produced by SM-SIM. Future research should focus on
empirical validation, comparing SM-SIM’s simulated results
with data on selfish mining attacks on real-world blockchain
systems to assess its accuracy.

In conclusion, SM-SIM provides a valuable tool for soft-
ware architects and blockchain developers alike, enabling
deeper insights into the vulnerabilities of blockchain systems
to selfish mining attacks. As blockchain technology continues
to evolve, we hope SM-SIM will play a key role in enhancing
the security of these systems, fostering the development of
more secure blockchain systems.

ACKNOWLEDGMENT

This work was supported by the KASTEL Security Re-
search Labs and the German Federal Ministry of Education
and Research and the NextGenerationEU project by the Euro-
pean Union grant number 16KISA086 (ANYMOS).

REFERENCES

[1] E.-E. Gojka, N. Kannengießer, B. Sturm, J. Bartsch, and A. Sunyaev,
Security in Distributed Ledger Technology: An Analysis of Vulnerabil-
ities and Attack Vectors, ser. Lecture Notes in Networks and Systems.
Cham: Springer International Publishing, 2021, vol. 285, p. 722–742.

[2] I. Eyal and E. G. Sirer, “Majority is not enough: bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, no. 7, p. 95–102, Jun. 2018.

[3] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, New York, NY,
USA, 2016, p. 3–16.

[4] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, Optimal Selfish Mining
Strategies in Bitcoin, ser. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2017, vol. 9603, p. 515–532.

[5] L. Stoykov, K. Zhang, and H.-A. Jacobsen, “Vibes: Fast blockchain sim-
ulations for large-scale peer-to-peer networks: Demo,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and
Demos, ser. Middleware ’17, New York, NY, USA, 2017, p. 19–20.

[6] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev, “Trade-offs
between distributed ledger technology characteristics,” ACM Computing
Surveys, vol. 53, no. 2, Apr. 2020.

[7] M. Saad, L. Njilla, C. Kamhoua, and A. Mohaisen, “Countering selfish
mining in blockchains,” in 2019 International Conference on Computing,
Networking and Communications, 2019, pp. 360–364.

[8] L. Serena, G. D’Angelo, and S. Ferretti, “Security analysis of distributed
ledgers and blockchains through agent-based simulation,” Simulation
Modelling Practice and Theory, vol. 114, p. 102413, Jan. 2022.

[9] S. Pandey, G. Ojha, B. Shrestha, and R. Kumar, “Blocksim: A practical
simulation tool for optimal network design, stability and planning,” in
2019 IEEE International Conference on Blockchain and Cryptocurrency,
Seoul, Korea (South), May 2019, p. 133–137.

[10] R. Banno and K. Shudo, “Simulating a blockchain network with
simblock,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency, Seoul, Korea (South), May 2019, p. 3–4.

[11] X. Ma, H. Wu, D. Xu, and K. Wolter, “Cblocksim: A modular high-
performance blockchain simulator,” in 2022 IEEE International Confer-
ence on Blockchain and Cryptocurrency, Shanghai, China, May 2022,
p. 1–5.

[12] M. Alharby and A. van Moorsel, “Blocksim: An extensible simulation
tool for blockchain systems,” Frontiers in Blockchain, vol. 3, p. 28, 2020.

[13] P.-O. Goffard, “Fraud risk assessment within blockchain transactions,”
Advances in Applied Probability, vol. 51, no. 2, p. 443–467, Jun. 2019.

[14] S.-N. Li, C. Campajola, and C. J. Tessone, “Statistical detection of selfish
mining in proof-of-work blockchain systems,” Scientific Reports, vol. 14,
no. 1, p. 6251, Mar. 2024.

[15] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, and A. Koziolek,
Modeling and simulating software architectures: The Palladio approach.
MIT Press, 2016.

[16] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek,
H. Koziolek, K. Krogmann, and M. Kuperberg, “The palladio component
model,” 2011.

[17] T. Goldschmidt, S. Becker, and E. Burger, “Towards a tool-oriented
taxonomy of view-based modelling,” vol. P-201, 2012, p. 59 – 74.

[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Oct.
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[19] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings. IEEE, 2013, pp. 1–10.

[20] A. Barbu, S.-C. Zhu, A. Barbu, and S.-C. Zhu, “Introduction to monte
carlo methods,” Monte Carlo Methods, pp. 1–17, 2020.

[21] J. Göbel, P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Bitcoin
blockchain dynamics: The selfish-mine strategy in the presence of
propagation delay,” Performance Evaluation, vol. 104, p. 23–41, Oct.
2016.

[22] C. Natoli, P. Ekparinya, G. Jourjon, and V. Gramoli, “Blockchain double
spending with low mining power and network delays,” Distributed
Ledger Technologies: Research and Practice, 2024.

[23] Q. Bai, X. Zhou, X. Wang, Y. Xu, X. Wang, and Q. Kong, “A deep dive
into blockchain selfish mining,” in ICC 2019-2019 IEEE international
conference on communications, 2019, pp. 1–6.

[24] C. Schwarz-Schilling, S.-N. Li, and C. J. Tessone, “Stochastic modelling
of selfish mining in proof-of-work protocols,” Journal of Cybersecurity
and Privacy, vol. 2, no. 2, pp. 292–310, 2022.

https://bitcoin.org/bitcoin.pdf

	Introduction
	Selfish Mining Attacks
	Blockchain System Model
	Simulation Using SM-SIM
	Blockchain System Simulation
	Simulation Model
	Simulation Behavior
	Honest Node Behavior

	Simulation Process
	Simulation of Selfish Mining Attacks
	Computation of the Success Probability

	Demonstration
	Experimental Design
	Plausibility Demonstration
	Utility Demonstration

	Experimental Results
	Plausibility Demonstration
	Utility Demonstration

	Conclusions
	References

