KIT | KIT-Bibliothek | Impressum | Datenschutz

Maxwell equations with localized internal damping: strong and polynomial stability

Nicaise, Serge; Schnaubelt, Roland 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the Maxwell system with localized conductivity $\sigma$ and the boundary conditions of a perfect conductor on a simply connected domain $\Omega$, assuming that there are no electric charges off the support of $\sigma$. For matrix-valued permittivity $\varepsilon$ and permeability $\mu$ we show strong stability of the underlying semigroup by checking the spectral criteria of the Arendt–Batty–Lyubich–Vũ Theorem. If $\varepsilon=\mu=1$, $\Omega$ is the cube $(0,\pi)^3$ and supp $\sigma$ contains a strip, the semigroup is polynomially stable of rate $\frac{1}{2}$. To derive this result, we establish the resolvent estimate of the Borichev–Tomilov Theorem using an orthonormal basis of eigenfunctions of the Maxwell operator for $\sigma = 0$.


Volltext §
DOI: 10.5445/IR/1000180547
Veröffentlicht am 28.03.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000180547
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2025/12
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter stability, Maxwell system, localized conductivity, ABLV theorem, Borichev–Tomilov theorem
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page