KIT | KIT-Bibliothek | Impressum | Datenschutz

VISO-Grasp: Vision-Language Informed Spatial Object-centric 6-DoF Active View Planning and Grasping in Clutter and Invisibility

Shi, Yitian 1; Wen, Di 2; Chen, Guanqi; Welte, Edgar 1; Liu, Sheng; Peng, Kunyu ORCID iD icon 2; Stiefelhagen, Rainer ORCID iD icon 2; Rayyes, Rania 1
1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

We propose VISO-Grasp, a novel vision-language-informed system designed to systematically address visibility constraints for grasping in severely occluded environments. By leveraging Foundation Models (FMs) for spatial reasoning and active view planning, our framework constructs and updates an instance-centric representation of spatial relationships, enhancing grasp success under challenging occlusions. Furthermore, this representation facilitates active Next-Best-View (NBV) planning and optimizes sequential grasping strategies when direct grasping is infeasible. Additionally, we introduce a multi-view uncertainty-driven grasp fusion mechanism that refines grasp confidence and directional uncertainty in real-time, ensuring robust and stable grasp execution. Extensive real-world experiments demonstrate that VISO-Grasp achieves a success rate of 87.5% in target-oriented grasping with the fewest grasp attempts outperforming baselines. To the best of our knowledge, VISO-Grasp is the first unified framework integrating FMs into target-aware active view planning and 6-DoF grasping in environments with severe occlusions and entire invisibility constraints.

Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000180557
Verlag arxiv
Umfang 8 S.
Schlagwörter Robotics (cs.RO), Computer Vision and Pattern Recognition (cs.CV)

Volltext §
DOI: 10.5445/IR/1000180557
Veröffentlicht am 31.03.2025
Originalveröffentlichung
DOI: 10.48550/arXiv.2503.12609
Seitenaufrufe: 9
seit 31.03.2025
Downloads: 5
seit 01.04.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page