KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved error estimates for low-regularity integrators using space-time bounds

Ruff, Maximilian 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

Weproveoptimalconvergenceratesforcertainlow-regularity integrators applied to the one-dimensional periodic nonlinear Schrödinger and wave equations under the assumption of $H^1$ solutions. For the Schrödinger equation we analyze the exponential-type scheme proposed by Ostermann and Schratz in 2018, whereas in the wave case we treat the corrected Lie splitting proposed by Li, Schratz, and Zivcovich in 2023. We show that the integrators converge with their full order of one and two, respectively. In this situation only fractional convergence rates were previously known. The crucial ingredients in the proofs are known space-time bounds for the solutions to the corresponding linear problems. More precisely, in the Schrödinger case we use the $L^4$ Strichartz inequality, and for the wave equation a null form estimate. To our knowledge, this is the first time that a null form estimate is exploited in numerical analysis. We apply the estimates for continuous time, thus avoiding potential losses resulting from discrete-time estimates.


Volltext §
DOI: 10.5445/IR/1000180564
Veröffentlicht am 31.03.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000180564
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 14 S.
Serie CRC 1173 Preprint ; 2025/13
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter semilinear Schrödinger equation, semilinear wave equation, low-regularity integrator, error analysis, Strichartz estimates, null form estimate
Nachgewiesen in OpenAlex
arXiv
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page