KIT | KIT-Bibliothek | Impressum | Datenschutz

Surface stabilization for enhancing air/moisture resistance of layered Ni-rich oxide cathodes

Tan, Zhouliang; Xu, Feng; Zhang, Ruizhuo 1; Huang, Yudai ; Liu, Xia; Yang, Shupeng; Guo, Yizhong; Liu, Qingcui; Wu, Tianlong; Huang, Yingde ; Brezesinski, Torsten ORCID iD icon 1; Tang, Yu ; Zhao, Wengao 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Layered Ni-rich oxides (LiNixCoyMnzO$_2$, with x ≥ 0.8 and x + y + z = 1) are promising cathode materials for high-energy-density lithium-ion batteries (LIBs) owing to their high specific capacity and high operating voltage. However, the Ni-rich cathode suffers from notorious deterioration when in contact with ambient air, primarily driven by nickel's multivalent (Ni$^2$⁺/Ni$^3$⁺/Ni$^4$⁺) reactions and humidity sensitivity. In this study, we report a novel surface modification strategy for LiNi$_{0.83}$Co$_{0.12}$Mn$_{0.05}$O$_2$ (NCM83) via Li$_x$SiO$_y$ coating, achieved through chemical grafting using the silane coupling agent, (3-aminopropyl) triethoxysilane (KH550), followed by thermal treatment. The modified NCM83 exhibits enhanced moisture resistance due to a superhydrophobic surface that suppresses detrimental reactions between residual lithium species (Li$_2$O, LiOH, etc.) and water. Furthermore, the Li$_x$SiO$_y$ coating mitigates mechanical degradation by facilitating strain relaxation. Notably, the modified NCM83 retains high electrochemical performance after 28 days of air exposure, delivering a specific capacity of 157 mAh g⁻$^1$ after 100 cycles at 1C, compared to 108 mAh g⁻$^1$ for the uncoated counterpart. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180567
Veröffentlicht am 31.03.2025
Originalveröffentlichung
DOI: 10.1016/j.ensm.2025.104169
Scopus
Zitationen: 10
Web of Science
Zitationen: 9
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 2405-8297
KITopen-ID: 1000180567
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Energy Storage Materials
Verlag Elsevier
Band 76
Seiten Art.-Nr.: 104169
Vorab online veröffentlicht am 09.03.2025
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page