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Abstract

We present the design and analytical model of a bistable nanoactuator consisting of a PMMA/TiNiH{/Si trimorph layer
composite, in which the layer of shape memory alloy TiNiHf shows a martensitic phase transformation with wide hyste-
resis in the temperature range of 50 - 140 °C, while the PMMA layer undergoes a glass transition at 105 °C. We demon-
strate that the thickness of the TiNiHf layer can be adjusted down to a critical thickness of 220 nm using a Si substrate
with SiO, buffer layer without affecting its phase transformation temperatures, which enables the design of ultra-compact
bistable actuator devices. The presented model characterizes the bistable actuation stroke as a function of PMMA layer
thickness at room temperature. The obtained optimal layer thicknesses allow for the development of a process flow for

nanofabrication of the trilayer composite.

1 Introduction

Nowadays, there is a growing demand on micro- and nano-
actuators for next generation Si-based nanomechanical and
nanophotonic applications requiring large stroke compared
to their size, high power efficiency and compatibility to Si
technology [1]. Among the potential actuation mecha-
nisms, shape memory alloy (SMA) actuation is highly at-
tractive as it offers a large work output in the order of
107 J/m3 [2] and favourable downscaling properties. Re-
search on photonic switches based on SMA nanoactuators
[1, 3] showed the appealing advantage of actuator footprint
in the order of 10 pm? compared to electrostatic actuation
mechanisms like comb-drive actuators. For such applica-
tions, the SMA thin film is sputtered on the Si device layer
[4]. Hence, the design and optimization of nanoactuation
performance requires a model for bi- and multilayer
SMA/Si composite beams.

In this paper, we investigate a bistable mechanism, which
makes use of the large hysteresis of a TiNiHf film sputtered
on a flexible substrate and an additional polymethyl meth-
acrylate (PMMA) layer with matched glass transition tem-
perature T, in between SMA’s phase transformation tem-
peratures [5, 6]. As the polymer becomes hard below T, it
can fix the actual shape of the TiNiH{f/substrate composite
upon cooling below Ty. Thus, cooling from high tempera-
ture austenite state will fix the austenitic shape, while cool-
ing from martensitic state at a temperature above Ty will
fix the corresponding martensitic shape. So far, this bista-
ble mechanism has been realized on mm-scale [5, 7]. Here,
we explore possible size effects for decreasing film thick-
ness and present a model to describe and optimize the tem-
perature-dependent deflection of bistable PMMA/Ti-
NiH{/Si multilayer actuators.

2 Background

Theoretical models based on classical Eulerian beam the-
ory have been investigated to simplify and speed up the de-
sign and optimization of bi- and multilayer beam actuators
compared to computationally intensive finite element mod-
els. Timoshenko [8] firstly proposed the theoretical solu-
tion of deflection of a bilayer beam with different but tem-
perature-independent elastic moduli and coefficients of
thermal expansion (CTE) under thermal effect. Moulin et
al. [9] firstly used this result to analyse micromechanical
bilayer thermal sensors. A similar analysis was made for
the design of a SRN/SU-8 bimorph temperature sensor by
Larsen et al. [10]. To meet the rapid development of actu-
ators and sensors with cantilever configurations in microe-
lectromechanical systems (MEMS), models considering
additional effects were proposed. Hsueh et al.[11] studied
thermal induced stress distribution in a three-layer struc-
ture sandwiching a graded layer. For more general applica-
tions, Zhang [12] extended the bilayer model to a multi-
layer system. Further work focussed on the influence of
gradient residual stress in multilayer structures [13, 14].
Beam models considering large deflection were also inves-
tigated, which do not satisfy the assumptions of Eulerian
beam theory [15, 16].

In applications of micro- and nano-actuators, Joule-heating
is a common method to control thermal actuators, which
gives rise to inhomogeneous temperature distributions.
Jiang et al. [17] considered this deviation and proposed an
electro-thermo-mechanical model to gain more precise
prediction of deflection. In addition, size and scaling ef-
fects may cause large effects on actuator performance [18].
Therefore, these effects receive much attention in order to
ameliorate the classical beam theory. One of the most pop-
ular theories is couple stress theory [19-23]. Tan et al. [24]
integrated this theory to Jiang’s model [17] and obtained a
sophisticated model predicting more accurately the deflec-
tion of multilayer SiO,/Ti/Si cantilever beams.
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3  Size-dependent phase transfor-
mation of TiNiHf films

Size effects play an important role in the downscaling of
SMA-based actuators, as they may influence SMA proper-
ties such as phase transformation temperatures and thermal
hysteresis width. Monitoring the temperature-dependent
electrical resistance is a common way to reveal information
of phase transformation of SMA films [25, 26]. For this
purpose, a four-probe electrical resistance measurement is
conducted in a thermostat to control the ambient tempera-
ture change under quasi-stationary condition.

Thin TiNiHf films with different thicknesses ranging from
110 nm to 5 pm are prepared using DC magnetron sputter-
ing on 585 um thick Si and SiO,/Si substrates with 1000
nm SiO; buffer layer. Rapid thermal annealing (RTA) at
635 °C for 5 min follows the sputtering process to crystal-
lize deposited amorphous film, as described in [6]. Fig. 1
presents a temperature-resistance curve of a 220 nm thick
TiNiHf film on a SiO»/Si substrate. Despite the small film
thickness, the transformation is comparable to the phase
transformation of bulk TiNiHf. Four phase transformation
temperatures, i.e. martensitic start and finish temperatures
(Mg and M), austenitic start and finish temperatures (4,
and Ay), are determined by the tangential method. The hys-
teresis width of curve is defined by:
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Figure 1: Temperature-electrical resistance curve of a 220

nm thick Tis04NissHf1 ¢ film on a 585 pm Si substrate with

1000 nm thick SiO, buffer layer. The martensitic and aus-

tenitic start and finish temperatures (M ¢ and A f) are de-

termined by the tangential method.

The thickness dependence of phase transformation temper-
atures of the prepared TiNiHf films is summarized in Fig.
2 for both types of substrate. Note that My and 4 are not
indicated for the 110 nm thick film on Si substrate without
SiO, buffer layer, because the martensitic transformation
does not finish in the investigated temperature range. These

measurements reveal a significant change in transfor-
mation temperatures and hysteresis width, when the thick-
ness of TiNiHf films on Si substrates reduces from 440 to
220 nm. For TiNiHf films on SiO,/Si substrates, this
change occurs in the thickness range between 220 and 110
nm. These results indicate the existence of a critical thick-
ness limit for nano actuation at room temperature, which is
also substrate dependent. Above the critical thickness, the
phase transformation properties of TiNiHf film do not
show a significant thickness dependence.
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Figure 2: Phase transformation temperatures versus thick-
ness of TiNiHf films on a Si substrate without (a) and with
(b) SiO; buffer layer. The glass transition temperature of
PMMA is also indicated (dashed line).

4  Analytical model of a multilayer
beam

4.1 Thermal effect

Considering a general cantilever beam illustrated in Fig. 3,
the elastic modulus E'(y) and beam width b(y) vary along
the depth direction (y-axis in Fig. 3). Based on the model
of Eulerian beam, it can be assumed that beam axis remains
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vertical to the cross section of beam after deflection. The
stress distribution along the cross section is expressed as:

o(y) =Eme®) (2
with the strain distribution given by:
g(_’y) =& t+ @y — ginelastic(y)- (3)

Here, ¢, is strain at the centroid z, of beam cross section,
@ is the curvature of bending deformation and €;,0145tic ()
is the strain not contributing to elastic stress, which in-
cludes strains such as thermal strain &;. In case the coeffi-
cient of thermal expansion a(y,T) is also a function of
temperature, the thermal strain is:

en(y) = fT

Tre f

a(y,T)dT, 4)

whereby T..f is the reference temperature.

Considering boundary conditions without external loading
of quasi-static deformation:

N = f o) - b()dy = 0 )

M= f o) yb(»dy =0 ©)

Together with Eqgs. (1) and (2), &, and ¢ can be expressed
as
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Figure 3: Sketch of a general cantilever beam with varying
width and elastic modulus along thickness (y-) direction.
Legend: [ — beam length, b(y) — width, E(y) — elastic mod-
ulus, z. — distance between centroid of cross section and z-
axis.

It is worth noting that in the model above, the temperature
T is not a function of spatial position, i.e., temperature in-
homogeneity is not considered. However, in conventional
parallel beam designs of beam cantilever actuators, the
temperature gradient along the beam direction can well
reach 50 K/um [27]. This problem has been mitigated re-
cently by introducing additional folded beams near the
fixed end of the beam cantilever [28, 29]. In this case, it is
still reasonable to assume homogeneous temperature dis-
tribution.

4.2 Shape memory effect

Assuming that the shape memory alloy has different effec-
tive elastic moduli at austenitic state E, and at martensitic
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state E,,, the average elastic modulus in the phase transfor-
mation regime is approximated by the law of mixture:

Esua(T) = En$(T) + Eo(1 = (1)) (10)

where &(T) is volume fraction of martensitic phase given
in the form of logistic function:

1
T) = 11
¢ 1+ explk(T —T")] aDn
The following expressions are used for martensitic trans-
formation:

k M.+ M
k=—", T ="
M; — M, 2
and for austenitic transformation:
k A+ A
k=—>—, T'="0"1
Ar — A 2

with the constant k introduced in [30].

Similarly, the coefficient of thermal expansion is approxi-
mated by:

asma(T) = ané(T) + aa(1 = §(T)) (12)

4.3 Model of PMMA

When the temperature decreases below the glass transition
temperature Ty, the polymer quickly hardens and its elastic
modulus increases from soft E;,; to hard E.,;;. We as-
sume that the elastic modulus E(T) still satisfies a logistic
curve during the glass transition:

E
5 (Fe)

whereby kpyua 1S @ constant depending on the material
property. Similarly, the change of thermal expansion coef-
ficient appyp4 is also described by a logistic function dur-
ing the glass transition. Assuming that this value reduces
to zero at infinitely high temperature, it is written as:

IgE(T) =

+18Epe  (13)

Xeold
1+exp(T —Ty)

To further describe the viscoelastic properties of PMMA
during glass transition, Sun et al. [31] classify PMMA as a
kind of shape memory polymers (SMPs) and Xin et al. [32]
accordingly propose three consecutive models of SMPs
based on (1) theory of viscoelasticity, (2) phase transfor-
mation theory, (3) combined theory of the two aforemen-
tioned. Here, we adopt the second theory, which introduces
a concept of “stored strain” to describe the transition be-
tween frozen phase (glassy state below Ty ) and active
phase (rubbery state above T;). More information can be
found in [32, 33].

apuma(T) = (14)

5  Analytical results

The material properties of Si, TiNiHf and PMMA are taken
from [29, 34]. We stack a three layer composite, i.c.
PMMA/TiNiH{/Si from top to bottom, whereby each layer
has the same width. Fig. 4 demonstrates the mechanism of
bistable actuation of the three-layer system. Assuming that
the whole structure is in a stress-free state at the annealing
temperature, thermal stress accumulates during cooling.
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By referring to a TiNiH{f/Si bilayer beam (red line), the de-
flection reaches a peak upon cooling and experiences a
drop when reaching the martensitic transformation regime.
Thereby, the intrinsic stress is released to a large extent due
to accommodation of martensite variants. After the phase
transformation has finished, the deflection curve increases
again. Consequently, there are two deflection states of the
bilayer beam before and after phase transformation, which
can be stabilized by the third PMMA layer when it be-
comes hard below Tj;. Depending on the heating and cool-
ing path, either one of the two deflection states will be fixed
as indicated in Fig. 4: (1) Heating from room temperature
(RT) to a heated state above Ar and subsequent cooling
back to RT (green lines) results in the large deflection state
(State I). (2) Heating from RT to an intermediate tempera-
ture T, < T < Ay and subsequent cooling back to RT (blue
lines) results in the small deflection state (State II).
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Figure 4: Simulated normalized deflection-temperature
characteristics of a cantilever beam actuator consisting of
a PMMA/TiNiH{/Si trimorph layer composite with layer
thicknesses of PMMA: 1000 nm, TiNiHf: 220 nm, Si: 220
nm. The heating and cooling paths for bistable switching
are indicated. Deflection at State [ is taken as reference for
normalization.
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Figure 5: Simulated bistable actuation stroke versus thick-
ness of PMMA layer given by the difference of normalized
deflections in states / and /I. The thicknesses of TiNiHf and
Si are 220 nm.

This bistable performance depends particularly on the
thickness of the PMMA layer as illustrated in Fig. 5. We
find an optimum thickness reflecting the compromise of
large enough stiffhess to fix the deflection states below T,
and sufficient flexibility to adapt the deflections above Ty,.
Here, the difference in deflection between the two states
increases dramatically when the thickness ratio between
PMMA and Si grows from zero. This value reaches a peak
at the ratio 5.5 and then decreases slowly with increasing
thickness ratio. The large thickness ratio of 5.5 demands
for a large aspect ratio of PMMA to Si structures to enable
bistability.

6 Conclusion

A bistable nanoactuator consisting of a PMMA/TiNiH{/Si
trimorph layer composite is presented, in which the layer
of shape memory alloy TiNiHf shows a martensitic phase
transformation with wide hysteresis in the temperature
range of 50 - 140 °C, while the PMMA layer undergoes a
glass transition at 105 °C. We demonstrate that this mech-
anism depends on the limitations of size effects for de-
creasing film thickness as well as on the thickness ratio of
the PMMA to Si for a fixed TiNiHf and Si layer thick-
nesses of 220 nm. Our measurements reveal the existence
of a critical thickness of the TiNiHf layer of 220 nm on
Si0,/Si substrates and of 440 nm on Si substrates without
SiO; buffer layer, below which a size-dependent rapid de-
crease of phase transformation temperatures and a large in-
crease of hysteresis occur. An analytical model compatible
with multilayer cantilever actuators is proposed to study its
deflection under thermal effect. We use this model to ana-
lyse a bistable PMMA/TiNiH{/Si three layer nanoactuator,
which clearly shows two stable deflection states at RT by
controlling the heating path. It is found that the actuator can
have the largest deflection difference at the two states when
the thickness ratio between PMMA and Si is 5.5, while the
thickness of Si and TiNiHf layer are both 220 nm. Cur-
rently, the fabrication process of such trimorph nanoactua-
tors is being explored to verify the bistable performance at
the nanometer scale.
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