KIT | KIT-Bibliothek | Impressum | Datenschutz

Integrating machine learning with agroecosystem modelling: Current state and future challenges

Aderele, Meshach Ojo; Srivastava, Amit Kumar; Butterbach-Bahl, Klaus 1,2; Rahimi, Jaber 1,2
1 Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning (ML), especially deep learning (DL), is gaining popularity in the agroecosystem modelling community due to its ability to improve the efficiency of computationally intensive tasks. By reviewing previous modelling studies using the PRISMA technique, we present several examples of ML applications in this domain. The potential of using such models is highligthed. The different types of integration and model-building methods are categorized into process-based modelling (PBMs) and data-driven modelling (DDMs), which simulate different aspects of agroecosystem dynamics. While PBMs excel at capturing complex biophysical and biogeochemical processes, they are computationally intensive and may not always be solvable using analytical methods. To address these challenges, machine learning (ML) techniques, including deep learning (DL), are increasingly being integrated into agroecosystem modelling. This integration involves replacing PBMs with data-driven models, using hybrid models that combine PBMs and ML, or constructing simplified versions of PBMs through meta-modelling. ML-based meta-models offer computational efficiency and can capture intricate patterns and non-linear relationships in complex agricultural systems. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180623
Veröffentlicht am 01.04.2025
Originalveröffentlichung
DOI: 10.1016/j.eja.2025.127610
Scopus
Zitationen: 8
Web of Science
Zitationen: 6
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 1161-0301
KITopen-ID: 1000180623
HGF-Programm 12.11.22 (POF IV, LK 01) Managed ecosystems as sources and sinks of GHGs
Erschienen in European Journal of Agronomy
Verlag Elsevier
Band 168
Seiten 127610
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 2 – Kein HungerZiel 12 – Nachhaltiger Konsum und Produktion
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page