KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Robust Plagiarism Detection in Programming Education: Introducing Tolerant Token Matching Techniques to Counter Novel Obfuscation Methods

Maisch, Robin ORCID iD icon 1; Hagel, Nathan ORCID iD icon 1; Bartel, Alexander
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With the rise of AI-generated code, programming courses face
new challenges in detecting code plagiarism. Traditional methods
struggle against obfuscation techniques that modify code structure
through statement insertion and deletion. To address this, we propose
a novel approach based on tolerant token matching designed
to enhance resilience against such attacks.We evaluate our method
through three experiments on a real-life dataset with AI-obfuscated
plagiarisms. The results show that our approach increased the median
similarity gap between originals and plagiarisms by 1 to 6
percentage points.


Postprint §
DOI: 10.5445/IR/1000180637
Veröffentlicht am 03.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 02.06.2025
Sprache Englisch
Identifikator ISBN: 979-8-4007-1282-1
KITopen-ID: 1000180637
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in ECSEE '25: Proceedings of the 6th European Conference on Software Engineering Education, 2nd – 4th June 2025, Seeon, Germany
Veranstaltung 6th European Conference on Software Engineering Education (ECSEE 2025), Seeon-Seebruck, Deutschland, 02.06.2025 – 04.06.2025
Verlag Association for Computing Machinery (ACM)
Seiten 11–19
Externe Relationen Supplement
Schlagwörter Software Plagiarism Detection, Source Code Plagiarism Detection,, Plagiarism Obfuscation, Obfuscation Attacks, Code Normalization,, Tokenization, Computer Science Education
Nachgewiesen in Dimensions
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger Ungleichheiten
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page