KIT | KIT-Bibliothek | Impressum | Datenschutz

Robust Oxygen Evolution on Ni-Doped MoO₃: Overcoming Activity–Stability Trade-Off in Alkaline Water Splitting

Verma, Ankit Kumar; Atif, Shahan; Padhy, Abhisek; Choksi, Tej S.; Barpanda, Prabeer 1; Govind Rajan, Ananth
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Electrochemical water splitting using earth-abundant materials is crucial for enabling green hydrogen production and energy storage. In recent years, molybdenum trioxide (MoO3), a semiconducting material, has been proposed as a candidate catalyst for the oxygen evolution reaction (OER). Here, we advance nickel (Ni) doping of MoO3 as a strategy to increase the activity and stability of the material during alkaline electrochemical water splitting, thereby overcoming the typical activity-stability trade-off encountered with OER catalysts. The instability of MoO3 in alkaline media can be mitigated by doping with Ni, whose oxide is stable under such conditions. Using density functional theory (DFT) with Hubbard corrections, we show that Ni doping reduces the thermodynamic OER overpotential on the MoO3 basal plane to 0.64 V. Experiments demonstrate that Ni-doped MoO3 requires an overpotential of 0.34 V for an OER current density of 10 mA/cm2 (and 0.56 V at 100 mA/cm2), as opposed to a value of 0.40 V for pure MoO3. Further, Ni-doped MoO3 exhibits a lower Tafel slope of 74.8 mV/dec, compared to 98.3 mV/dec for the pristine material under alkaline conditions. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180673
Veröffentlicht am 09.05.2025
Originalveröffentlichung
DOI: 10.1021/cbe.4c00160
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2836-967X
KITopen-ID: 1000180673
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Chem and Bio Engineering
Verlag American Chemical Society (ACS)
Band 2
Heft 4
Seiten 241-252
Vorab online veröffentlicht am 11.02.2025
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page