| Zugehörige Institution(en) am KIT | Institut für Photogrammetrie und Fernerkundung (IPF) |
| Publikationstyp | Forschungsdaten |
| Publikationsdatum | 07.04.2025 |
| Erstellungsdatum | 15.02.2025 |
| Identifikator | DOI: 10.35097/tvn5vujqfvf99f32 KITopen-ID: 1000180757 |
| Lizenz | Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International |
| Schlagwörter | Photovoltaic Potential, Parking Lots, Federal State of Hesse (DE), Geospatial Data, Sustainability, Photovoltaic Suitability, Machine Learning, Renewable Energy, Urban Area |
| Liesmich | This dataset is formatted as a GeoPackage (.gpkg) and contains a layer named "prediction". It is set within the ETRS89 / UTM Zone32N coordinate reference system (EPSG code specified). The dataset includes two key attributes: (a) "id" as a unique identifier for each feature, and (b) the "prediction_class". The latter attribute indicates the area's suitability, with a classification of 0 for unsuitable and 1 for suitable. This information is helpful for various applications, including environmental studies and land utilization strategies. Besides, a QGIS style layer is given "prediction_parking_pv_hesse.qml". This file is designed to visually distinguish between parking lots classified as suitable and unsuitable for PV canopy installations in the dataset "prediction_parking_pv_hesse.gpkg". The symbology is defined as follows: class 0 (unsuitable): Red fill, and class 1 (suitable): Green fill. The style enhances the readability for map viewers and supports the quick visual interpretation of suitability categories. It can be directly applied to the prediction layer in QGIS for consistent thematic mapping. |
| Art der Forschungsdaten | Dataset |
| Nachgewiesen in | OpenAlex |
| Relationen in KITopen |