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For the 2D Oberbeck–Boussinesq system in an annulus, we are looking for the
critical Rayleigh number for which the (non-zero) basic flow loses stability. For
this, we consider the corresponding Euler–Lagrange equations and construct a
precise functional analytical frame for the Laplace and the Stokes problem as
well as the Bilaplacian operator in this domain. With this frame and the right set
of basis functions, it is then possible to construct and apply a numerical scheme
providing the critical Raleigh number.

1 INTRODUCTION

Consider the flow of an incompressible Newtonian fluid between two horizontal coaxial cylinders with radii 0 < 𝑅𝑖 < 𝑅𝑜
(cf. Figure 1). The flow is driven by a gravitational field perpendicular to the cylindrical axis and the temperature difference
between 𝑇𝑖 on the inner and 𝑇𝑜 on the outer jacket (where 𝑇𝑜 < 𝑇𝑖).
This setting is a model to study very diverse phenomena, such as thermal energy storage systems, aircraft cabin

insulation, cooling of electronic components, electrical power cable and thin films.
In this configuration, the flow is mainly characterized by two non-dimensional parameters: the “thinness” of the gap

between the cylinders, which we measure as the inverse relative gap width

 ∶=
2𝑅𝑖

𝑅𝑜 − 𝑅𝑖
and Ra ∶=

𝛼𝑔

𝜈𝑘
(𝑇𝑖 − 𝑇𝑜)(𝑅𝑜 − 𝑅𝑖)

3 , (1.1)

the Rayleigh number, which classifies the heat transfer regime in the flow. More precisely, it measures the ratio between
conduction and convection since in the definition, we have 𝛼 as the volumetric expansion coefficient, 𝑔 the gravity
acceleration, 𝜈 the kinematic viscosity and 𝑘 stands for the thermal diffusivity.
The study of convective flows between horizontal coaxial cylinders inside a gravitational field shows (see references

in [8]) that only for an intermediate range of the parameter  it is interesting to look at three-dimensional behaviour,
and for < 2, 8 (wide gap) as well as > 8, 5 (small gap) everything interesting happens in the cross-section. For that in
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F IGURE 1 Two-dimensional flow region – temperature boundary values 𝑇𝑖 > 𝑇𝑜 .

this paper, we study the problem in the two-dimensional annulus (i.e. the cross-section of the abovementioned geometry)
knowing that our study will also give information for the three-dimensional flow problem in the small andwide gap cases.
In contrast to the classical Bénard problem in our geometry, even for very small Rayleigh numbers, there is never a

zero velocity solution. Instead there is a so-called basic flow which solves our equations for any Ra but for which we do
not know an analytical expression. For that, the simplest methods which work for the Bénard problem cannot be adapted
for the annulus. But we can still work with the characterisation of the critical Rayleigh number Ra𝑐 as the inverse of
the supremum of the ratio between functionals for the kinetic energy and the heat transfer in Equation (2.3) below (see,
e.g., Straughan [21]). In order to calculate our Ra𝑐 with this supremum, we first derive the corresponding Euler–Lagrange
equations and later on transform them to an eigenvalue problem for a compact self-adjoint operator. For this, we have to
make sure that the abstract procedure translates into a precisely known frame for our operators. Here our paper becomes
a bit technical since we need a few convenient properties of all involved operators (which partially are almost obvious and
partially need a few lines of proof and functional analytical results). In particular, we prove that the supremum exists and
is indeed a maximum in Lemma 2.1. Moreover, it is finite and thus, the critical Rayleigh number as defined in Equation
(2.3) is finite as well.
Unfortunately, it is not straightforward to use standard eigenvalue software in order to numerically solve the found

eigenvalue problem for the critical Rayleigh number since it turns out not to be stable. Instead we use special sets of bases
of eigenfunctions of the Laplace and the Stokes problem in the annulus (which contain Bessel functions) to formulate
and apply a numerical scheme which is stable and approximates the wanted Ra𝑐 without having to refer to determinants
which are too big to handle comfortably. Here we have to translate the representation of operators in the existence proof
to a (slightly) different set of operators which make the numerical scheme stable.
Finally, in two-dimensional flow, people often prefer to work with the streamfunction formulation. For that, we include

how to formulate the functional analytical frame with the streamfunction and the Bilaplace operator in the annulus.
Let us introduce the necessary notation.
General notation A. Letℝ2 be endowed with the usual Euclidian norm ‖.‖ and elements of ℝ2 be denoted by under-

lined small letters. The unit circle is 𝜔 ∶= {𝑥 ∈ ℝ2 ∶ ‖𝑥‖ = 1} and closed circles around the origin with radius 𝑟 are
𝜔𝑟 ∶= {𝑥 ∈ ℝ2 ∶ ‖𝑥‖ = 𝑟} = 𝑟𝜔 for all 𝑟 ∈ (0,∞).
Annulus domains. It is useful to study our domain without dimensions. As usual, we pick the annulus with fixed gap

width 1 using our non-dimensional parameter as follows: For any ∈ (0,∞), we denote by

Ω ∶= {𝑥 ∈ ℝ2 ∶ ∕2 < ‖𝑥‖ < 1 +∕2} .

Its boundary 𝜕Ω consists of two parts, namely the inner and outer boundary 𝜔∕2 and 𝜔1+∕2 , respectively.
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General notation B. Let Ω be any of the domains introduced above. In what follows, we will use by way of an abbre-
viation (.) for (Ω) everywhere. We consider the usual Lebesgue and Sobolev spaces 𝕃2(.) and 𝕎𝑘

2(.) of scalar functions
and the Lebesgue and Sobolev spaces 𝕃

2
(.) = (𝕃2(.))

2 and 𝕎
𝑘

2
(.) = (𝕎𝑘

2(.))
2 of vector functions. The scalar product in

𝕃2(.) and 𝕃2
(.) is written as (., .)2 ∶= (., .) and the norms are denoted by ‖.‖2. The notation𝕎𝑘

2

𝑜

(.) is taken for the closure
of 𝐶∞

𝑜 (.) in𝕎𝑘
2(.). All solenoidal vector functions belonging to 𝐶

∞

𝑜
(.) form (.). The closures of (.) in 𝕃

2
(.) and𝕎

1

2
(.),

respectively, are denoted by ℍ(.) and 𝕍(.), respectively. We suppose for all function written in polar coordinates (𝑟, 𝜑) the
general periodicity in the angular coordinate 𝜑. We define the dual spaces 𝕎−2

2 (.) ∶= (𝕎2
2

𝑜

(.))′, 𝕎−1
2 (.) ∶= (𝕎1

2

𝑜

(.))′ and
𝕍
′
(.) ∶= (𝕍(.))′ and use the evolution (Gelfand) triples

[𝕎2
2

𝑜

(.), 𝕃2(.),𝕎
−2
2 (.)], [𝕎1

2

𝑜

(.), 𝕃2(.),𝕎
−1
2 (.)] and [𝕍(.), ℍ(.), 𝕍

′
(.)] . (1.2)

General notation C. Due to the shape of our domain together with Cartesian, we also use polar coordinates – whichever
makes more sense. In particular, 𝔢

𝑟
is the unit vector in direction 𝑟, 𝔢

3
= sin 𝜑 𝔢

𝑟
+ cos 𝜑 𝔢

𝜑
the unit vector in direction of

𝑧, and we collect all arising gradients in Π (thus, it is not the thermodynamical pressure).

𝑏 ∶= ln
𝑅𝑜
𝑅𝑖

= ln

(
1 +

2


)
, (1.3)

is a purely geometric parameter, unbounded as tends to zero. Moreover, we have a number for material properties, the
Prandtl number Pr = 𝜈∕𝑘. Instead of the temperature 𝑇, we treat the excess temperature

𝜏 ∶=
𝑇

𝑇𝑖 − 𝑇𝑜
− 𝑇∗ =

𝑇

𝑇𝑖 − 𝑇𝑜
−

𝑇𝑖
𝑇𝑖 − 𝑇𝑜

+
1

𝑏

(
ln 𝑟 − ln

𝑅𝑖
𝑅𝑜 − 𝑅𝑖

)
=

𝑇

𝑇𝑖 − 𝑇𝑜
−

𝑇𝑖
𝑇𝑖 − 𝑇𝑜

+
1

𝑏
ln

2𝑟

 . (1.4)

Here, the scalar field 𝑇∗ is the conductive solution – namely, 𝑇∗ solves Δ𝑇∗ = 0 with boundary conditions 𝑇∗(

2
, 𝜑) =

𝑇𝑖

𝑇𝑖−𝑇𝑜
and 𝑇∗(


2
+ 1, 𝜑) =

𝑇𝑜

𝑇𝑖−𝑇𝑜
.

Equations. The full non-dimensional Oberbeck–Boussinesq system in polar coordinates on (0,∞) × Ω is

1

Pr
(𝜕𝑡𝑣 + (∇

𝑇
⋅ 𝑣)𝑇 ⋅ 𝑣) − Δ𝑣 + ∇Π =

Ra

𝑏
sin 𝜑 𝔢

𝑟
+ Ra 𝜏𝔢

3
,

div 𝑣 = 0 ,

𝜕𝑡𝜏 + 𝑣𝑇 ⋅ ∇𝜏 − Δ𝜏 =
1

𝑟 𝑏
𝑣𝑇 ⋅ 𝔢

𝑟

(1.5)

(see, e.g. Ferrario et al. [8]) endowed with the boundary and initial conditions

𝑣 = 0 , 𝜏 = 0 on 𝜕Ω and 𝑣 = 𝑣
0
, 𝜏 = 𝜏0 for 𝑡 = 0 . (1.6)

In Ferrario et al. [8], it is outlined in detail that the stability analysis of Equation (1.5) is closely related to the investigation
of the stability of the basic flow the following linear homogeneous system

∇
𝑇
⋅ 𝑤 = 0 ,

1

Pr
𝜕𝑡𝑤 − Δ𝑤 + ∇𝑝 = Ra 𝜃 𝔢

3
, (1.7)

𝜕𝑡𝜃 − Δ𝜃 =
𝑤𝑟

𝑟 𝑏

with 𝑤 and 𝜃 as unknowns and zero Dirichlet boundary conditions. In particular, it is shown in Ferrario et al. [8, Sec. 4]
that the number 𝑅𝑎𝑐 (defined below) is a good approximation of the critical Raleigh number for the asymptotic non-linear
stability of steady flows for small. In this regard we also refer to [26]. We study Equation (1.7) in detail.
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2 DESCRIPTION BY FUNCTIONALS AND EULER–LAGRANGE EQUATIONS

The validity of Poincaré inequalities ensures that the spaces𝕎1
2

𝑜

(.) and 𝕍(.) can be equipped additionally with equivalent
norms generated by the Dirichlet norms (which otherwise would only be semi-norms). We use Cartesian coordinates to
introduce the Dirichlet scalar products and Dirichlet norms here.

(𝑢, 𝑣)𝐷 ∶=

2∑
𝑘=1

(
𝜕𝑢

𝜕𝑥𝑘
,
𝜕𝑣

𝜕𝑥𝑘

)
2

∀ 𝑢, 𝑣 ∈ 𝕎1
2

𝑜

(.) , (𝑢, 𝑣)𝐷 ∶=

2∑
𝑗,𝑘=1

(
𝜕𝑢𝑗

𝜕𝑥𝑘
,
𝜕𝑣𝑗

𝜕𝑥𝑘

)
2

∀ 𝑢, 𝑣 ∈ 𝕍(.)

‖𝑢‖𝐷 ∶=
√
(𝑢, 𝑢)𝐷 ∀ 𝑢 ∈ 𝕎1

2

𝑜

(.) , ‖𝑢‖𝐷 ∶=
√

(𝑢, 𝑢)𝐷 ∀ 𝑢 ∈ 𝕍(.) ,

(2.1)

where the so-called Frobenius inner product is involved in the definition.
In this paper, we give a procedure to compute the critical Rayleigh number Ra𝑐 starting with a standard method, for

example, from Straughan [21]. So, for fixed and given functions (𝑤, 𝜃) ∈ 𝕍 ×𝕎1
2

𝑜

, we define the following functionals,
as well as a constant denoted by Ra𝑐:

𝐷(𝑤, 𝜃) ∶= ‖𝑤‖2𝐷 + ‖𝜃‖2𝐷 ,

(𝑤, 𝜃) ∶= (𝜃, 𝑤𝑧) +
1

𝑏

(
𝜃,

𝑤𝑟

𝑟

)
, where 𝑤𝑧 ∶= 𝑤𝑇 ⋅ 𝔢

3
,

(2.2)

1

Ra𝑐()
∶= sup

(𝑤, 𝜃)
𝐷(𝑤, 𝜃)

, (2.3)

where the supremum is taken over all non-trivial couples of functions (𝑤, 𝜃) ∈ 𝕍 ×𝕎1
2

𝑜

.

Lemma 2.1. The supremum in Equation (2.3) is attained as maximum by a pair of functions fulfilling the Euler–Lagrange
equations. This means in particular that a critical point of 𝐹∕𝐷 exists.

Proof. Let 𝔴 ∶= (𝑤, 𝜃) ∈ 𝕍 ×𝕎1
2

𝑜

∶= 𝑋. We define

𝐽(𝔴) ∶=
(𝑤, 𝜃)
𝐷(𝑤, 𝜃)

and 𝐽0 ∶= sup 𝐽 ,

where the supremum is taken as in Equation (2.3). We can directly check that 𝐽 is homogeneous of degree zero in real
𝜆 ≠ 0, or explicitly 𝐽(𝔴) = 𝐽(𝜆𝔴) ∀ 𝜆 ≠ 0 and thus values of 𝐽 are determined by values on the unit sphere ‖𝔴‖𝑋 =√

𝐷(𝑤, 𝜃) = 1. 𝐽 is not infinitely large, thus 𝐽0 < ∞. To see this, we use the boundedness of (., .) (2.2) for𝔴 ∶= (𝑤, 𝜃) ∈

ℍ × 𝕃2 ∶= 𝑋1 and the compact embedding of 𝑋 in 𝑋1 as well as ‖𝔴‖𝑋 = 1. Therefore, the set ({𝔴 ∶ ‖𝔴‖𝑋 = 1}) is com-
pact. Due to compactness, lim(𝔴

𝑛
) = (𝔴

0
) and it is easy to see that (𝔴

0
) is bounded from above by a constant. For

that, there exists a sequence {𝔴
𝑛
}∞𝑛=1 (𝔴𝑛 ∈ 𝑋 for all elements of the sequence) for which 𝐽(𝔴

𝑛
) converges to 𝐽0. Its pro-

jection to the unit sphere converges to 𝐽0 as well. Then there is a subsequence which converges weakly in𝑋 to some value
𝔴

0
∈ 𝑋, strongly in𝑋1 = ℍ × 𝕃2 and almost everywhere. 𝐽(𝔴𝑛

) → 𝐽(𝔴
0
) and thus, the supremum in Equation (2.3) exists.

Next we check due to lower semicontinuity and since(𝔴
𝑛
) exists, that

𝐽0 = lim 𝐽(𝔴
𝑛
) =

lim(𝔴
𝑛
)

lim(𝔴
𝑛
)
≤ (𝔴

0
)

(𝔴
0
)
≤ 𝐽0.

⇒ 𝐽(𝔴
0
) = sup𝔴∈𝑋 𝐽(𝔴) . If the supremum in Equation (2.3) is attained for some1 (𝑤̃, 𝜃), then (𝑤̃, 𝜃) solve the corre-

sponding Euler–Lagrange equations, which we derive now. To this end, we consider for an arbitrary real parameter 𝜂 and

1 The notation (𝑤̃, 𝜃) with tilde means that the stationary point has nothing to do with the solutions of Equation (1.7); as we will see, it is solution of a
different system of equations.
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arbitrary variations (𝑢, 𝜎) ∈ 𝕍 ×𝕎1
2

𝑜

the real function


𝐷

=
(𝑤̃ + 𝜂𝑢, 𝜃 + 𝜂𝜎)

𝐷(𝑤̃ + 𝜂𝑢, 𝜃 + 𝜂𝜎)
.

Since (𝑤̃, 𝜃) is a maximum the Gateaux derivative 𝑑

𝑑𝜂
|𝜂=0 has to vanish. Thus,

0 =
𝑑

𝑑𝜂

(
𝐷

)|||||𝜂=0 =
[
1

𝐷2

(
𝐷

𝑑

𝑑𝜂
 −  𝑑

𝑑𝜂
𝐷

)]
𝜂=0

=

𝑑
𝑑𝜂

𝐷

|||||||𝜂=0 −
1

Ra𝑐

𝑑𝐷

𝑑𝜂

𝐷

|||||||𝜂=0 . (2.4)

Inserting the expressions

𝑑
𝑑𝜂

||||𝜂=0 = (𝜎,𝑤𝑧) + (𝜃, 𝑢𝑧) +
1

𝑏

((
𝜃,

𝑢𝑟
𝑟

)
+

(
𝜎,

𝑤𝑟

𝑟

))
,

𝑑𝐷

𝑑𝜂

||||𝜂=0 = 2(𝑢, 𝑤̃)𝐷 + 2(𝜃, 𝜎)𝐷

into Equation (2.4), we conclude that for all variations (𝑢, 𝜎) ∈ 𝕍 ×𝕎1
2

𝑜

, it holds

(𝜎, 𝑤𝑧) + (𝜃, 𝑢𝑧) +
1

𝑏

((
𝜃,

𝑢𝑟
𝑟

)
+

(
𝜎,

𝑤𝑟

𝑟

))
=

2

Ra𝑐

(
(𝑢, 𝑤̃)𝐷 + (𝜃, 𝜎)𝐷

)
. (2.5)

□

If we assume higher regularity of (𝑤̃, 𝜃), we get by integrating by parts

(𝜎, 𝑤𝑧) + (𝜃, 𝑢𝑧) +
1

𝑏

((
𝜃,

𝑢𝑟
𝑟

)
+

(
𝜎,

𝑤𝑟

𝑟

))
= −

2

Ra𝑐

(
(Δ𝑤̃, 𝑢) + (Δ𝜃, 𝜎)

)
.

We have the freedom to choose either (a) arbitrary 𝑢 and 𝜎 = 0; or (b) 𝑢 = 0 and arbitrary 𝜎. In the first case, we obtain

∫
Ω

(
𝜃𝔢

3
+

𝜃

𝑏𝑟
𝔢
𝑟
+

2

Ra𝑐
Δ𝑤̃

)𝑇

⋅ 𝑢 𝑑𝑥 = 0 ⇒ 𝜃𝔢
3
+

𝜃

𝑏𝑟
𝔢
𝑟
+

2

Ra𝑐
Δ𝑤̃ + ∇𝑝 = 0 .

Here we used that 𝑢 is arbitrary but divergence free, which implies that the term in brackets belongs to the orthogonal
complement with respect to Helmholtz’s decomposition. That is why ∇𝑝 is added. In the second case, we get

∫
Ω

(
𝑤𝑧 +

𝑤𝑟

𝑏𝑟
+

2

Ra𝑐
Δ𝜃

)
𝜎𝑑𝑥 = 0 ⇒ 𝑤𝑧 +

𝑤𝑟

𝑏𝑟
+

2

Ra𝑐
Δ𝜃 = 0 .

Moreover, if we set

𝔢
3
+

𝔢
𝑟

𝑏𝑟
= ∇𝑆, where 𝑆 ∶= 𝑟 sin 𝜑 +

1

𝑏
ln 𝑟, (2.6)

the strong form of the Euler–Lagrange equations for the maximum (𝑤̃, 𝜃) of the functional ∕𝐷 read as

𝜃∇𝑆 + 𝜆Δ𝑤̃ = −∇𝑝 , ∇
𝑇
⋅ 𝑤̃ = 0 , (2.7)

𝑤̃
𝑇
⋅ ∇𝑆 + 𝜆Δ𝜃 = 0 with 𝜆 =

2

Ra𝑐
. (2.8)

In what follows, we regard the problem (2.7)–(2.8) in the form of
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PASSERINI et al. 6 of 23

Problem A (Euler–Lagrange equations of the functional ∕𝐷). We search for non-trivial solutions (𝜆, 𝑤, 𝜃) ∈ ℂ × 𝕍 ×𝕎1
2

𝑜

of the equations

𝜃∇𝑆 + 𝜆Δ𝑤 = −∇𝑝 , ∇
𝑇
⋅ 𝑤̃ = 0 , (2.9)

𝑤𝑇 ⋅ ∇𝑆 + 𝜆Δ𝜃 = 0 with 𝜆 ∈ ℂ , (2.10)

where Equations (2.9) and (2.10) are equations in 𝕍
′
(.) resp.𝕎−1

2 (.). □

We will show that Problem A can be equivalently formulated as an eigenvalue problem, which possesses a solution for
all non-trivial eigenvalues 𝜆 with the corresponding eigenvectors. We then define the critical Rayleigh number Ra𝑐 via
the largest eigenvalue 𝜆max through Ra𝑐 ∶=

2

𝜆max
.

We now prepare the framework to re-formulate the Problem A as an eigenvalue problem.

3 STANDARD DIFFERENTIAL OPERATORS AND THE SYMMETRIC OPERATOR 𝑨

In what follows, we take Ω ∶= Ω as symbol for any of the annulus domains. The differential operators we will intro-
duce here are the Laplacian, the Stokes operator and the Bilaplacian in the sense of functional analysis. The domains of
definition of these operators are dense in the Hilbert spaces 𝕃2(Ω), ℍ(Ω) and 𝕃2(Ω).

Definition A. The Laplace operator is defined as

𝑳◦ 𝑣 ∶= −Δ𝑥𝑣 ∀ 𝑣 ∈ 𝐷(𝑳◦) = 𝐶∞
𝑜 (Ω) .

We denote the Friedrichs’ extension of 𝑳◦ by 𝑳 ∶= 𝑳◦, where 𝑳 works on 𝐷(𝑳) ∶= 𝕎1
2

𝑜

(Ω) ∩𝕎2
2(Ω). □

Remark. The range of 𝑳 is 𝑅(𝑳) = 𝕃2(Ω). In this sense, we write: 𝑳 = −Δ𝑥 ∶ 𝐷(𝑳) ⊆ 𝕃2(Ω) ⟼ 𝕃2(Ω).

We need some preparations to define the Stokes operator. The Leray–Helmholtz projectorΥ is thewell-defined projector
of 𝕃

2
(.) onto its subspace ℍ(.) of generalised solenoidal fields with vanishing generalised traces in the normal direction

on the boundary. We note that the Leray–Helmholtz projector Υ is also used in the sense of: Υ ∶ 𝕎
1

2
(Ω) ⟼ 𝕍(Ω) .

Definition B. The Stokes operator is defined as 𝑺◦ 𝑣 ∶= −Δ𝑥𝑣 ∀ 𝑣 ∈ 𝐷(𝑺◦) = (Ω) . We denote the Friedrichs’
extension of 𝑺◦ by 𝑺 ∶= 𝑺◦, where 𝑺 is defined on its domain 𝐷(𝑺) = 𝕊

2
(Ω) = 𝕍

2
(Ω) ∶= 𝕎

2

2
(Ω) ∩ 𝕍(Ω) .

Remark. The range of 𝑺 is 𝑅(𝑺) = ℍ(.). In this context, we use 𝑺 = −ΥΔ𝑥 ∶ 𝕊
2
(.) ⊆ ℍ(.) ⟼ ℍ(.).

Finally, we give the definition of the Bilaplacian:

Definition C. The Bilaplacian (biharmonic operator) is defined as

𝑩◦ 𝑣 ∶= Δ2
𝑥𝑣 ∀ 𝑣 ∈ 𝐷(𝑩◦) = 𝐶∞

𝑜 (Ω) .

We denote the Friedrichs’ extension of 𝑩◦ by 𝑩 ∶= 𝑩◦, where the domain of the Friedrichs’ extension 𝑩 is 𝐷(𝑩) ∶=

𝕎2
2

𝑜

(Ω) ∩𝕎4
2(Ω).

Remark. The range of 𝑩 is 𝑅(𝑩) = 𝕃2(Ω). We write here: 𝑩 = Δ2
𝑥 ∶ 𝐷(𝑩) ⊆ 𝕃2(.) ⟼ 𝕃2(Ω) also.

We recall the essential properties of the operators 𝑳, 𝑺 as well as 𝑩 using the Stokes operator 𝑺 as example:

Theorem 3.1. The Stokes operator 𝑺 is positive and self-adjoint. Its inverse 𝑺−1 is injective, self-adjoint and compact.
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7 of 23 PASSERINI et al.

The proof of Theorem 3.1 is a simple modification of Theorems 4.3 and 4.4 in Constantin and Foias [2]. The essential
tools are the Rellich theorem and Lax–Milgram lemma. The well-known theorem of Hilbert and regularity results like
Temam [22, Prop. I.2.2] lead to more detailed results.

Lemma 3.2. The Stokes operator is an operator with a pure point spectrum. All eigenvalues 𝜆∗
𝑗
= (𝜅𝑗)

2 of 𝑺 are real and of
finitemultiplicity. The associated eigenfunctions {𝑣

𝑗
(𝑥)}∞

𝑗=1
of the Stokes operator𝑺 (counted inmultiplicity) are an orthogonal

basis of ℍ(.) and 𝕍(.). We obtain that

(𝑎) 𝑺𝑣
𝑗
= 𝜆∗

𝑗
𝑣
𝑗

for 𝑣
𝑗
∈ 𝐷(𝑺) ∀ 𝑗 = 1, 2, … ;

(𝑏) 0 < 𝜆∗1 ≤ 𝜆∗2 ≤ ⋯ ≤ 𝜆∗
𝑗
≤ ⋯ and lim

𝑗→∞
𝜆∗
𝑗
= ∞ ;

(𝑐) ‖𝑣
𝑗
‖ℍ = 1 ∀ 𝑗 = 1, 2, … .

Notation 3.3. We write the eigenpair-systems of the Laplacian 𝑳, the Stokes operator 𝑺 (cf. Lemma 3.2) and of the
Bilaplacian 𝑩 as:

{(𝜔𝑗)
2, 𝜒𝑗}

∞
𝑗=1

, {(𝜅𝑗)
2, 𝑣

𝑗
}∞
𝑗=1

= {𝜆∗
𝑗
, 𝑣

𝑗
}∞
𝑗=1

and {𝜇2
𝑗
, 𝜓𝑗}

∞
𝑗=1

. (3.1)

We choose the systems of eigenfunctions of 𝑳: {𝜒𝑗}
∞
𝑗=1

, of 𝑺: {𝑣
𝑗
}∞
𝑗=1

and of 𝑩: {𝜒𝑗}
∞
𝑗=1

ordered by increasing eigenvalues
and counted in multiplicity as an orthonormal basis in each case, such that:

𝕃2 = span{𝜒𝑗}
∞
𝑗=1

𝕃2
, ℍ = span{𝑣

𝑗
}∞
𝑗=1

ℍ
and 𝕃2 = span{𝜓𝑗}

∞
𝑗=1

𝕃2
.

Remark. We refer to Lee and Rummler [12] for formulas defining the complete sets of Laplace and Stokes eigenfunctions
on the circular annuli Ω∗

𝜎, with

Ω∗
𝜎 ∶= {𝑥 ∈ ℝ2 ∶ 0 < 𝜎 < ‖𝑥‖ < 1} .

The (obvious) transformation rules from Ω∗
𝜎 to Ω are given in Rummler et al. [19].

Notation 3.4. Let

𝑨 ∶ 𝕍
2
(Ω) × (𝕎1

2

𝑜

(Ω) ∩𝕎2
2(Ω)) = 𝐷(𝑺) × 𝐷(𝑳) ⊆ ℍ(Ω) × 𝕃2(Ω) ⟶ ℍ(Ω) × 𝕃2(Ω)

𝑨 = (𝐴1, 𝐴2) with

{
𝐴1 ∶ 𝕍

2
(.) ×𝕎1

2

𝑜

(Ω) ∩𝕎2
2(Ω) ⊆ ℍ(Ω) × 𝕃2(Ω) ⟶ ℍ(Ω)

𝐴2 ∶ 𝕍
2
(.) ×𝕎1

2

𝑜

(Ω) ∩𝕎2
2(Ω) ⊆ ℍ(Ω) × 𝕃2(Ω) ⟶ 𝕃2(Ω)

𝐴
𝕍

𝑖
∶= 𝐴𝑖|𝐷(𝑺)×{0}; 𝐴𝕎

𝑖
∶= 𝐴𝑖|{0}×𝐷(𝑳) , 𝑖 = 1, 2 ,

be the operators defined by density ∀Ψ ∈ 𝐷(𝑺) and ∀𝜑 ∈ 𝐷(𝑳) via

𝐴𝑖 = 𝐴
𝕍

𝑖
+ 𝐴𝕎

𝑖
, 𝑖 = 1, 2 ∶

(Ψ,𝐴
𝕍

1 𝑤 + 𝐴𝕎
1 𝜃) = −𝜆

(
Ψ,𝑤

)
𝐷
+
(
Ψ, 𝜃∇𝑆

)
(𝜑, 𝐴

𝕍

2 𝑤 + 𝐴𝕎
2 𝜃) = −𝜆(𝜑, 𝜃)𝐷 +

(
𝜑, (∇𝑆)𝑇𝑤

)
and

𝑨((𝑤, 𝜃)) =

⎛⎜⎜⎜⎝
𝐴
𝕍

1 𝐴𝕎
1

𝐴
𝕍

2 𝐴𝕎
2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑤

𝜃

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−𝜆 𝑺 ∇𝑆

(∇𝑆)𝑇 −𝜆 𝑳

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑤

𝜃

⎞⎟⎟⎟⎠. (3.2)
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PASSERINI et al. 8 of 23

Using Υ as the projection onto the divergence-free vector space, we receive also(
𝐴1 = 𝐴

𝕍

1 + 𝐴𝕎
1

)
(𝑤, 𝜃) = −𝜆 𝑺𝑤 + Υ𝜃 and

(
𝐴2 = 𝐴

𝕍

2 + 𝐴𝕎
2

)
(𝑤, 𝜃) = (∇𝑆)𝑇𝑤 − 𝜆 𝑳𝜃

(cf. Theorem 3.1 and Equation 2.6) where

(𝜃) = 𝜃∇𝑆.

Lemma 3.5. 𝑨 is symmetric in the Hilbert space ℍ(.) × 𝕃2(.).

Proof. We use the definition and our equations to calculate

(Ψ,𝐴
𝕍

1 𝑤) = −𝜆 ⋅ (Ψ,𝑤)𝐷 = (𝐴
𝕍

1 Ψ,𝑤) ,

(𝜑, 𝐴𝕎
2 𝜃) = −𝜆 ⋅ (𝜑, 𝜃)𝐷 = (𝐴𝕎

2 𝜑, 𝜃) ,

(Ψ,𝐴𝕎
1 𝜃) = (Ψ, 𝜃∇𝑆) = (𝜃, (∇𝑆)𝑇 ⋅ Ψ) = (𝜃, 𝐴

𝕍

2 Ψ)

or
(
𝐴
𝕍

2

)
=
(
𝐴𝕎
1

)𝑇
. □

Notice that the eigenvalue, which is equivalent to Problem A, is concerned with the symmetric operator given by the
blocks out of the diagonal, while the diagonal blocks multiplied with (−1) give a symmetric metric tensor (by definition
positive defined for any 𝜆 > 0).
We note that the energetic extension 𝑺𝑒𝑛 ∶ 𝕍 ⟶ 𝕍

′ of the Stokes operator 𝑺 and the energetic extension 𝑳𝑒𝑛 ∶ 𝕎1
2

𝑜

⟶

𝕎−1
2 of 𝑳 are symmetric operators in the Hilbert spaces 𝕍′ and𝕎−1

2 as well. One can use the structure of Equation (3.2)
to make sure that the extension of 𝑨 on 𝕍

′
× 𝕎−1

2 is symmetric.

4 INVESTIGATION OF PROBLEMA

Our main theoretical result to the Problem A is the following:

Theorem 4.1. Problem A (cf. Equations 2.9 and 2.10) is for all equivalent to the eigenvalue problem of the compact self-
adjoint operator ̃ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2) (see below). All the eigenvalues 𝜆 are real and 𝜆 = 0 is not an eigenvalue of the
operator ̃, but is an accumulation point of eigenvalues, which is the only element in the continuous spectrum of ̃. The
critical Rayleigh number Ra𝑐 is fixed through

2

Ra𝑐
∶= |𝜆max| = ‖̃‖ .

The set {𝜆} of the ̃-eigenvalues consists of a countably infinite number of (finite multiplicity) eigenvalues.
The eigen-triples (𝜆, 𝐚̃, 𝐛̃) ∈ ℂ × 𝑙𝑙2 × 𝑙𝑙2 correspond to a solution (𝜆, 𝑤̃, 𝜃̃) ∈ ℂ × 𝕍 ×𝕎1

2

𝑜

of Problem A (2.9)–(2.10).

We will prove Theorem 4.1 by tools of functional analysis. The Problem A (2.9)–(2.10), that is, the Euler–Lagrange
equations of the functional ∕𝐷, is reduced to an “algebraic one” by the use of the complete system of the eigenfunctions
of the Laplacian 𝑳 and the Stokes operator 𝑺. In what follows, we are going to make some arrangements for the proof of
Theorem 4.1.

Lemma 4.2. The system (cf. Notation 3.3) {
(𝑣

𝑗
, 𝜒𝑘)

}
𝑗,𝑘∈ℕ

is a complete basis for the space herein defined, namely 𝕍 × 𝕎1
2

𝑜

.
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9 of 23 PASSERINI et al.

Proof. We apply the properties of positive self-adjoint operators with a pure point spectrum (cf. Theorem 3.1 and
Lemma 3.2). □

In what follows, we are going to use the Fourier representations for any velocity 𝑤 ∈ 𝕍 and any temperature 𝜃 ∈ 𝕎1
2

𝑜

as expansions in the systems of eigenfunctions {𝑣
𝑗
}∞
𝑗=1

and {𝜒𝑗}
∞
𝑗=1

in the sense of ℍ and 𝕃2, respectively (cf. Lemma 3.2
and Equation 3.1):

𝑤 =

∞∑
𝑗=1

𝑐𝑗𝑣𝑗 and 𝜃 =

∞∑
𝑗=1

𝑑𝑗𝜒𝑗 (4.1)

The sequences {𝑐𝑗}∞𝑗=1 and {𝑑𝑗}
∞
𝑗=1

– as sequences of real or complex numbers – elements of Hilbert space of sequences 𝑙𝑙2
because of the properties of the orthonormal systems {𝑣

𝑗
}∞
𝑗=1

and {𝜒𝑗}
∞
𝑗=1

(inℍ and 𝕃2). The well-known Hilbertian space
of sequences 𝑙𝑙2 is defined by 𝑙𝑙2 ∶= (𝑙2, ‖.‖2,(𝑙)), with the linear vector space 𝑙2 ∶= { {𝑎𝑗}

∞
𝑗=1

; 𝑎𝑗 ∈ ℝ( resp. ∈ ℂ) ∀ 𝑗 ∈

ℕ ∶
∑∞

𝑗=1 |𝑎𝑗|2 < ∞} and the norm ‖.‖2,(𝑙).
The norm ‖.‖2,(𝑙) is given by the square root of the scalar product ({𝑎𝑗}

∞
𝑗=1

, {𝑏𝑗}
∞
𝑗=1

)2,(𝑙) ∶=
∑∞

𝑗=1 𝑎𝑗𝑏𝑗 ,
∀ {𝑎𝑗}

∞
𝑗=1

, {𝑏𝑗}
∞
𝑗=1

∈ 𝑙2:

‖{𝑎𝑗}∞𝑗=1‖2,(𝑙) ∶=

√√√√ ∞∑
𝑗=1

𝑎𝑗𝑎𝑗 ∀ {𝑎𝑗}
∞
𝑗=1

∈ 𝑙2 .

We choose subspaces of 𝑙𝑙2 regarding any 𝑤 ∈ 𝕍 or any 𝜃 ∈ 𝕎1
2

𝑜

as weighted sequences, where the eigenpairs (cf.
Equation 3.1) will be especially highlighted.
Now we will frame special sequence spaces of coefficients in relation to the spaces 𝕍 and𝕎1

2

𝑜

.

Notation 4.3 (Special sequence spaces of coefficients). Let us regard the sequences of eigenvalues from the eigenpairs-
system for the Laplacian 𝑳 and the Stokes operator 𝑺 (cf. Notation 3.3) ordered by increasing eigenvalues taking in account
their multiplicities (and the correspondent eigenfunctions):

{(𝜔𝑗)
2 = |𝜔𝑗|2}∞𝑗=1, {𝜆∗

𝑗
= |𝜅𝑗|2}∞𝑗=1 (4.2)

and the correspondent sequences of positive roots:

{𝜔𝑗}
∞
𝑗=1

, {
√

𝜆∗
𝑗
= 𝜅𝑗}

∞
𝑗=1

.

We declare the spaces 𝑙𝑙𝕎2 , 𝑙𝑙
𝕍

2 with respect to spectral operators in the following way:
𝑙𝑙𝕎2 ∶= (𝑙𝕎2 , ‖.‖2,(𝕎)) is defined by

𝑙𝕎2 ∶=

{
{𝑎𝑗}

∞
𝑗=1

∈ 𝑙2 ∶

∞∑
𝑗=1

𝜔2
𝑗
|𝑎𝑗|2 < ∞

}
with the norm and the scalar product ∀ {𝑎𝑗}∞𝑗=1 , {𝑏𝑗}

∞
𝑗=1

∈ 𝑙𝕎2 ∶ (4.3)

‖{𝑎𝑗}∞𝑗=1‖2,(𝕎) ∶=
√

({𝑎𝑗}
∞
𝑗=1

, {𝑎𝑗}
∞
𝑗=1

)2,(𝕎), ({𝑎𝑗}
∞
𝑗=1

, {𝑏𝑗}
∞
𝑗=1

)2,(𝕎) ∶=

∞∑
𝑗=1

𝜔2
𝑗
𝑎𝑗𝑏𝑗 .

𝑙𝑙𝕍2 ∶= (𝑙𝕍2 , ‖.‖2,(𝕍)) is taken as
𝑙𝕍2 ∶=

{
{𝑎𝑗}

∞
𝑗=1

∈ 𝑙2 ∶

∞∑
𝑗=1

𝜅2
𝑗
|𝑎𝑗|2 < ∞

}
with the norm and the scalar product ∀ {𝑎𝑗}∞𝑗=1 , {𝑏𝑗}

∞
𝑗=1

∈ 𝑙𝕍2 ∶ (4.4)

‖{𝑎𝑗}∞𝑗=1‖2,(𝕍) ∶=
√

({𝑎𝑗}
∞
𝑗=1

, {𝑎𝑗}
∞
𝑗=1

)2,(𝕍), ({𝑎𝑗}
∞
𝑗=1

, {𝑏𝑗}
∞
𝑗=1

)2,(𝕍) ∶=

∞∑
𝑗=1

𝜅2
𝑗
𝑎𝑗𝑏𝑗 .
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PASSERINI et al. 10 of 23

Lemma 4.4. Let the Fourier coefficients of 𝑤 ∈ 𝕍 with respect to the ℍ orthonormal system {𝑣
𝑗
}∞
𝑗=1

given by {𝑐𝑗}∞𝑗=1 and

the Fourier coefficients of 𝜃 ∈ 𝕎1
2

𝑜

with respect to the 𝕃2 orthonormal system {𝜒𝑗}
∞
𝑗=1

given by {𝑑𝑗}∞𝑗=1. Then the following
statements are true:

(𝑖) {𝑐𝑗}
∞

𝑗=1
∈ 𝑙𝑙𝕍2 ⇔ 𝑤 ∈ 𝕍 , ‖𝑤‖𝐷 = ‖{𝑐𝑗}∞𝑗=1‖2,(𝕍) ∀𝑤 ∈ 𝕍

(ii) {𝑑𝑗}
∞

𝑗=1
∈ 𝑙𝑙𝕎2 ⇔ 𝜃 ∈𝕎1

2

𝑜

, ‖𝜃‖𝐷 = ‖{𝑑𝑗}∞𝑗=1‖2,(𝕎) ∀ 𝜃 ∈ 𝕎1
2

𝑜

,

where we reference to the Dirichlet norms in Equation (2.1).

Proof. Using our definitions, one easily sees that Equations (4.3) and (4.4) are the properties of the Fourier coefficients
for the energy spaces𝕎1

2

𝑜

(for 𝑳) and 𝕍 (for 𝑺) (cf. Triebel [23] (4.1.8) and (4.1.9)). □

The Cartesian product space 𝑙𝑙𝕍2 × 𝑙𝑙𝕎2 is naturally equipped with the following scalar product and norm

[(𝐚, 𝐛), (𝐜, 𝐝)]𝑙𝑙𝕍
2
× 𝑙𝑙𝕎

2
∶=

(
(𝐚, 𝐜)2,(𝕍) + (𝐛, 𝐝)2,(𝕎)

)
∀ (𝐚, 𝐛), (𝐜, 𝐝) ∈ 𝑙𝑙𝕍2 × 𝑙𝑙𝕎2 ,

‖(𝐜, 𝐝)‖𝑙𝑙𝕍
2
× 𝑙𝑙𝕎

2
∶=

√
[(𝐜, 𝐝), (𝐜, 𝐝)]𝑙𝑙𝕍

2
× 𝑙𝑙𝕎

2

(cf. also Notation 7.3). After these suitable preparations, we are now in the position to carry out the proof of Theorem 4.1.

Proof (Theorem 4.1). We re-write the Problem A (2.9)–(2.10) in the weak formulation, where we use the potential 𝑆
(cf. Equation (2.6)):
We are looking for (𝜆, 𝑤, 𝜃) ∈ ℂ × 𝕍 ×𝕎1

2

𝑜

fulfilling for arbitrary 𝑢 ∈ 𝕍 and 𝜎 ∈ 𝕎1
2

𝑜

:(
𝜃, (∇𝑆)𝑇𝑢

)
= 𝜆

(
𝑢,𝑤

)
𝐷
, (4.5)(

𝜎, (∇𝑆)𝑇𝑤
)
= 𝜆 (𝜃, 𝜎)𝐷. (4.6)

By taking the sum of Equations (4.5) and (4.6), we get:(
𝜎, (∇𝑆)𝑇𝑤

)
+
(
𝜃, (∇𝑆)𝑇𝑢

)
= 𝜆

(
(𝑢, 𝑤)𝐷 + (𝜃, 𝜎)𝐷

)
, (4.7)

which corresponds to Equation (2.5) with 𝜆 = Ra𝑐.
We express the elements 𝑢,𝑤, 𝜎 and 𝜃 as Fourier series in the systems of eigenfunctions {𝑣

𝑗
}∞
𝑗=1

and {𝜒𝑗}
∞
𝑗=1

with respect
to ℍ and 𝕃2(.), respectively, that is,

𝑤 =

∞∑
𝑗=1

𝑐𝑗𝑣𝑗, 𝑢 =

∞∑
𝑗=1

𝑎𝑗𝑣𝑗 (4.8)

𝜃 =

∞∑
𝑗=1

𝑑𝑗𝜒𝑗, 𝜎 =

∞∑
𝑗=1

𝑏𝑗𝜒𝑗. (4.9)

Moreover, we set

𝐚 = {𝑎𝑗}
∞
𝑗=1

, 𝐛 = {𝑏𝑗}
∞
𝑗=1

, 𝐜 = {𝑐𝑗}
∞
𝑗=1

and 𝐝 = {𝑑𝑗}
∞
𝑗=1

(4.10)

and regard them as sequences of Fourier coefficients. For sequences 𝐚 considered as a row, we write in this sense 𝐚𝑇 .
In what follows, we are going to use the common writing of double series like products of matrices. Such method was
employed, for example, by Schmidt [20] and is a standard method of functional analysis. The background for this method
is the re-arrangement theorem for double series. Inserting Equations (4.8) and (4.9) in Equations (4.5) and (4.6) results in:

𝐚𝑇
(
𝐶 ⋅ 𝐝 − 𝜆 [diag(𝜅2

𝑘
)] ⋅ 𝐜

)
= 0 , (4.11)

𝐛𝑇
(
𝐶𝑇 ⋅ 𝐜 − 𝜆 [diag(𝜔2

𝑘
)] ⋅ 𝐝

)
= 0, (4.12)
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11 of 23 PASSERINI et al.

where

𝐶𝑗,𝑘 ∶= (𝜒𝑘, (∇𝑆)𝑇𝑣
𝑗
) . (4.13)

One easily sees that |𝐶𝑗,𝑘| ≤ √2 ⋅ 𝛾𝑆 with 𝛾𝑆 ∶= max𝑥∈Ω
(| 𝜕𝑆

𝜕𝑟
| + | 𝜕𝑆

𝑟𝜕𝜑
|), using that ‖𝑣

𝑗
‖ℍ = 1 and ‖𝜒𝑘‖𝕃2 = 1∀ 𝑗, 𝑘 ∈

ℕ × ℕ.
The sum of the Equations (4.11) and (4.12) can be written in 𝑙𝑙2 × 𝑙𝑙2 as:

(
𝐚𝑇, 𝐛𝑇

)[( 0 𝐶

𝐶𝑇 0

)
− 𝜆

(
diag(𝜅2

𝑘
) 0

0 diag(𝜔2
𝑘
)

)](
𝐜

𝐝

)
= 0 . (4.14)

The sequences of Fourier coefficients corresponding to 𝑢,𝑤, 𝜎 and 𝜃 belong to the spaces 𝑙𝑙𝕍2 and 𝑙𝑙
𝕎
2 . From these, it follows

that 𝐚̃, 𝐛̃, 𝐜̃, 𝐝̃ ∈ 𝑙𝑙2, with

𝐚̃ = {𝑎̃𝑗 ∶= 𝜅𝑗𝑎𝑗}
∞
𝑗=1

, 𝐛̃ = {𝑏̃𝑗 ∶= 𝜔𝑗𝑏𝑗}
∞
𝑗=1

, 𝐜̃ = {𝑐𝑗 ∶= 𝜅𝑗𝑐𝑗}
∞
𝑗=1

and 𝐝̃ = {𝑑𝑗 ∶= 𝜔𝑗𝑑𝑗}
∞
𝑗=1

, (4.15)

because of 𝑢, 𝑤 ∈ 𝕍 and 𝜎, 𝜃 ∈ 𝕎1
2

𝑜

. Additionally, we define the matrix 𝐶̃ by

𝐶̃𝑗,𝑘 ∶=
1

𝜅𝑗𝜔𝑘
(𝜒𝑘, (∇𝑆)𝑇𝑣

𝑗
) =

1

𝜅𝑗𝜔𝑘
𝐶𝑗,𝑘 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ. (4.16)

So we are able now to re-write the problem (4.14) in the 𝑙𝑙2 × 𝑙𝑙2 -setting through:

(
𝐚̃𝑇, 𝐛̃𝑇

)[( 0 𝐶̃

𝐶̃𝑇 0

)
− 𝜆

(
𝐼 0

0 𝐼

)](
𝐜̃

𝐝̃

)
= 0 , (4.17)

where 𝐼 denotes the identity in 𝑙𝑙2. We interpret Equation (4.17) as an operator equation in 𝑙𝑙2 × 𝑙𝑙2. This is possible since
the relation (4.17) is valid for arbitrary (𝐚̃, 𝐛̃) ∈ 𝑙𝑙2 × 𝑙𝑙2.
We define the linear and bounded operators ̃ and : ̃,  ∶ 𝑙𝑙2 × 𝑙𝑙2 ⟶ 𝑙𝑙2 × 𝑙𝑙2 by:

̃ ∶=

(
0 𝐶̃

𝐶̃𝑇 0

)
,  ∶=

(
𝐼 0

0 𝐼

)
. (4.18)

Finally, Equation (4.17) is here equivalent to the eigenvalue problem:

̃
(
𝐜̃

𝐝̃

)
= 𝜆 

(
𝐜̃

𝐝̃

)
= 𝜆

(
𝐜̃

𝐝̃

)
. (4.19)

The operators ̃ and  are elements of the Banach space (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2) of linear and bounded operators. We are now
interested in the properties and the operator norms of ̃ and .
It is well known that the identity  in 𝑙𝑙2 × 𝑙𝑙2 is a self-adjoint operator in (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2) and ‖‖ = 1.
The boundedness of the operator ̃ is obvious (cf. Equations 4.13 and 4.16).
To show the compactness of ̃, we use that it can be approximated by a sequence of finite operators {̃𝓁}𝓁∈ℕ,
{̃𝓁}𝓁∈ℕ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2), with {̃𝓁}𝓁∈ℕ → ̃, where we use ∀𝓁 ∈ ℕ the matrices 𝐶̃𝓁:

𝐶̃𝓁,𝑗,𝑘 ∶=

⎧⎪⎨⎪⎩
𝐶̃𝑗,𝑘 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ ∶ 𝑗, 𝑘 ≤ 𝓁

0 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ ∶ 𝑗 > 𝓁 ∨ 𝑘 > 𝓁

(4.20)

and ∀𝓁 ∈ ℕ the definitions:

̃𝓁 ∶=

(
0 𝐶̃𝓁

𝐶̃𝑇
𝓁

0

)
. (4.21)

The convergence {̃𝓁}𝓁∈ℕ → ̃ follows from Equations (4.13), (4.16), lim𝑗→∞ 𝜅𝑗 = ∞ and lim𝑘→∞ 𝜔𝑘 = ∞ .
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PASSERINI et al. 12 of 23

Since ̃ is evidently symmetric, one has just to show that it is self-adjoint. This follows since 𝐷(̃) = 𝑙𝑙2 × 𝑙𝑙2 for the
symmetric operator ̃ (cf. Triebel [23, Th.1 in 4.1.6]).
The existence of all the real eigenvalues 𝜆 (and all the eigen-elements (𝑤, 𝜃) ∈ 𝕍 ×𝕎1

2

𝑜

) is a simple consequence of
Triebel [23], Th.1 in 4.2.6] regarding to the properties of ̃ and the problem (4.19). One has to note that ̃ as a linear
and compact operator on the separable infinite-dimensional space 𝑙𝑙2 × 𝑙𝑙2 has at most a countably infinite number of
eigenvalues, where the non-zero eigenvalues {𝜆𝑗}∞𝑗=1 (counted in multiplicity) can be ordered by their absolute values
(cf. Triebel [23] (Thm.1, 4.2.6)). There we have to take into account the finite multiplicity of the non-zero eigenvalues.
The number zero: 0 ∈ ℂ is an element of the continuous spectrum in either case as the only accumulation point of the
eigenvalues of ̃, but not an eigenvalue of ̃, in what follows, that ̃−1 exists as a linear but unbounded operator. So we
finish the proof by showing that 𝜆 = 0 is not an eigenvalue of ̃ in the following Lemma 4.5. □

Lemma 4.5. 𝜆 = 0 is not an eigenvalue of ̃, but as an accumulation point of eigenvalues, the only one element of the
continuous spectrum of ̃ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2).

Proof. Assuming that 𝜆 = 0 is an eigenvalue of ̃, resp. of problem (2.9)–(2.10), then Equation (2.9) becomes

𝜃∇𝑆 = −∇𝑝 .

By applying the curl operator to both sides, we obtain

∇ × (𝜃∇𝑆) = ∇𝜃 × ∇𝑆 = 0

but, as it is easy to check, the condition that ∇𝜃 and ∇𝑆 are parallel vectors requires that

𝜃 =
1

𝑏
ln 𝑟 + 𝑟 sin 𝜑

(modulo some constants), which does not obey the boundary conditions for the temperature. Finally, we get by application
of Triebel [23] (Thm.1, 4.2.6) the property of 𝜆 = 0 to be the only one element of the continuous spectrum of ̃. □

5 THE NUMERICAL APPROXIMATION OF THE CRITICAL CONSTANT

Taking into account that themaximumof our functional corresponds to the largest positive eigenvalue 𝜆 = 𝜆𝑚𝑎𝑥 =
2

Ra𝑐
of

problem (2.9)–(2.10), respectively to the operator norm of ̃, we are going to create an approximationmethod enabling this
aim. We use determinants of square matrices of finite-dimensional matrix formats (regarded as elements of the sequence
of finite operator) to create approximations for 𝜆. Following ideas andmethods of Schmidt [20], it is easy to prove that our
sequence (or subsequence) of approximations {𝜆

𝓁𝑗̃
 }∞

𝑗̃=1
= {𝜆𝓁𝑗̃ }∞

𝑗̃=1
is monotonically increasing with the limit 𝜆 = ‖̃‖.

One could regard the eigenvalue equation for the eigenvalues 𝜆 of ̃ also in themeaning of a limes of finite-dimensional
2𝓁 × 2𝓁-matrices {Γ𝓁}𝓁∈ℕ , {̃𝓁}𝓁∈ℕ , with Γ𝓁 𝓁, ∀ 𝓁 ∈ ℕ according to description (5.6):

lim
𝓁→∞

det[Γ̃𝓁 − 𝜆𝓁] =∶ det
[̃ − 𝜆 ] = det

[(
0 𝐶̃

𝐶̃𝑇 0

)
− 𝜆

(
𝐼 0

0 𝐼

)]
= 0 (5.1)

Remark. We choose a number 𝓁 ∈ ℕ in such a way that the truncated eigenpair-systems of the Laplacian and the Stokes
operator written as

{(𝜔𝑗)
2, 𝜒𝑗}

𝓁
𝑗=1

and {(𝜅𝑗)
2, 𝑣

𝑗
}𝓁
𝑗=1

(5.2)

have the following properties:

1. The spaces spanned by the systems {𝜒𝑗}
𝓁
𝑗=1

and {𝑣
𝑗
}𝓁
𝑗=1

contain the entire eigenspaces of all eigenvalues {(𝜔𝑗)
2}𝓁
𝑗=1

resp.
{(𝜅𝑗)

2}𝓁
𝑗=1

, particularly of (𝜔𝓁)
2 and (𝜅𝓁)2.

2. The number 𝓁 is specified by explicite determination of the eigenpair-systems until a number𝑚 ≫ 𝓁.
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13 of 23 PASSERINI et al.

Lemma 5.1. There exists a strictly monotonic increasing sequence {𝓁𝑗̃}∞𝑗̃=1 ⟶ ∞ fulfilling with Equation (5.2) as:

{(𝜔𝑗)
2, 𝜒𝑗}

𝓁𝑗̃
𝑗=1

and {(𝜅𝑗)
2, 𝑣

𝑗
}
𝓁𝑗̃
𝑗=1

(5.3)

the properties of the remark above for any ∈ (0,∞).

Proof. We use the intermeshing property of eigenvalues {(𝜔𝑗)
2}∞
𝑗=1

resp. {(𝜅𝑗)2}∞𝑗=1, which grow in the exact same manner
in regard to their multiplicities. There one has to note that we haveΩ as a 2d-domain and that the divergence div 𝑣

𝑗
= 0

works like a one-dimensional restriction for 2d-vector fields on 2d-domains. □

We will use for the approximations of 𝜆 = ‖̃‖ the Courant minimax principle.
Let us introduce step by step notations for sets of square block matrices ∀𝓁 ∈ {𝓁𝑗̃}

∞
𝑗̃=1

⊂ ℕ:
We denote by 𝐶̂𝓁 the 𝓁 × 𝓁-matrices 𝐶̂𝓁:

𝐶̂𝓁,𝑗,𝑘 ∶= 𝐶̃𝑗,𝑘 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ ∶ 𝑗, 𝑘 ≤ 𝓁, (5.4)

where we regard to Equation (4.16) for the definition of the 𝐶̃𝑗,𝑘.
The identity matrix of size 𝓁 is termed by 𝐼𝓁. 𝐼𝓁 is the known square matrix with

𝐼𝓁,𝑗,𝑘 ∶= 𝛿𝑗,𝑘 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ ∶ 𝑗, 𝑘 ≤ 𝓁, (5.5)

where 𝛿𝑗,𝑘 is the Kronecker delta. (∀𝓁 ∈ ℕ)
We explain for all 𝓁 ∈ {𝓁𝑗̃}

∞
𝑗̃=1

the block matrices Γ𝓁 and 𝐽𝓁 by:

Γ𝓁 ∶=

(
0 𝐶̂𝓁

𝐶̂𝑇
𝓁

0

)
, 𝐽𝓁 ∶= 𝐼2𝓁 =

(
𝐼𝓁 0

0 𝐼𝓁

)
. (5.6)

One can also introduce a sequence of block matrices {Γ𝓁}𝓁∈ {𝓁𝑗̃}
∞
𝑗̃=1

,𝓁𝑗̃<𝓁𝑗̃+1
from a theoretical point of view.

It is worth to note that the numerical methods and computer algebra systems for the evaluation of all eigenvalues are
restricted to small matrix formats. So we skip any tries to compute all eigenvalues of the matrices
{Γ𝓁}𝓁∈ {𝓁𝑗̃}

∞
𝑗̃=1

,𝓁𝑗̃<𝓁𝑗̃+1
to focus on approximations of 𝜆 = ‖̃‖. The Courant minimax principle for 𝜆 = ‖̃‖ is here

the standard:

𝜆 = ‖̃‖ ∶= max‖(𝐜̃,𝐝̃)‖𝑙𝑙2×𝑙𝑙2=1
[
(𝐜̃, 𝐝̃) ̃

(
𝐜̃

𝐝̃

)]
, (5.7)

or again with Courant minimax written as a simple limiting value like in the proof of [23, Thm. in Sec. 4.2.5]

𝜆 = ‖̃‖ = lim
𝑗̃→∞

max
𝑧∈ℝ

2𝓁𝑗̃ ∶‖𝑧‖=1(𝑧𝑇 ⋅ Γ̃𝓁𝑗̃ ⋅ 𝑧) , (5.8)

where ‖.‖ denotes the Euclidian norm of the ℝ2𝓁𝑗̃ .
One can use straightforward method of the evaluation of all of Γ̃𝓁𝑗̃ for 𝑗̃ = 1, 2, 3 to calculate

𝜆𝓁𝑗̃ ∶= max
𝑧∈ℝ

2𝓁𝑗̃ ∶‖𝑧‖=1(𝑧𝑇 ⋅ Γ̃𝓁𝑗̃ ⋅ 𝑧) ∀ 𝑗̃ ∈ ℕ (5.9)

in a first step. The start process sector is accurately described by the order 2𝓁𝑗̃ of the square matrices through 2𝓁𝑗̃ ≈ 40.
We get the inequalities: 𝜆𝓁1 ≤ 𝜆𝓁2 ≤ 𝜆𝓁3 ≤ … using Lemma 5.1 and the definition (5.9) of 𝜆𝓁𝑗̃ , where we recognize the

sequence {𝜆𝓁𝑗̃ }∞
𝑗̃=1

to be monotonically increasing with the limit 𝜆 as a simple consequence. So is our method a method to
approach the eigenvalue 𝜆 from below.
We take the square (block) matrices of order 2𝓁𝑗̃: Γ𝓁𝑗̃ and 𝐽𝓁𝑗̃ (cf. Equation 5.6) to explain the functions

𝐹𝑗̃(𝜆) ∶= det
[
Γ𝓁𝑗̃ − 𝜆 𝐽𝓁𝑗̃

]
∀ 𝑗̃ ∈ ℕ . (5.10)
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PASSERINI et al. 14 of 23

TABLE 1 Numerical results for the critical Rayleigh number for the case = 1.

𝓵𝒋 𝝀
𝓵𝒋

𝟏
𝐑𝐚𝒄( = 𝟏)

7 0.065275715709889022434641241556310 30.639265739938989496469183142650
12 0.067433400164287488107980906050821 29.658892998535072667362035625305
22 0.070024363834146514766687200657022 28.561487609327265913546978946005
49 0.070752337753538312200877678082614 28.267617205340757028944998021332
92 0.070843842842887568707945584675261 28.231105481325421889287981461511
300 0.070926398413629912903178212704811 28.198245571928834452591903765447

TABLE 2 Numerical results for the critical Rayleigh number for the case = 10.

𝓵𝒋 𝝀
𝓵𝒋

𝟏
𝐑𝐚𝒄( = 𝟏𝟎)

11 0.036922959760029763204380893713543 54.166838547029519643082315254994
21 0.036922959760029763204380893713509 54.166838547029519643082315255044
39 0.036988540331501778832593839394502 54.070800904156620330758041435409
62 0.036988763473199326352547015240593 54.070474711843912995766624606994
90 0.036988784077179802197566851096866 54.070444592794772101553849052213

We evaluate 𝜆𝓁𝑗̃ by calculating the zeros of 𝐹𝑗̃(𝜆) in the interval [𝜆𝓁𝑗̃−1 , 𝜆𝓁𝑗̃−1 + 𝛿()]. There we use the bisection method
as the root-finding method. The initial approximations (start interval) are chosen by means of 𝜆𝓁𝑗̃−1 to be [𝜆𝓁𝑗̃−1 , 𝜆𝓁𝑗̃−1 +
𝛿()], where one can take the constant 𝛿() ≈ 1. The initial approximations are taken like in the complete induction
method with 𝑗̃ − 1 ≥ 1.
This method for the approach of 𝜆 is also restricted by the matrix formats. Because of the very long calculating time

for determinants for large 𝓁𝑗̃ , we make a rough estimate for the border area around 𝓁𝑗̃ ≈ 400. That applies to other
representations of 𝐹𝑗̃(𝜆) (cf. Equation 5.10) like

𝐹𝑗̃(𝜆) ∶= det
[
𝜆2 ⋅ 𝐼𝓁𝑗̃ − 𝐶̂𝑗̃ ⋅ 𝐶̂

𝑇
𝑗̃

]
∀ 𝑗̃ ∈ ℕ . (5.11)

too.
Now we present some results of calculations for the numerical approximation of critical Rayleigh numbers. The calcu-

lations of the critical Rayleigh numbers or 𝜆1 = 𝜆 = ‖̃‖ were implemented and performed in Maple 2021 (and Maple
2022) to ensure tight tolerances for the eigenfunctions, eigenvalues and the items of Γ𝓁𝑗̃ . There we use especially some
tools for the investigation of Besselfunctions (cf., e.g. Refs. [12,19]).
We present numerical results of approximations of Ra𝑐() for  = 1 and  = 10 (cf. Markert [13]). The numbers 𝓁𝑗

are chosen in the way described in Lemma 5.1.
Here one can observe that the sequences {𝜆

𝓁𝑗̃
1 }𝑗̃≥1 aremonotonically increasing. This increasing behaviour of the 𝜆

𝓁𝑗̃
1 ()

is justified in the growing dimension of the variation-sets (the matrix formats of the Γ𝓁𝑗̃ ) in Tables 1 and 2.

6 ALTERNATIVE PROOF VIA THE STREAM-FUNCTION

We will sketch another way for a proof of a modified version of Theorem 4.1 using streamfunctions. For this reason, we
re-phrase the propositions of Theorem 4.1 along the lines of Theorem 4.1 in the following Theorem 6.1:

Theorem 6.1. Problem A (cf. Equations 2.9 and 2.10) is for all equivalent to the eigenvalue problem of the compact self-
adjoint operator ̃ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2) (see below). All the eigenvalues 𝜆 are real and 𝜆 = 0 is not an eigenvalue of the
operator ̃, but is as an accumulation point of eigenvalues the only one element of the continuous spectrum of ̃. The critical
Rayleigh number Ra𝑐 is fixed through

2

Ra𝑐
∶= |𝜆max| = ‖̃‖ .

The set {𝜆} of the ̃-eigenvalues consists of an countably infinite number of (finite multiplicity) eigenvalues.
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15 of 23 PASSERINI et al.

The eigen-triples (𝜆, 𝐚̃, 𝐛̃) ∈ ℂ × 𝑙𝑙2 × 𝑙𝑙2 correspond to a solution (𝜆, 𝑤̃, 𝜃̃) ∈ ℂ × 𝕍 ×𝕎1
2

𝑜

of Problem A (2.9)–(2.10).

Remark. The use of streamfunctionwill get to an additional effort in the treatment of the ProblemA (2.9)–(2.10). Especially
we get worse estimations (6.17) in relation to the proof of Theorem 4.1 and an deteriorate convergence of the sequence of
finite operators to ̃ (at showing of the compactness of ̃) also.
In a first step, we are going tomake some arrangements for the proof of Theorem 6.1. Sowe regard ProblemA (2.9)–(2.10)

again.Wewill use Fourier representations for any streamfunctionΨ ∈ 𝕎2
2

𝑜

as expansions in the systems of eigenfunctions
{𝜓𝑗}

∞
𝑗=1

for the Bilaplacian 𝑩.

Lemma 6.2. The system (cf. Notation 3.3)

{
(𝜓𝑗, 𝜒𝑘)

}
𝑗,𝑘∈ℕ

is a complete basis for the space herein defined, namely𝕎2
2

𝑜

× 𝕎1
2

𝑜

.

Proof. We have to apply the properties of positive self-adjoint operators with a pure point spectrum (cf. Theorem 3.1 and
Lemma 3.2, or [23, Th. in 4.5.1]). □

In what follows, we are going to use the Fourier representations for any streamfunction Ψ ∈ 𝕎2
2

𝑜

and any temperature
𝜃 ∈ 𝕎1

2

𝑜

as expansions in the systems of eigenfunctions {𝜓𝑗}
∞
𝑗=1

and {𝜒𝑗}
∞
𝑗=1

in the sense of 𝕃2, respectively (cf. Lemma 3.2
and Equation 3.1):

Ψ =

∞∑
𝑗=1

𝑐𝑗𝜓𝑗 and 𝜃 =

∞∑
𝑗=1

𝑑𝑗𝜒𝑗 (6.1)

The sequences {𝑐𝑗}∞𝑗=1 and {𝑑𝑗}
∞
𝑗=1

are – as sequences of real or complex numbers – elements ofHilbertian space of sequences
𝑙𝑙2 [23, Lemma 2. in 2.1.3]. Parseval’s equation is fulfilled because of the properties of the complete orthonormal systems

{𝜓𝑗}
∞
𝑗=1

and {𝜒𝑗}
∞
𝑗=1

(in 𝕃2). (We note that the system {𝜓𝑗}
∞
𝑗=1

is an orthogonal system in the space𝕎2
2

𝑜∗

∶= (𝑊2
2

𝑜

, ‖.‖Δ). Here
is the linear vectorspace𝑊2

2

𝑜

endowed with the norm to theΔ-(quasi-)scalar product (cf. Notation 6.3). The system {𝜒𝑗}
∞
𝑗=1

is a complete orthogonal system in𝕎1
2

𝑜

by construction.

Notation 6.3. We denote ∀Ψ ,Φ ∈ 𝕎2
2

𝑜

by

(Φ,Ψ)Δ ∶= (ΔΦ,ΔΨ) (6.2)

the Δ-(quasi-)scalar product on the linear vectorspace𝑊2
2

𝑜

.

Remark. TheΔ-(quasi-)scalar product generates an equivalent norm to the standard norm of𝕎2
2 on the linear vectorspace

𝑊2
2

𝑜

.

Notation 6.4 (Special sequence space of coefficients). Let us regard the sequence of eigenvalues from the eigenpairs-system
for the Bilaplacian 𝑩 (cf. Notation 3.3) ordered by increasing eigenvalues taking in account their multiplicities (and the
correspondent eigenfunctions):

{(𝜇𝑗)
2 = |𝜇𝑗|2}∞𝑗=1 and the correspondent sequences of positive roots: {𝜇𝑗}

∞
𝑗=1

. (6.3)
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PASSERINI et al. 16 of 23

We declare the space 𝑙𝑙𝕎2
2 , with respect to spectral operators in the following way:

𝑙𝑙𝕎2
2 ∶= (𝑙𝕎2

2 , ‖.‖2,(𝕎)) is defined by

𝑙𝕎2
2 ∶= { {𝑎𝑗}

∞
𝑗=1

∈ 𝑙2 ∶

∞∑
𝑗=1

𝜇2
𝑗
|𝑎𝑗|2 < ∞}

with the norm and the scalar product ∀ {𝑎𝑗}∞𝑗=1 , {𝑏𝑗}
∞
𝑗=1

∈ 𝑙𝕎2
2 ∶ (6.4)

‖{𝑎𝑗}∞𝑗=1‖2,(𝕎2) ∶=
√

({𝑎𝑗}
∞
𝑗=1

, {𝑎𝑗}
∞
𝑗=1

)2,(𝕎2) , ({𝑎𝑗}
∞
𝑗=1

, {𝑏𝑗}
∞
𝑗=1

)2,(𝕎2) ∶=

∞∑
𝑗=1

𝜇2
𝑗
𝑎𝑗𝑏𝑗 .

We get like in Section 4, Lemma 4.4 the following:

Lemma 6.5. Let the Fourier coefficients of Ψ ∈ 𝕎2
2

𝑜

with respect to the𝕃2 orthonormal system {𝜓𝑗}
∞
𝑗=1

given by {𝑐𝑗}∞𝑗=1. Then
the following statements are true:

(iii) {𝑐𝑗}
∞

𝑗=1
∈ 𝑙𝑙𝕎2

2 ⇔ Ψ ∈ 𝕎2
2

𝑜

and
√
(Ψ,Ψ)Δ = ‖{𝑐𝑗}∞𝑗=1‖2,(𝕎2) ∀Ψ ∈ 𝕎2

2

𝑜

,

where we reference to the scalar product in Equation (6.2).

Proof. One has only to re-write our definitions. □

Let us now consider the representation of two-dimensional (respectively of three-dimensional) vector fields by means
of the streamfunction Ψ = Ψ(𝑟, 𝜑), or, by considering the reference frame of toroidal vector fields here chosen:

𝑤 = ∇Ψ × 𝔢
1
,

where 𝔢
1
denotes the unit vector in the horizontal direction. We are going to employ the common vector product of the

three-dimensional space to avoid additional notations as the wedge-product. So we understand our terms in the sense of
three-dimensional expression and our results also as three-dimensional vector fields with non-vanishing coefficients of
𝔢
1
, respectively, in the following passage.
One can calculate the curl of all terms in Equations (2.9) and (2.10) by assuming higher regularity

∇ × (𝜃∇𝑆) = ∇𝜃 × (∇𝑆)

∇ × (𝜆Δ𝑤) = −𝜆Δ2Ψ𝔢
1

(∇ × ∇)𝑝 = 0 .

Hence, Problem A provides by calculation and obtaining simple results from the nabla calculus:

𝔢𝑇
1
⋅ (∇𝜃 × ∇𝑆) − 𝜆Δ2Ψ = 0 (6.5)

𝔢𝑇
1
⋅ (∇Ψ × ∇𝑆) − 𝜆Δ𝜃 = 0 . (6.6)

We are going to investigate Equations (6.5) and (6.6) as bilinear forms again. So we seek for (𝜆, 𝑤 = ∇Ψ × 𝔢
1
, 𝜃) ∈ ℂ ×

𝕍 ×𝕎1
2

𝑜

fulfilling for arbitrary 𝑢 = ∇Φ × 𝔢
1
, and 𝜎, the equations (written with Ψ ,Φ ∈ 𝕎2

2

𝑜

):(
Φ, 𝔢𝑇

1
⋅ (∇𝜃 × ∇𝑆)

)
= 𝜆 (Φ,Ψ)Δ , (6.7)

(
𝜎, 𝔢𝑇

1
⋅ (∇Ψ × ∇𝑆)

)
= −𝜆 (𝜎, 𝜃)𝐷, (6.8)

where we have used 𝑤 = ∇Ψ × 𝔢
1
∈ 𝕍 (cf. Problem A) and the Δ-(quasi-)scalar product in Equation (6.7).
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17 of 23 PASSERINI et al.

Lemma 6.6. ∀𝜓 , 𝜒 ∈ 𝐷(𝑳), (resp. ∀𝜓 , 𝜒 ∈ 𝕎1
2

𝑜

) we have

(
𝜓, 𝔢𝑇

1
⋅ (∇𝜒 × ∇𝑆)

)
= ∫

Ω
(𝔢𝑇

1
⋅ ∇𝜒 × ∇𝑆)𝜓𝑑𝑥 = −∫

Ω
(𝔢𝑇

1
⋅ ∇𝜓 × ∇𝑆)𝜒𝑑𝑥 = −

(
𝜒, 𝔢𝑇

1
⋅ (∇𝜓 × ∇𝑆)

)
. (6.9)

Proof. Since ∇ × ∇𝑆 = 0, the left-hand side is equal to

∫
Ω

𝔢𝑇
1
⋅ (𝜓∇ × (𝜒∇𝑆))𝑑𝑥 = ∫

Ω
𝔢𝑇
1
⋅ ∇ × (𝜓𝜒∇𝑆)𝑑𝑥 − ∫

Ω
𝔢𝑇
1
⋅ (∇𝜓 × (𝜒∇𝑆))𝑑𝑥

and, on the other hand, here the first integral on the right-hand side vanishes, because of the Gauss theorem and of the
boundary condition for 𝜓:

∫
Ω

𝔢𝑇
1
⋅ ∇ × (𝜓𝜒∇𝑆)𝑑𝑥 = ∫

𝜕Ω
𝜓𝜒(∇𝑆)𝑇𝑑𝑥 = 0.

□

We are now in the position to do give a shortened proof of Theorem 6.1:

Proof (Theorem 6.1). We start with an appropriate weak formulation of the Problem A (2.9)–(2.10) in the streamfunction
formulation. By taking the sum of Equations (6.7) and (6.8), we get:

(
Φ, 𝔢𝑇

1
⋅ (∇𝜃 × ∇𝑆)

)
+
(
𝜎, 𝔢𝑇

1
⋅ (∇Ψ × ∇𝑆)

)
= 𝜆

(
(Φ,Ψ)Δ − (𝜃, 𝜎)𝐷

)
, (6.10)

Now we consider the elements Φ, Ψ ∈ 𝑊2
2

𝑜

and 𝜎, 𝜃 ∈ 𝕎1
2

𝑜

as Fourier series in the systems of eigenfunctions {𝜓𝑗}
∞
𝑗=1

and
{𝜒𝑗}

∞
𝑗=1

in the sense of 𝕃2 and 𝕃2, respectively. We set

Ψ =

∞∑
𝑗=1

𝑐𝑗𝜓𝑗, Φ =

∞∑
𝑗=1

𝑎𝑗𝜓𝑗 (6.11)

𝜃 =

∞∑
𝑗=1

𝑑𝑗𝜒𝑗, 𝜎 =

∞∑
𝑗=1

𝑏𝑗𝜒𝑗. (6.12)

The sequences of Fourier coefficients are denoted by 𝐚, 𝐛, 𝐜, and 𝐝 as in Equation (4.10). The sequences are regarded as
columns and for a sequences 𝐚 considered as a row we write in this sense 𝐚𝑇 again.
The Fourier series are substituted in Equations (6.7) and (6.8) and we get:

𝐚𝑇
(
𝐵𝐝 − 𝜆 [diag(𝜇2

𝑘
)]𝐜
)
= 0 , (6.13)

𝐛𝑇
(
𝐵𝑇𝐜 − 𝜆 [diag(𝜔2

𝑘
)]𝐝
)
= 0, (6.14)

where

𝐵𝑗,𝑘 ∶= (𝜓𝑗, 𝔢
𝑇
1
⋅ (∇𝜒𝑘 × ∇𝑆)) , ∀ 𝑗, 𝑘 ∈ ℕ × ℕ. (6.15)

The sum of the Equations (6.13) and (6.14) (the equivalent to Equation (6.10)) can be written in 𝑙𝑙2 × 𝑙𝑙2 as:

(
𝐚𝑇, 𝐛𝑇

)[( 0 𝐵

𝐵𝑇 0

)
− 𝜆

(
diag(𝜇2

𝑘
) 0

0 diag(𝜔2
𝑘
)

)](
𝐜

𝐝

)
= 0 . (6.16)
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PASSERINI et al. 18 of 23

With respect to Lemma 6.6, we get the structure and the symmetry of the following linear operator written as a “block
matrix” on 𝑙𝑙2 × 𝑙𝑙2. (

0 𝐵

𝐵𝑇 0

)
.

But here are the elements𝐵𝑗,𝑘 in Equation (6.15) not uniformly bounded in contrast to the uniform boundedness of the ele-
ments𝐶𝑗,𝑘 of𝐶 in Section 4 in Equation (4.13).We need for estimation of the𝐵𝑗,𝑘 the equivalent norms on𝑊2

2

𝑜

, respectively,
on𝕎1

2

𝑜

.
This results in ∀ 𝑗, 𝑘 ∈ ℕ × ℕ:

|𝐵𝑗,𝑘| = |(𝜓𝑗, 𝔢
𝑇
1
⋅ (∇𝜒𝑘 × ∇𝑆))| = |(𝜒𝑘, 𝔢

𝑇
1
⋅ (∇𝜓𝑗 × ∇𝑆))| ≤ 𝛾∗𝛾

𝐼𝐼
𝑆

max
(
𝜇𝑗, 𝜔𝑘

)
(6.17)

where we have used 𝛾∗ as constant for the both equivalent norms and 𝛾𝐼𝐼𝑆 ∶= max𝑥∈Ω

√(| 𝜕𝑆
𝜕𝑟
|2 + | 𝜕𝑆

𝑟𝜕𝜑
|2), ‖𝜓𝑗‖𝕃2 = 1

and ‖𝜒𝑘‖𝕃2 = 1 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ.
Now the sequences of Fourier coefficients corresponding to Φ, Ψ, 𝜎, and 𝜃 belong to the spaces 𝑙𝑙𝕎2

2 and 𝑙𝑙𝕎2 (cf.
Lemma 4.4 and in this context, the Notation 6.4 also). From these, it follows that 𝐚̃, 𝐛̃, 𝐜̃, 𝐝̃ ∈ 𝑙𝑙2, with

𝐚̃ = {𝑎̃𝑗 ∶= 𝜇𝑗𝑎𝑗}
∞
𝑗=1

, 𝐛̃ = {𝑏̃𝑗 ∶= 𝜔𝑗𝑏𝑗}
∞
𝑗=1

, 𝐜̃ = {𝑐𝑗 ∶= 𝜇𝑗𝑐𝑗}
∞
𝑗=1

and 𝐝̃ = {𝑑𝑗 ∶= 𝜔𝑗𝑑𝑗}
∞
𝑗=1

. (6.18)

Additionally, we explain the matrix 𝐵̃ by

𝐵̃𝑗,𝑘 ∶=
1

𝜇𝑗𝜔𝑘
𝐵𝑗,𝑘 ∀ 𝑗, 𝑘 ∈ ℕ × ℕ. (6.19)

So we are able now to formulate the problem (6.16) equivalent in the 𝑙𝑙2 × 𝑙𝑙2-sense through:

(
𝐚̃𝑇, 𝐛̃𝑇

)[( 0 𝐵̃

𝐵̃𝑇 0

)
− 𝜆

(
𝐼 0

0 𝐼

)](
𝐜̃

𝐝̃

)
= 0 , (6.20)

where 𝐼 denotes the identity in 𝑙𝑙2 again. We interpret Equation (6.20) as an operator equation in 𝑙𝑙2 × 𝑙𝑙2. This is possible
since the relation (6.20) is valid for arbitrary (𝐚̃, 𝐛̃) ∈ 𝑙𝑙2 × 𝑙𝑙2.
We define the linear and bounded operators ̃ and ; ̃,  ∶ 𝑙𝑙2 × 𝑙𝑙2 ⟶ 𝑙𝑙2 × 𝑙𝑙2 by:

̃ ∶=

(
0 𝐵̃

𝐵̃𝑇 0

)
,  ∶=

(
𝐼 0

0 𝐼

)
. (6.21)

The operators ̃ and  are elements of the Banach space(𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2) of linear and bounded operators. Nowwe have
made all preparations to follow the line of argument of section 4.
To show the compactness of ̃, we use that ̃ can be approximated by a sequence of finite operators {̃𝓁}𝓁∈ℕ,
{̃𝓁}𝓁∈ℕ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2), with {̃𝓁}𝓁∈ℕ → ̃, where we use ∀𝓁 ∈ ℕ matrices 𝐵̃𝓁 defined along the lines of

Equation (4.20) for ̃. The convergence {̃𝓁}𝓁∈ℕ → ̃ follows from Equations (6.17) and (6.19), lim𝑗→∞ 𝜇𝑗 = ∞ or
lim𝑘→∞ 𝜔𝑘 = ∞ . Finally, we use Lemma 4.5 again in a modified formulation: 𝜆 = 0 is not an eigenvalue of ̃ resp. of
problem (2.9)–(2.10) and we set for the proof 𝑤 = ∇Ψ × 𝔢

1
.

7 ORTHOGONALITY RELATIONS

At first, it is reasonable to feature the multiplicity of the eigenvalues. We choose the usual way to explain it by the
dimension of a null space:
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19 of 23 PASSERINI et al.

Notation 7.1. Let ̃ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2) be the operator stated in Theorem 4.1 (equivalent to the Problem A ((2.9) and
(2.10)) for all). We call 𝑁(̃ − 𝜆 ) as a subspace of 𝑙𝑙2 × 𝑙𝑙2 the null space of the operator ̃ − 𝜆  for 𝜆 ∈ ℂ:

𝑁(̃ − 𝜆 ) ∶= {𝐱̃ ∈ 𝑙𝑙2 × 𝑙𝑙2 ∶ (̃ − 𝜆 )𝐱̃ = 𝐨̃} , (7.1)

where 𝐱̃ = (𝐜̃, 𝐝̃) , 𝐨̃ ∈ 𝑙𝑙2 × 𝑙𝑙2, with 𝐨̃ as the zero element of the space 𝑙𝑙2 × 𝑙𝑙2.
The multiplicity of the eigenvalue 𝜆 of ̃ is specified by

𝔑(𝜆) ∶= dim𝑁(̃ − 𝜆 ) . (7.2)

Wewill prove the following orthogonality relations in addition to Theorem 4.1 regarding the eigen-triples of ProblemA:

Lemma 7.2. For any eigenvalue 𝜆 of ̃ (resp. of the Problem A (cf. (2.9) and (2.10)), there exists the eigenvalue (−𝜆) also. We
have that to every eigen-triple (𝜆, 𝑤, 𝜃) ∈ ℂ × 𝕍 ×𝕎1

2

𝑜

exists a correspondent eigen-triple (−𝜆,𝑤−, 𝜃−) ∶= (−𝜆,−𝑤, 𝜃) ∈

ℂ × 𝕍 ×𝕎1
2

𝑜

. The eigenvalues 𝜆 and −𝜆 have the same multiplicity:𝔑(𝜆) = 𝔑(−𝜆).

Proof. To delineate the idea of the proof, let us assume that (𝜆, 𝑤, 𝜃) ∈ ℂ × 𝕍
2
×𝕎1

2

𝑜

∩𝕎2
2 is a fixed solution of Equa-

tions (2.9) and (2.10). Then we have also by inserting (−𝜆,−𝑤, 𝜃) in Equations (2.9) and (2.10) (resp. multiplying the
second Equation 2.10 with −1):

𝜃∇𝑆 − 𝜆Δ(−𝑤) = −∇𝑝 , ∇
𝑇
⋅ 𝑤̃ = 0 ,

−𝑤𝑇 ⋅ ∇𝑆 − 𝜆Δ𝜃 = 0 .

It is hence evident that the problem is fulfilled by

(−𝑤, 𝜃),

where the elements (𝑤, 𝜃) and (−𝑤, 𝜃) are linear independent in the Cartesian product.
We use now the linear and bounded operators ̃ and ; ̃,  ∶ 𝑙𝑙2 × 𝑙𝑙2 ⟶ 𝑙𝑙2 × 𝑙𝑙2 (4.18) and the equivalent eigenvalue

problem (cf. Equation 4.19). The sequences of Fourier coefficients 𝐜 and 𝑑 corresponding to 𝑤 and 𝜃 belong to the spaces
𝑙𝑙𝕍2 and 𝑙𝑙𝕎2 . So we apply the notations 𝐜̃ and 𝐝̃, (𝐜̃, 𝐝̃ ∈ 𝑙𝑙2) compare Equation (4.15) for the correspondent eigen-triple
(𝜆, 𝐜̃, 𝐝̃) ≅ (𝜆, 𝑤, 𝜃). Let us suppose that the eigen-triple (𝜆, 𝐜̃, 𝐝̃) ≅ (𝜆, 𝑤, 𝜃) fulfills the equation:

̃
(
𝐜̃

𝐝̃

)
=

(
0 𝐶̃

𝐶̃𝑇 0

)(
𝐜̃

𝐝̃

)
=

(
𝐶̃𝐝̃

𝐶̃𝑇𝐜̃

)
= 𝜆 

(
𝐜̃

𝐝̃

)
= 𝜆

(
𝐜̃

𝐝̃

)
. (7.3)

It is obvious that also (−𝜆,−𝐜̃, 𝐝̃) ≅ (−𝜆,−𝑤, 𝜃) satisfies as an eigen-triple the “ruling” equation:

̃
(
−𝐜̃

𝐝̃

)
=

(
0 𝐶̃

𝐶̃𝑇 0

)(
−𝐜̃

𝐝̃

)
=

(
𝐶̃𝐝̃

−𝐶̃𝑇𝐜̃

)
= −𝜆 

(
−𝐜̃

𝐝̃

)
= −𝜆

(
−𝐜̃

𝐝̃

)
(7.4)

The multiplicities of 𝜆 and −𝜆 are equal. To see this, we use Equations (7.3) and (7.4) and𝔑(𝜆) < ∞ from Theorem 4.1.
Then we choose (𝐜̃, 𝐝̃) ∈ 𝑁(̃ − 𝜆 ) as a fixed element of an 𝑙𝑙2 × 𝑙𝑙2 -orthonormal basis of𝑁(̃ − 𝜆 ) to get, that (−𝐜̃, 𝐝̃)
is an element of an 𝑙𝑙2 × 𝑙𝑙2 -orthonormal basis of𝑁(̃ + 𝜆 ). The assertion is showed by interchanging the roles of 𝜆 and
−𝜆. □

We write down the statement of the scalar product and orthogonality on the Cartesian product of Hilbert space to
illustrate the use of an orthonormal basis on 𝑙𝑙2 × 𝑙𝑙2 (cf. Section 4, Equation 5.7).
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PASSERINI et al. 20 of 23

Notation 7.3. Let us use the abbreviations from Equation (4.10) for elements of the Hilbertian sequence space 𝑙𝑙2. Then
the scalar product on the Cartesian product is defined via

[(𝐚, 𝐛), (𝐜, 𝐝)]𝑙𝑙2×𝑙𝑙2∶=
1

2

(
(𝐚, 𝐜)2,(𝑙) + (𝐛, 𝐝)2,(𝑙)

)
∀ (𝐚, 𝐛), (𝐜, 𝐝) ∈ 𝑙𝑙2 × 𝑙𝑙2

The norm on 𝑙𝑙2 × 𝑙𝑙2 (cf. Equation (5.7) also) is taken in the usual way as:

‖(𝐜, 𝐝)‖𝑙𝑙2×𝑙𝑙2 =
√

[(𝐜, 𝐝), (𝐜, 𝐝)]𝑙𝑙2×𝑙𝑙2

Lemma 7.4. The inner product [(𝐚, 𝐛), (𝐜, 𝐝)]𝑙𝑙2×𝑙𝑙2 given in Notation 7.3 is a scalar product on 𝑙2 × 𝑙2 and the Hilbert space
𝑙𝑙2 × 𝑙𝑙2 is defined by 𝑙𝑙2 × 𝑙𝑙2 ∶= (𝑙2 × 𝑙2, [(., .), (., .)]𝑙𝑙2×𝑙𝑙2 ).
Let the orthonormal basis of the 𝑙𝑙2 be taken as follows:

{𝜹𝑗}
∞
𝑗=1

with 𝜹𝑗 ∶= {𝛿𝑗,𝑘}
∞
𝑘=1

∀ 𝑗 ∈ ℕ , (7.5)

where 𝛿𝑗,𝑘 denote the Kronecker 𝛿 (as function of the variables 𝑗 and 𝑘).
Then one gets an orthonormal basis of 𝑙𝑙2 × 𝑙𝑙2 by choosing the system:

{𝜸𝑗 = (𝜹𝑗, 𝜹𝑗)}
∞
𝑗=1

∪ {𝜼𝑗 = (−𝜹𝑗, 𝜹𝑗)}
∞
𝑗=1

(7.6)

Proof. The axioms of a scalar product on 𝑙𝑙2 × 𝑙𝑙2 are to check easily. The only critical point in showing that we have an
orthonormal basis of the 𝑙𝑙2 × 𝑙𝑙2 by the choosing system (7.6) is the simple calculation:

[𝜸𝑗, 𝜼𝑗]𝑙𝑙2×𝑙𝑙2
= [(𝜹𝑗, 𝜹𝑗), (−𝜹𝑗, 𝜹𝑗)]𝑙𝑙2×𝑙𝑙2

= 0 ∀ 𝑗 ∈ ℕ .

The completeness follows, since the zero element of 𝑙𝑙2 × 𝑙𝑙2 is the only element 𝝃 ∈ 𝑙𝑙2 × 𝑙𝑙2, which is orthogonal to the
system (7.6). □

Remark. Important properties of the eigenvalues 𝜆 of ̃ are written down in Theorem 4.1: The eigenvalues 𝜆 of ̃ are real
and 𝜆 = 0 is not an eigenvalue of ̃ but the only accumulation point of the eigenvalues. The set of all eigenvalues {𝜆}
consists of an countably infinite number of (finite multiplicity: 𝔑(𝜆) < ∞) eigenvalues. It is to be considered that the
features of the construction of an orthonormal basis in 𝑙𝑙2 × 𝑙𝑙2 can be transferred to the spaces ℍ × 𝕃2 and 𝕍 ×𝕎1

2

𝑜

in one
to one manner. We achieve in doing so: The connections of the factors in the Cartesian products are conserved for the

Cartesian products together with the features: 𝕍 ∶= 𝑺
−

1

2 (ℍ) and𝕎1
2

𝑜

∶= 𝑳
−

1

2 (𝕃2). There we have considered the Stokes
operator and the Laplacian as positive definite operators in the context of spectral operators.

Proposition 7.5 (Orthogonality). Let 𝜆1, 𝜆2 be eigenvalues of ̃ ∈ (𝑙𝑙2 × 𝑙𝑙2, 𝑙𝑙2 × 𝑙𝑙2), with 𝜆1 ≠ 𝜆2, then there are the
correspondent eigenspaces𝑁(̃ − 𝜆1 ) and𝑁(̃ − 𝜆2 ) orthogonal subspaces in 𝑙𝑙2 × 𝑙𝑙2.

Proof. According to Theorem 4.1 is ̃ a self-adjoint operator on 𝑙𝑙2 × 𝑙𝑙2 and 𝜆 = 0 is not an eigenvalue of ̃. The statement
is obtained by the appliance of the Theorem (sect. 4.2.3 [23]). □

Theorem 7.6 (Completeness). The set of orthonormalized eigenfunctions of ̃ generates a complete basis for the Cartesian
product space 𝑙𝑙2 × 𝑙𝑙2. If we denote by {𝜆𝓁}∞𝓁=1 the set of eigenvalues of ̃, than we have:

𝑙𝑙2 × 𝑙𝑙2 =
⋃∞

𝓁=1
𝑁(̃ − 𝜆𝓁 )

𝑙𝑙2×𝑙𝑙2
. (7.7)

Proof. For every 𝜆𝓁, there exists a finite orthonormal basis in 𝑁(̃ − 𝜆𝓁 ). According to Proposition 7.5, the eigenspaces
for different 𝜆 are orthogonal to each other. Sowe have only to showEquation (7.7).We use that 𝜆 = 0 is not an eigenvalue
of ̃ and that the operator ̃ is self-adjoint and compact. So we apply the orthogonal decomposition theorem (sect. 2.4.2,
[23]) and the theorem to the spectrum of compact operators (sect. 2.4.3, [23]) to get the justification of Equation (7.7). □
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21 of 23 PASSERINI et al.

Proposition 7.7. Let 𝕬̃ ∶ 𝐷(𝑺) × 𝐷(𝑳) → ℍ × 𝕃2 be regarded as in Equation (7.11). Then is 𝕬̃ a self-adjoint positive definite
operator. 𝕬̃ is in the sense of Equation (7.11) and of the matrix representation on product spaces a component-by-component
combination of the self-adjoint positive definite operators𝑺and𝑳with pure point spectrum.We get for the “diagonalmatrices:”

𝕬̃
−1

=

⎛⎜⎜⎜⎝
𝑺−1 0

(0)𝑇 𝑳−1

⎞⎟⎟⎟⎠ , 𝕬̃
−

1

2 =

⎛⎜⎜⎜⎜⎝
𝑺
−

1

2 0

(0)𝑇 𝑳
−

1

2

⎞⎟⎟⎟⎟⎠
and 𝕬̃

1

2 =

⎛⎜⎜⎜⎜⎝
𝑺

1

2 0

(0)𝑇 𝑳
1

2

⎞⎟⎟⎟⎟⎠
, (7.8)

where one gets with 𝔲 ∶= (Ψ, 𝜑) ∈ 𝕍 ×𝕎1
2

𝑜

:(
𝕬̃

1

2 𝔲, 𝕬̃
1

2 𝔴

)
= (𝑺

1

2 Ψ, 𝑺
1

2 𝑤) + (𝑳
1

2 𝜑, 𝑳
1

2 𝜃) =
(
Ψ,𝑤

)
𝐷
+ (𝜑, 𝜃)𝐷 . (7.9)

The energetic space of 𝕬̃ is 𝕍 ×𝕎1
2

𝑜

= 𝕬̃
−

1

2 (ℍ × 𝕃2). The self-adjoint operators 𝕬̃
−1

and 𝕬̃
−

1

2 are compact in (𝕃(ℍ ×

𝕃2, ℍ × 𝕃2). This is also true for 𝕬̃
−1
regarded as: 𝕬̃

−1
∶ ℍ × 𝕃2 → 𝕍 ×𝕎1

2

𝑜

.

Proof. It is a one to one transference of theorem (sect. 4.5.2, [23]) on product spaces.) □

Theorem 7.8. Problem A (2.9)–(2.10) is for all equivalent to the eigenvalue problem of the compact self-adjoint operator
𝕮̃ on the Cartesian product space ℍ × 𝕃2.

Proof. Let us use Notation 3.4 and Equation (3.2). So we write

𝑨((𝑤, 𝜃)) = (𝕾̃ − 𝜆𝕬̃)((𝑤, 𝜃)) =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0 ∇𝑆

(∇𝑆)𝑇 0

⎞⎟⎟⎟⎠ − 𝜆

⎛⎜⎜⎜⎝
𝑺 0

(0)𝑇 𝑳

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑤

𝜃

⎞⎟⎟⎟⎠, (7.10)

where one can understand the zeros in 𝕾̃ also as the zero elements of (ℍ,ℍ) resp. (𝕃2, 𝕃2).
The operators 𝕬̃ ∶ 𝐷(𝑺) × 𝐷(𝑳) → ℍ × 𝕃2 and 𝕾̃ ∶ ℍ × 𝕃2 → ℍ × 𝕃2 in Equation (7.10) are also defined through the

bilinearforms at (Ψ, 𝜑) ∈ 𝕍 ×𝕎1
2

𝑜

:

((Ψ, 𝜑), 𝕬̃(𝑤, 𝜃)) ∶=
(
Ψ,𝑤

)
𝐷
+ (𝜑, 𝜃)𝐷 (7.11)

((Ψ, 𝜑), 𝕾̃(𝑤, 𝜃)) ∶=
(
Ψ, 𝜃 ∇𝑆

)
+
(
𝜑, (∇𝑆)𝑇𝑤

)
.

There is especially Equation (7.11) to understand in sense on dense definition. We investigate first the properties of 𝕬̃ to
establish a relationship to the task of Problem A (2.9)–(2.10): the non-trivial solutions (𝜆, 𝑤, 𝜃) ∈ ℂ × 𝕍 ×𝕎1

2

𝑜

of (2.9) and
(2.10), where we have there only equations in 𝕍

′ resp.𝕎−1
2 .

Using the notation 𝕬̃𝑒𝑛 for the energetic expansion of 𝕬̃ in the sense of 𝕬̃𝑒𝑛 ∶ 𝕍 ×𝕎1
2

𝑜

→ 𝕍
′
×𝕎−1

2 and𝔴 ∶= (𝑤, 𝜃) ∈

𝕍 ×𝕎1
2

𝑜

we may write (
𝕾̃ − 𝜆𝕬̃𝑒𝑛

)
𝔴 = 0 . (7.12)

The properties of 𝕬̃ are summarized in:
We get the boundedness of 𝕾̃ using 𝛾𝑆 (cf. Equation 4.13). The crucial tool for our argumentation is the mapping prop-

erty: By an appropriate norm on 𝕍 ×𝕎1
2

𝑜

, we have 𝕬̃
1

2 as an unitary mapping on ℍ × 𝕃2 and so forth. The idea of one to

one mappings result in 𝔲 = 𝕬̃
−

1

2 𝔳 and 𝔴 = 𝕬̃
−

1

2 𝔶. We get for Problem A (2.9)–(2.10) using Equations (7.10) and (7.11):
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(𝕬̃
−

1

2 𝔳, 𝕾̃ 𝕬̃
−

1

2 𝔶) − 𝜆(𝕬̃
1

2 𝕬̃
−

1

2 𝔳, 𝕬̃
1

2 𝕬̃
−

1

2 𝔶)

= (𝔳, 𝕬̃
−

1

2 𝕾̃ 𝕬̃
−

1

2

⏟⎴⎴⏟⎴⎴⏟
=∶𝕮̃

𝔶) − 𝜆(𝔳, 𝔶) = 0 . (7.13)

Finally, we use the identity 𝕴̃ in ℍ × 𝕃2 to get:

(𝕮̃ − 𝜆𝕴̃)𝔶 = 0 (7.14)

as the equivalent eigenvalue problem in ℍ × 𝕃2 for the self-adjoint compact operator 𝕮̃. □
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