KIT | KIT-Bibliothek | Impressum | Datenschutz

Overview of Machine Learning Applications at the Pierre Auger Observatory

Rodriguez, Ezequiel 1; Capone, A. [Hrsg.]; Celli, S. [Hrsg.]; Gasbarra, C. [Hrsg.]; Morselli, A. [Hrsg.]
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract:

The complex spatio-temporal information from shower footprints, comprised of particle arrival times and traces measured by water-Cherenkov detectors, is challenging to analyse with traditional methods but well-suited for machine learning (ML) based analyses. In this contribution, we provide an overview of the ML applications developed to leverage the high event statistics acquired by the Pierre Auger Observatory. In the context of the energy spectrum, a neural network approach for energy reconstruction has demonstrated potential in reducing composition biases in the energy estimator. A notable application for mass composition is the indirect prediction of the depth of the maximum shower development, Xmax , which extends the energy range of previous analyses into unexplored higher energies. Aligned with AugerPrime, the ongoing upgrade of the Observatory, the impact of enhanced electronics and scintillation detectors was explored via simulations. Both transformers and convolutional networks perform better at the reconstruction of mass-composition sensitive observables like Xmax and the muon number, demonstrating the benefits of the Observatory’s upgrade.


Verlagsausgabe §
DOI: 10.5445/IR/1000180978
Veröffentlicht am 14.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2100-014X
KITopen-ID: 1000180978
Erschienen in RICAP-24, 9th Roma International Conference on Astroparticle Physics, Roma, Italy, September 23-27, 2024. Ed.: A. Capone, S. Celli, C. Gasbarra, A. Morselli
Veranstaltung 9th Roma International Conference on Astroparticle Physics (RICAP 2024), Rom, Italien, 23.09.2024 – 27.09.2024
Verlag EDP Sciences
Seiten Art.-Nr.: 13006
Serie EPJ Web of Conferences ; 319
Vorab online veröffentlicht am 06.03.2025
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page