KIT | KIT-Bibliothek | Impressum | Datenschutz

Automatic Gear Tooth Alignment 2.0: Improved Image Segmentation for Better Rotation Angle Deviation Determination

Grimm, Florian ; Kiefer, Daniel; Straub, Tim; Bitsch, Günter; van Dinther, Clemens 1
1 Institut für Wirtschaftsinformatik (WIN), Karlsruher Institut für Technologie (KIT)

Abstract:

The maintenance of special tools is an expensive business. Either manual inspection by an expert costs valuable resources, or the loss of a tool due to irreparable wear is associated with high replacement costs, while reconditioning requires only a fraction. In order to avoid higher costs and drive forward the automation process in production, a German gear manufacturer wants to create an automatic evaluation of skiving gears. As a sub-step of this automated condition detection, it is necessary for wheels to be automatically aligned within a vision-based inspection cell. In extension to a study conducted last year [1], further image preprocessing steps are implemented in this publication and a new alignment algorithm from the autoencoder family is evaluated. By using an additional synthetic dataset, previous limitations could be clarified. The results show that thorough data preparation is beneficial for all solution approaches and that neural networks can even beat a brute force algorithm.


Verlagsausgabe §
DOI: 10.5445/IR/1000180982
Veröffentlicht am 11.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik (WIN)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1877-0509
KITopen-ID: 1000180982
Erschienen in Procedia Computer Science
Verlag Elsevier
Band 253
Seiten 1256–1265
Nachgewiesen in Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page