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Summary

The need to tackle climate change and reduce emissions, along with rapid
urbanization resulting in increasingly congested cities, highlights the urgency for
sustainable mobility solutions to make urban transport cleaner, more efficient,
and accessible. Shared, autonomous electric vehicle (SAEV) fleets, when used
to complement public transport, have the potential to alleviate urban traffic
and reduce emissions. However, the adoption of such innovative mobility
solutions raises critical technical questions for vehicle design, particularly from
the perspective of automotive suppliers.

SAEVs are expected to have significantly different driving patterns and load
profiles compared to privately owned, human-driven cars, necessitating a reeval-
uation of vehicle components such as the powertrain and thermal management
system, which are highly sensitive to operating conditions. Consequently, accu-
rate SAEV driving cycles are essential for automotive requirement engineering.
In addition to capturing key driving dynamics and vehicle states (e.g., idling,
charging, and occupied), these driving cycles must also consider the effects of
different pricing schemes on travel behavior, electric vehicle (EV) range and
charging constraints, as well as diverse fleet routing and dispatching strategies.

Given the limitations of real-world data for these novel concepts, we utilize
multi-level traffic simulation to generate SAEV driving profiles tailored to
automotive engineering needs. By integrating traffic modeling frameworks of
varying granularity, we achieve a balance between computational efficiency and
modeling precision – representing large-scale network flows with simplified
models while applying more detailed models to specific areas. Our goal is to
develop an automated toolchain and demonstrate its large-scale applicability,
effectively addressing the persistent challenges associated with multi-level
simulation in transport research.

The central contribution of our work is the successful integration of the
mesoscopic transport planning framework MATSim with the microscopic
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traffic simulation tool SUMO, overcoming substantial challenges arising from
their fundamental differences in network representation and traffic dynamics.
By leveraging specific characteristics of the vehicle-centric use case, we develop
a novel sequential tool-coupling approach that enables a seamless transition
between the two simulation frameworks. The key innovations include:

• Automated methods for building and populating microscopic SUMO
models from mesoscopic MATSim simulations. This includes a robust
graph-based network matching routine to translate mesoscopic network
elements into their microscopic counterparts and a novel technique to
disaggregate MATSim’s sampled travel demand into the higher-resolution
microscopic domain across dynamic meso-micro network borders. We
apply stochastic methods to reduce computational load in SUMO while
maintaining the representativeness of a vehicle fleet.

• An innovative, automotive-inspired calibration approach that employs a
genetic algorithm to align SUMO’s traffic states with those observed in
a calibrated MATSim simulation, prioritizing the consistency of travel
times over traffic counts as in traditional approaches. This distinctive
choice of objective is grounded in our findings from numerous analytical
and numerical experiments, which revealed significant discrepancies in
traffic dynamics and network capacity between MATSim and SUMO.
As a result, we focused on calibrating traffic performance by adjusting
various demand, routing, and bottleneck mitigating measures.

The resulting toolchain is robust and efficient, even in scenarios with imperfect
microscopic networks. Unlike many large-scale microscopic traffic simulations
that require extensive network cleaning and demand synthesis, our method
reduces these challenges by subjecting the microscopic modeling effort to the
less stringent requirements of mesoscopic models. Additionally, we introduce a
complementary data-driven approach to derive SAEV drive cycles. This method
refines mesoscopic speed profiles with real-world driving data, providing a
pragmatic (though less sensitive) alternative for obtaining detailed driving
dynamics without requiring microscopic simulations. We demonstrate the
toolchain’s feasibility in a case study on power engine design, highlighting the
distinct requirements of SAEV fleets compared to privately owned cars.

Overall, we offer both practical and advanced methodologies for generating
SAEV driving profiles, advancing research on multi-level traffic simulation
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and creating new opportunities for automotive suppliers to adapt to changing
mobility landscapes. Our work not only supports the automotive industry in
designing future vehicle systems but also paves the way for exploring new
business opportunities in SAEV environments.
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Zusammenfassung

Die Notwendigkeit, dem Klimawandel entgegenzuwirken und Emissionen zu re-
duzieren, sowie die zunehmende Urbanisierung, die zu immer stärker belasteten
Städten führt, unterstreichen die Dringlichkeit nachhaltiger Mobilitätslösungen
die helfen den städtischen Verkehr sauberer, effizienter und zugänglicher zu
gestalten. Flotten aus gemeinsam genutzten, autonomen Elektrofahrzeugen
(SAEVs), die als Ergänzung zum öffentlichen Verkehr eingesetzt werden, wird
das Potenzial zugeschrieben, den städtischen Verkehr zu entlasten und Emissio-
nen zu senken. Die Einführung solcher innovativer Mobilitätslösungen bringt
jedoch entscheidende technische Herausforderungen für die Fahrzeugentwick-
lung mit sich, insbesondere aus der Sicht von Automobilzulieferern.

Es wird erwartet, dass SAEVs im Vergleich zu privat genutzten, menschlich
gesteuerten Fahrzeugen signifikant abweichende Fahrmuster und Lastprofile
aufweisen. Daher ist eine Neubewertung von Fahrzeugkomponenten wie dem
Antriebsstrang und dem Thermomanagementsystem notwendig, da deren Ausle-
gung stark von den Betriebsbedingungen abhängig ist. Aus diesem Grund wird
die Entwicklung präziser SAEV-Fahrzyklen als essenziell für das Anforderungs-
management in der Fahrzeugentwicklung angesehen. Solche Fahrzyklen müssen
nicht nur wesentliche Fahrdynamiken und Fahrzeugzustände (wie Stillstand,
Laden und Fahrgastbesetzung) erfassen, sondern auch die Auswirkungen un-
terschiedlicher Preismodelle auf das Mobilitätsverhalten, die Reichweite von
Elektrofahrzeugen und Ladebeschränkungen sowie diverse Flottenstrategien
im Bereich des Routings und der Einsatzplanung berücksichtigen.

Da reale Daten für diese neuartigen Konzepte nur eingeschränkt verfüg-
bar sind, wird eine mehrstufige Verkehrssimulation eingesetzt, um SAEV-
Fahrprofile zu generieren, die den Bedürfnissen der Automobilentwicklung
entsprechen. Durch die Integration von Verkehrsmodellierungsansätzen un-
terschiedlicher Granularität wird eine Balance zwischen Rechenaufwand und
Modellgenauigkeit erreicht – großflächige Netzwerke werden durch vereinfachte
Modelle abgebildet, während detailliertere Modelle in spezifischen Bereichen
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Anwendung finden. Ziel der vorliegenden Arbeit ist es dabei eine automatisierte
Toolchain zu entwickeln, die die Herausforderungen mehrstufiger Verkehrssim-
ulationen effektiv bewältigt und somit für großflächige Anwendungen geeignet
ist.

Der zentrale Beitrag der Arbeit liegt in der erfolgreichen Integration des
mesoskopischen Verkehrsplanungswerkzeugs MATSim mit dem mikroskopis-
chen Verkehrssimulationswerkzeug SUMO, wobei erhebliche Herausforderun-
gen aufgrund grundlegender Unterschiede in der Netzdarstellung und Verkehrs-
dynamik überwunden wurden. Durch die Berücksichtigung spezifischer Merk-
male des fahrzeugzentrierten Anwendungsfalls wurde ein neuartiger, sequen-
zieller Kopplungsansatz entwickelt, der einen nahtlosen Übergang zwischen
den beiden Simulationsframeworks ermöglicht. Die wesentlichen Innovationen
bestehen aus:

• Automatisierten Methoden zur Erstellung mikroskopischer SUMO-
Modelle auf Basis von mesoskopischen MATSim-Simulationen. Dies um-
fasst eine robuste, graphenbasierte Netzwerk-Matching-Routine zur Über-
setzung mesoskopischer Netzwerkelemente in mikroskopische Gegen-
stücke sowie eine neuartige Technik zur Disaggregation der in MATSim
gesampelten Verkehrsnachfrage in das höher aufgelöste mikroskopis-
che Modell über dynamische Meso-Mikro-Netzwerkgrenzen hinweg.
Stochastische Methoden werden eingesetzt, um den Rechenaufwand
in SUMO zu reduzieren und gleichzeitig die Repräsentativität der
Fahrzeugflotte zu gewährleisten.

• Einem innovativen, von der Fragestellunge der Automobilindustrie inspiri-
erten Kalibrierungsansatz, der einen genetischen Algorithmus nutzt, um
die Verkehrszustände von SUMO mit denen einer kalibrierten MATSim-
Simulation abzugleichen. Dabei wird der Schwerpunkt auf die Konsis-
tenz von Reisezeiten anstelle von Verkehrsaufkommen gelegt, wie es in
herkömmlichen Ansätzen üblich ist. Diese Wahl des Kalibrierungsziels
beruht auf Erkenntnissen aus zahlreichen analytischen und numerischen
Experimenten, die signifikante Diskrepanzen in der Verkehrsdynamik und
Netzkapazität zwischen MATSim und SUMO aufzeigten. Daher wird der
Fokus auf die Kalibrierung der Verkehrsleistung durch Anpassung ver-
schiedener Nachfrage-, Routing- und Engpassbewältigungsmaßnahmen
gelegt.
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Die resultierende Toolchain ist robust und effizient, selbst in Szenarien mit unvoll-
ständigen mikroskopischen Netzwerken. Im Gegensatz zu vielen großflächigen
mikroskopischen Verkehrssimulationen, die umfangreiche Netzbereinigungen
und Nachfragesynthesen erfordern, umgeht unser Ansatz diese Herausforderun-
gen indem er für die mikroskopische Simulation die weniger strengen An-
forderungen mesoskopischer Modelle zu Grunde legt. Darüber hinaus wird
ein ergänzender, datengetriebener Ansatz zur Ableitung von SAEV-Fahrzyklen
vorgestellt. Dieser Ansatz verfeinert mesoskopische Geschwindigkeitsprofile
mit realen Fahrdaten und bietet eine pragmatische Alternative zur Gewinnung de-
taillierter Fahrdynamiken ohne den Einsatz mikroskopischer Simulationen. Die
Umsetzbarkeit der Toolchain wird in einer Fallstudie zur Antriebsstrangausle-
gung demonstriert, wobei die spezifischen Anforderungen von SAEV-Flotten
im Vergleich zu privat genutzten Fahrzeugen aufgezeigt werden.

Insgesamt werden praxisorientierte und fortschrittliche Methoden zur Gener-
ierung von SAEV-Fahrprofilen entwickelt, die die Forschung im Bereich
mehrstufiger Verkehrssimulationen vorantreiben und neue Möglichkeiten für
Automobilzulieferer schaffen, sich an die sich verändernden Mobilitätsland-
schaften anzupassen. Die Arbeit unterstützt die Automobilindustrie nicht nur
bei der Entwicklung zukünftiger Fahrzeugsysteme, sondern eröffnet auch die
Möglichkeit neue Geschäftsmodelle im SAEV-Umfeld zu explorieren.
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Glossary of key MATSim and SUMO concepts

DUAROUTER A routing tool in SUMO that generates optimal vehicle paths based on
current traffic conditions, network data, and dynamic factors, enabling realistic
vehicle routing in both static and dynamic simulation scenarios.

flow capacity MATSim parameter defined for each network link, representing the
maximum allowable vehicle outflow rate per hour.

flow capacity factor MATSim parameter that scales the flow capacity to
maintain accurate traffic dynamics when using sampled populations. For example,
in a 10% sample run, the flow capacity factor is typically set to 0.1.

ignore-junction-blocker SUMO option that teleports vehicles unable to move
for an extended period to resolve deadlocks. If this is not desired, the option
–ignore-junction-blocker <TIME> can be used to ignore vehicles blocking
an intersection on an intersecting lane after the specified time. This models real-
life behavior where drivers find ways around vehicles blocking the intersection.

max-depart-delay SUMO parameter specifying the time interval during which a
vehicle ready for insertion must reattempt to enter a fully occupied edge before
being permanently excluded from the simulation.

mobsim The first step of the MATSim cycle (see Figure 2.1), during which the activity
chains of all agents are executed simultaneously within a traffic simulation.

NETCONVERT A tool in SUMO that converts various network formats into SUMO’s
network format, allowing users to create and modify road networks for simulation
purposes. It facilitates the import of data from other traffic simulation tools and
supports customization of network attributes.

remove-loops SUMO DUAROUTER option that suppresses U-turns at vehicles’ starting
and ending edges, aiming to reduce network disturbances.

rerouting-period SUMO option that sets the time intervals for route reevaluation.

rerouting-probability SUMO option specifying the probability of a vehicle re-
routing during simulation.

sample run MATSim functionality that enables the simulation of a subset of agents.
For example, a 10% sample run means that only 10% of all agents are simulated
mesoscopically. To preserve traffic dynamics, flow capacity and storage
capacity are adjusted accordingly.

short-link artifacts MATSim artifacts that describe the phenomenon where
vehicle delays primarily occur on short links. In such cases, short links act
as vehicle sinks, where queues fail to propagate correctly upstream, hindering
MATSim’s ability to model meaningful spatio-temporal congestion patterns.
These artifacts result from MATSim’s sample runs and are further aggravated by
the stuckTime parameter, which often violates the link’s storage capacity
constraint.
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storage capacity MATSim parameter, implicitly defined for each network link
based on the link and vehicle lengths, representing the maximum allowable
number of vehicles that can be accommodated on that link.

storage capacity factor MATSim parameter that scales the storage capacity
to maintain accurate traffic dynamics when using a sampled population. For
example, in a 10% sample run, the storage capacity factor is typically set
to 0.1.

stuckTime MATSim parameter designed to prevent gridlocks by ensuring minimal
vehicle flow, even under highly congested conditions. It forces the first vehicle
in the queue to move to the next link (regardless of the storage capacity
constraint) if it remains stuck for too long, typically after 30 s.

vehicle length In MATSim, the nominal vehicle length is set to 7.5 meters, ap-
plicable universally to all vehicles unless specified otherwise. During sample
runs, the effective vehicle length is scaled based on the storage capacity
factor. For example, in a simulation with a 10% sampling rate, the effective
length of each vehicle is increased to 75 meters, reflecting the impact of capacity
adjustments on vehicle representation in the simulation model.

time-to-teleport SUMO option defining the maximum time a leading vehicle can
be stuck at an intersection before being teleported to the next available edge along
its route, where it moves virtually at average edge speed during teleportation.

VSPAdjustments MATSim parameter set applied to improve the realism of travel
times by accounting for additional delays caused by factors such as traffic lights,
lane changes, and right-of-way rules that are not explicitly modeled in MATSim.
When enabled, flow capacities are reduced by 33% for primary roads and
20% for secondary roads. However, for links shorter than 100 meters, the
capacities are doubled to offset this reduction.
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1 Introduction

The automotive industry is in great turmoil, facing considerable challenges
at multiple fronts. Pressured by ecological concerns, a growing number of
national authorities are ratifying the end of internal combustion engine (ICE)
vehicles, thereby disrupting major revenue streams for original equipment
manufacturers (OEMs) and suppliers. The rise of electric vehicles (EVs), the
transition to software-defined automobiles, and the rapidly evolving field of
autonomous driving (AD) are attracting new market entrants, threatening to
outpace established players. The traditional automotive industry struggles
to shed dependence on its ICE heritage, reluctantly relinquishing its former
dominance in mechanical and electrical engineering to embrace software and
AI (artificial intelligence)-driven solutions. Additionally, growing interest in
shared mobility and changing consumer preferences, particularly in markets
across Southeast Asia, pose further challenges to the automotive sector. Faced
with strong competition from Chinese OEMs and Tesla, both emerging as
global EV market leaders, established players find themselves in a state of shock,
risking irrelevance. However, despite recent scandals and valid criticisms, the
automotive sector remains crucial for economic prosperity in their respective
home countries. Thus, the potential failure of traditional OEMs to adapt to
recent socio-technological transformations poses a significant economic risk,
with major consequences for automotive countries such as Germany.

Amidst all these challenges, a clear industry direction, or "true north", remains
elusive. Western OEMs and suppliers must discern current trends and evolving
consumer preferences to define their strategy and establish a focused develop-
ment roadmap. This strategic approach is vital for wisely allocating limited
R&D resources, avoiding hasty reactions to competitors’ research and emerging
trends in AD and EV technologies. Once the "true north" is identified, suppliers
must surpass their reliance on traditional ICE OEMs and assert their own
leadership and innovation by pioneering new business models and technological
solutions. As competition and cost pressure intensify, suppliers need to adopt
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modular solutions adaptable to various use cases and markets, moving away
from custom component development based on OEM specifications. Instead
novel methodologies and advanced tools are required to effectively translate
evolving market trends into specific vehicle requirements.

It is within this context that this doctoral thesis aims to contribute. We
aim to provide the necessary means to forecast the travel demand and usage
pattern of future mobility concepts, such as shared autonomous electric vehicle
(SAEV) fleets, in order to derive reliable driving cycles crucial for automotive
prototyping. Through model-based exploration of SAEV fleets and their distinct
driving characteristics, we seek to facilitate the derivation of component-specific
load profiles for modular vehicle design. This enhances the adaptability and
cost competitiveness of purpose-built vehicles while also enabling quantitative
evaluation of new business models associated with SAEV ecosystems.

Before delving into the intricacies of SAEV drive cycle deduction, we first
provide an overview of the techno-economic background motivating this area
of study from the perspective of an automotive supplier. In Section 1.1,
we explore in greater detail the challenges faced by the automotive sector,
which compel suppliers to diversify their business area and innovate novel
prototyping methods. Additionally, we examine the ongoing shift towards
shared, electrified, and autonomous driving, driven by both national authorities
and societal changes (Sec. 1.2). We then explore academic work (Sec. 1.3) on
traditional automotive driving cycle deduction methods and their limitations in
creating reliable driving patterns for emerging mobility concepts like SAEV
fleets. Framed by this context and guided by existing research gaps, we outline
our thesis objectives in Section 1.4.

1.1 Economic landscape of the automotive
industry amidst technological transformation

Times are challenging for the global automotive industry with an unfavorable
economic climate meeting the parallel emergence of disruptive technology
changes. While supplier revenues peaked in 2018, the market has shrunk since
2017 due to various reasons [29]. Whilst the Dieselgate crisis led to huge image
losses in the whole industry, Brexit-uncertainties and Trumpian US trade-wars
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against China and Europe cooled down global markets and sales activities [25].
The Covid-19 pandemic intensified these issues in 2020, leading to widescale
shutdown of assembly plants and supply chain disruptions, impacting sales and
margins [26, 29]. Western markets, heavily dependent on exports and global
supply chains, were particularly affected by the pandemic’s aftermaths [29].
Nonetheless, by 2022/2023, the industry began to rebound, with OEMs reaching
significant profit milestones [20, 21]. However, ongoing crises, including the
Ukraine conflict, Russia’s energy disputes with Europe, inflationary pressures,
and upflaring Middle East conflicts, pose continued threats to global economic
stability [154].

Amid economic instability, the automotive industry intensifies cost-cutting
and restructuring efforts [26]. This comes at a time when substantial R&D
investments are crucial to adapt to disruptive technological changes. The
automotive industry, having followed a more or less linear technological
development path over the last century, now faces the simultaneous emergence
of mega-trends like the shared economy, autonomous driving, electrification, and
digitization. These trends threaten to displace long-established OEMs within
a decade by radically altering the performance metrics on which automotive
companies compete [17, 118, 59]. Strained from the economic challenges,
many OEMs and suppliers struggle to secure capital for transformation [26].
Their deep-rooted traditional business models hinder adaptation to disruptive
technologies and evolving customer demands [118, 38], limiting their ability
to develop essential competencies and partnerships for the future mobility
landscape, including autonomous driving [26].

New market players and their market perception In 2017, Western
OEMs faced increasing competition from Asian markets [22]. At the same time,
tech giants and start-ups like Waymo are advancing swiftly in the autonomous
vehicle (AV) sector, posing a mid-term threat to traditional OEM margins
[24]. Despite challenges in software and mobility services, OEMs are showing
more promising resilience in competition with Silicon Valley’s tech firms as
anticipated just a few years ago [20]. New EV players, including Rivian and
Canoo, are forging strategic partnerships with firms like Amazon and Hyundai,
positioning for future profitability [26].

These newcomers are gaining strong market reception, vital for financing
innovation. While traditional OEMs sell more vehicles, new entrants achieve
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comparable or higher market valuations, exemplified by Tesla’s 2020 valuation
exceeding the top five traditional OEMs combined [28]. Investors highly value
these new players for their software and AI potential, viewing Tesla more as a
tech company than merely an EV manufacturer [28, 18]. Zero-emission branding
further enhances the market perception of new OEMs, positioning them as
more future-oriented and environmentally responsible compared to traditional
manufacturers [19]. Nonetheless, traditional OEMs are recovering market
capitalization through EV commitments, such as Volkswagen’s gigafactory
plans [28] and its new strategic partnerships with EV OEMs like Rivian and
XPENG [216, 217] to accelerate the development of their vehicle platforms.

Shifting consumer preferences and the rise of shared mobility The
evolving automotive landscape reflects changing consumer preferences, espe-
cially among Millennials and Generation Z, who prioritize advanced technology,
user experience, and safety, while increasingly relying on internet-based ser-
vices for vehicle purchases and mobility solutions [118, 10, 178]. This shift
has boosted online car transactions via platforms like Alibaba, eBay, and
Carpal.com, challenging traditional OEMs and retailers [118]. In 2017, global
online vehicle purchase consideration attained 11% in 2017 and grew from
25% to 30% in China by 2021 [17, 28, 16].

Environmental and resource efficiency concerns are reducing car ownership,
especially in urban areas, where people opt for less maintenance-intensive
options [118, 153]. Interest in fully autonomous mobility services grew from
52% in 2019 to 56% in 2020, yet the Covid-19 pandemic temporarily increased
private vehicle reliance from 69% to 76% [27]. Asian countries like Singapore,
China, and India are leading the adoption of new mobility solutions such as
car sharing, ride-hailing, and taxi services, emphasizing transport efficiency
over ownership [17]. In contrast, Western Europe and the US maintain a
strong car ownership culture [24]. Despite a theoretical preference for shared
mobility among Western youth [17], Germany has seen a rise in multi-vehicle
households, suggesting continued personal vehicle preference among young
Germans in 2022 [43, 74].

However, the continued rise of shared mobility is driving demand for Mobility-
as-a-Service (MaaS), posing challenges to OEMs focused on vehicle sales
[118]. By consequence, automotive manufacturers are transitioning to mobility
service models with emerging sales channels like Car-as-a-Service (CaaS) that
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offer all-inclusive monthly fees [23, 20]. Despite a decline during the pandemic,
shared mobility demand has rebounded, with platforms like Uber and Lime
recovering user bases [20].

In China, strong brand preference favors domestic brands like Nio, XPENG,
and BYD, offering advanced technology and personalized features that resonate
with the tech-savvy consumer base [19]. Traditional OEMs face significant
risks if they fail to adapt to these preferences, prompting strategies tailored
to regional markets [19]. Western manufacturers, including Mercedes-Benz,
BMW, and Hyundai, are shifting towards personalized and made-to-order
models to compete [19].

Relevance of the Chinese automotive market Although the Chinese
industry did not establish a significant presence in the ICE-based vehicle market,
they have now surpassed established automotive players in terms of EVs.
Distinct among car manufacturing nations and unfettered by any ICE-related
constraints, China foresaw the inevitable trajectory of electromobility and
wholeheartedly embraced and championed its cause. In 2018, China emerged
as the global leader in EV sales, accounting for over half of the market due to
favorable regulations [23]. By mid-2021, the top-selling EV models in China
were predominantly from local manufacturers [18]. In 2021, China sold nearly
3.4 million EVs, dwarfing Germany’s 691,000, the second-largest market [19].
With 370 Chinese EV and PHEV models available in 2021, 85% of potential
car buyers considered EVs [19].

By 2022, Chinese OEMs aimed to produce over half of China’s vehicles by
2024, expanding their domestic market share [154]. This growth extends to
the premium segment, traditionally dominated by European brands, potentially
limiting Western companies’ access to China’s 30 million car production
demand [154]. Failing to align with Chinese preferences could result in a 3.5%
annual market decline through 2028 [19]. Supported by incentives and strong
domestic demand, Chinese OEMs plan to increase their global market share,
capitalizing on scale effects for cost efficiency [154].

Chinese OEMs leverage their EV leadership to drive global EV standards,
as seen in Nio’s strategic expansion of battery swap partnerships. Despite
significant upfront investments, Nio has deployed over 2,300 battery swap
stations and plans to add 1,000 more in 2024 [50], advancing its global battery
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swap standards agenda. This forward-looking approach mirrors Tesla’s historic
investment in global fast-charging infrastructure despite initial profitability
challenges. Today, Tesla’s NACS charging connector standard is set to become
the industry norm for EVs in North America, solidifying Tesla’s position as the
fast-charging network monopolist, while the CCS standard remains limited to
Europe [192].

Pending breakthrough of autonomous driving In 2017, anticipation for
autonomous driving breakthroughs was high, with leading CPU manufacturers
targeting readiness for Level 41 autonomous electric vehicles by 2021 [17].
Commercialization efforts were evident, with the introduction of driverless "last
mile" people movers (e.g., Auro, EasyMile or Navya in Singapore) and OEMs
unveiling Level 4 vehicle roadmaps (e.g., large test fleets by GM in 2018, or
first series models by BMW, Ford, Mercedes, and Audi) [17]. Growing interest
in mobility services and autonomous driving drove a surge in employment,
R&D investments, and patent filings within the industry [17, 22].

By 2018, however, initial predictions for widespread AV adoption have proven
overly optimistic due to technological challenges [45, 24] and unsustainable
business models, notably seen in ride-hailing firms like Uber and Lyft [25].
Their initial public offerings revealed significant losses and lack of profitability,
suggesting reliance on investor cash to subsidize operations. This limited
profitability led investors to demand tangible returns, resulting in a 32%
decrease in mobility investments to USD 9.27 billion in 2019 from a peak
of USD 21.4 billion in 2017 [26]. Updated estimates for full automation
availability now vary widely, ranging from 2030 to 2050 [96, 150, 152].

Progress in the autonomous driving sector has further slowed in subsequent
years due to still unresolved technical challenges, notably computing power
requirements for Level 5 vehicles [20]. While Intel and NVIDIA have announced
AD-specific semiconductors for 2025, their effectiveness is yet to be proven.
Furthermore, the sustainability of earning revenue from AV services remains
uncertain, with viable long-term business models still under development and
no OEMs having established a sustainable model [18].

1 Levels of vehicle automation, as defined by SAE (Society of Automotive Engineers) standards
[106], range from automation level 0 (human driving) to 5 (fully automated driving).
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The EV market finally comes of age In recent years, the EV market has
witnessed remarkable growth and transformation, solidifying its position as a
key segment in the automotive industry. Initially met with skepticism due to
concerns about range, infrastructure, and cost, EVs have steadily gained traction,
propelled by advancements in battery technology, government incentives, and
growing environmental awareness. Powerful regulatory initiatives drive the
adoption of EVs, cementing their importance. Governments, most notably
China and the European Union plan to ban pure fossil-fueled vehicles by 2035
[176, 76], with additional nations following suit.

In 2017, global interest in EVs surged, particularly in Asia, with 37% of
consumers considering an EV, a figure that skyrocketed to 60% in China [17].
While charging infrastructure constraints hindered EV adoption in emerging
markets, high prices posed challenges in mature markets [17]. Established play-
ers began to allocate substantial resources to EV development, recognizing the
inevitable transition from traditional combustion engines to electric drivetrains.
This commitment has led to a significant increase in EV models. By 2018, the
EV market featured over 250 electric or hybrid models, comprising 18% of the
vehicle portfolio [24].

The momentum continued in 2020, with 50% of potential buyers considering an
EV. Government stimulus and subsidies fueled this growth, tripling EV sales to
4.7% of total sales by the end of the year [25]. Tesla maintained its leadership
in the EV market, but traditional OEMs and Chinese brands made significant
strides by investing in EV technology [27]. Tesla’s success can be attributed
to its diversified approach extending beyond manufacturing to include CO2
trading, data services, recycling, and energy solutions. Its vertically integrated
business model, spanning key technologies like batteries and e-powertrains,
coupled with an online sales network, gave Tesla a competitive advantage,
inspiring other OEMs to follow suit [27].

Despite the challenges posed by the Covid-19 pandemic in 2021, the EV market
continued to grow robustly, with traditional automakers ramping up their EV
investments and expanding their model offerings [28]. Funding in the sector
soared, with 57% of top transport technology transactions in 2020 involving
EV or battery companies, including industry players like Tesla, Rivian, Nikola,
Waymo, and Gojek [28]. Charging infrastructure witnessed a threefold increase
since 2017, and battery costs, which were over USD 300/kWh in 2015, have
dropped to around USD 110/kWh and are projected to further decrease to
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USD 60-70/kWh by 2030 [28]. The push to reduce emissions has accelerated
electrification efforts, prompting OEMs like Volkswagen and BMW to target
50% battery-electric new cars by 2030. Volvo aims for full electrification by
2030, while Volkswagen is targeting carbon neutrality by 2050 [18].

However, the shift to electric vehicles presents challenges beyond production
adjustments, raising concerns about job security due to reduced assembly needs
[12, 93]. To mitigate these challenges, companies must diversify into new
EV-related businesses and provide retraining opportunities for employees. For
instance, the integration of electric mobility with smart homes and energy grids
opens up new business sectors such as battery technology and energy market
balancing. This expands the role of EVs beyond transportation, forming an
environmentally conscious ecosystem.

Challenges facing Western automotive supplier Amidst all these geo-
graphical, economic upheavals, and socio-technological shifts, Western auto-
motive suppliers are particularly hard hit. While China and South Asia are
expected to fuel global production growth, Europe and North America may not
reach peak volumes by the decade’s end [154]. This trend especially affects
European suppliers focused on domestic ICE markets, leading to their growing
marginalization. As new players gain dominance, traditional suppliers risk
missing out on future growth prospects.

Suppliers are struggling with thinner margins due to declining profitability
from reduced volumes and scale efficiency. Supply chain disruptions and
shifting OEM programs add market volatility, complicating planning. A
skilled labor shortage, amplified by digital transformation and powertrain
shifts, coupled with inflationary pressures, is driving up costs. OEMs reducing
supplier contributions further erode profitability, while rising interest rates and
a weakened sector perception in capital markets increase capital costs [154].
These challenges have permanently reduced EBIT (Earnings Before Interest
and Taxes) margins by 3 percentage points, dropping from 7.5% in 2017 to
below 5% in 2021/2022 [154].

The decline in profitability is further driven by the "normalization" of margins
in China, stabilizing around 5.4% after aligning with Western standards [154].
EBIT margins vary widely, with larger suppliers showing more resilience to
disruptions than smaller ones, which are often more vulnerable due to product
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or market dependencies. Margin impacts also differ across sectors. Traditional
automotive sectors see margin deterioration, while electronics and infotainment
suppliers maintain margins through digitalization. ICE-focused suppliers face
declining volumes, and those shifting to electrification grapple with rising R&D
costs and scaling issues, impacting profitability. The transition from ICE further
attracts new players to high-margin areas, with battery and non-automotive
semiconductor and software suppliers achieving significantly higher margins
than traditional suppliers and OEMs [154].

Despite slowing growth rates, the automotive supply industry is projected to
grow at an average annual rate of approximately 4% from 2022 to 2030 [154].
Growth will primarily stem from software, electronics, and battery technology
as ICE technologies wane and mechanical components become commoditized.
Asian BEV OEMs, particularly Chinese companies like BYD, will be key
drivers of demand. Except for Tesla, traditional North American and European
powertrain suppliers are unlikely to substantially contribute to this growth with
their existing portfolios [154].

As the industry shifts towards Asia, suppliers need to refocus on this region,
considering Chinese OEMs as crucial customers and Chinese suppliers as
strong competitors. Realigning regional activities, product portfolios, and
supply chains allows suppliers to access Asian growth opportunities and reduce
geopolitical risks [154].

Embracing digitalization and innovative strategies to diversify revenues
As the automotive industry transitions to software-driven value chains, OEMs
and suppliers need to pivot from traditional mechanical and electrical engineer-
ing focus to embrace computing and AI expertise. Embracing technological
advancements like software, battery technology, and digitalization is vital to stay
competitive and expand beyond traditional areas [154]. Software is becoming
the pivotal differentiator and revenue catalyst [21]. Given the capital-intensive
nature of this transformation, forming strategic partnerships is crucial to pool
resources, share risks, and navigate industry shifts effectively [154].

As consumers gravitate towards affordable and sustainable mobility solutions
beyond traditional ICE car ownership, there is a rising demand for purpose-
built vehicles with lower costs, reduced emissions, and enhanced safety [22].
Traditional OEMs need to adapt to these changing market demands while
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catering to the appetite for innovative, personalized products in tech-focused
markets like China. Subscription-based models, like Functions-on-Demand
(FoD)2, could play a pivotal role in the future by enabling faster adaptation
to changing preferences and providing opportunities for continuous customer
engagement and data collection [21].

OEMs and automotive suppliers need to reduce their reliance on ICE tech-
nologies and diversify revenue streams. Exploring alternative business models
such as power management, ride-sharing platforms, assistance systems, and
location-based content is crucial. Urban ride-sharing presents significant busi-
ness opportunities across design, maintenance, cloud services, and payment
management. Subscription-based models, such as MaaS and CaaS, stabi-
lize OEM revenues and can boost customer retention compared to one-time
sales. The anticipated shift towards demand-responsive ride-sharing fleets, like
SAEVs, allows companies to position themselves as leading providers of mobile
computational environments or secure long-term maintenance contracts with
cloud-based transportation clients. However, a deep understanding of emerging
mobility concepts is essential for developing innovative services and products
in this evolving landscape.

The Western automotive industry needs to stay attuned to current trends and
changing consumer preferences to establish a clear development path. This
strategic approach is crucial for prudent allocation of limited R&D resources,
avoiding impulsive responses to competitors’ research, and emerging trends in
AD and EV technologies. Making strategic investment decisions, prioritizing
growth areas, and considering consolidation or exit strategies for non-core
activities are imperative [154]. More specifically, suppliers must reduce their
dependence on traditional ICE OEMs and drive their own leadership and
innovation by pioneering new business models and technological solutions.
As competition and cost pressure rise, suppliers should embrace modular
solutions adaptable to diverse use cases and markets, moving away from custom
component design based on OEM specifications. Innovative prototyping
methodologies and advanced tools are essential for effectively translating
evolving market trends into specific vehicle requirements.

2 Functions on Demand refer to services or features offered on a subscription basis, allowing
customers to access specific car functionalities as needed rather than purchasing them outright.
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1.2 A new era of urban mobility

The prospect of improved employment, education, and healthcare opportunities
continues to fuel urbanization, with over half of the world’s population residing
in cities as of 2018. The United Nations (UN) projects a global urbanization
rate of 68% by 2050 [211]. In addition to rural migration, the world’s growing
population contributes to urban expansion. While the global population was
expected to reach 8 billion in 2022, UN projections now estimate 8.5 billion by
2030 and 9.7 billion by 2050 [70]. This increasing number of city residents leads
to a growing demand for both passenger and freight transport [152]. Given that
current urban mobility is already plagued by traffic congestion, road accidents,
air and noise pollution, these issues are likely to worsen without intervention.
Fundamental shifts towards sustainable mobility systems are necessary to
balance environmental and economic considerations while enhancing travel
comfort and improving the quality of life for city residents.

In the EU, the transport sector accounts for a quarter of total greenhouse
gas (GHG) emissions, with road transport responsible for the largest portion,
representing 72% of these emissions in 2019 [5]. Despite climate and energy
policies, the transport sector is the only major sector where GHG emissions have
risen above 1990 levels [4]. Between 1990 and 2019, total transport-related
GHG emissions increased by over 33%, and road transport emissions rose by
nearly 28% [5]. Current efforts to reverse this trend are inadequate to meet
the EU’s 2050 climate neutrality target [5]. Under prevailing policies in 2016,
transport-related GHG emissions were projected to rise slightly between 2030
and 2050, exceeding the targeted 60% reduction compared to 1990 levels [4].
The more recent initiatives by the European Parliament in 2022/2023 show
more promise, with aspirations for a complete elimination of emissions from
new car sales by 2035 [176]. Yet, the tangible impact on transport-related
GHG emissions is still uncertain, as recent amendments to the law permit
ICE models for sales and registration post-2035, with the stipulation that they
operate exclusively on carbon-neutral fuels [215].

In addition to GHG emissions, poor air quality levels in urban areas pose
significant public health challenges [4]. Although transport-related emissions
of air pollutants, such as particulate matter (PM), nitrogen oxides (NOx), and
sulfur oxides (SOx), have decreased since 1990, over 300,000 premature deaths
occur annually due to chronic exposure to fine particulate matter (PM2.5)
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alone [3]. Local traffic remains a primary contributor to urban air quality
issues and is a major source of noise pollution. Chronic noise exposure can
lead to annoyance, stress reactions, sleep disturbances, and increased risks of
hypertension and cardiovascular disease [4].

So far, efforts to mitigate the negative impacts of traffic have seen limited success
due to various reasons. Technological advancements in the transport sector
often fail to counterbalance the growing demand for transport [4]. Additionally,
several barriers hinder the transition to sustainable mobility. The automotive
industry’s interests, for instance, prioritize strengthening existing products over
adopting new technologies [212]. Environmentally questionable subsidies, such
as tax breaks for company cars, financial incentives for commuting expenses,
and tax concessions for diesel fuels, further complicate the shift. The current
costs of electric vehicles and the long lifespan of transport vehicles also pose
challenges to adopting more sustainable mobility solutions [4].

While many of these barriers can be overcome with appropriate incentives,
so-called "lock-ins" present more significant challenges. These lock-ins result
from past decisions that have solidified the system into a specific state or
technology [4]. For example, due to the prevailing dominance of roads in both
passenger and freight transport, the majority of infrastructure investments are
directed towards road development. This further strengthens the dominance of
cars and roads, limiting investments in more sustainable modes of transport [4].
Other lock-ins include ongoing efforts to improve ICEs instead of transitioning
to zero-emission vehicles and policies that continue to favor diesel use in Europe
[4]. Additionally, cognitive lock-ins, stemming from resistance to change and
familiarity with existing technologies, hinder the adoption of new, superior
solutions [107, 161].

In addition to these barriers and lock-ins, there are other disincentives, including
the absence of financial penalties, that hinder systematic changes in the transport
system. For example, environmentally harmful transport modes are not
adequately penalized. Since 1996, the cost of purchasing motor cars has
decreased significantly compared to average consumer prices, while the cost
of more sustainable shared passenger services and their operational costs has
generally risen [4]. Another disincentive is the lack of inclusion of transport
externalities in the consumer’s final price. The global organization of the food
system, combined with relatively low transport costs and a wide variety of
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transport options, leads consumers to purchase food regardless of season and
geographical origin, contributing to increased freight transport [4].

Until now, city planners and transport engineers have traditionally addressed
traffic issues by predicting future traffic growth and constructing new road
capacity to accommodate projected demand [227]. While evidence suggests
that constructing new highways or expanding existing ones improves traffic
flow, it also leads to an increase in travel demand, exacerbating congestion
and air pollution issues [4, 227]. An alternative approach to traditional traffic
planning is the "Avoid-Shift-Improve" (ASI) model. This model aims to achieve
key performance goals for the transport system by balancing both supply and
demand with low GHG emissions. The ASI model is based on three principles:
(i) avoiding unnecessary travel activity, (ii) shifting travel demand from less
efficient to more efficient modes, and (iii) improving the efficiency of traffic
activity [227]. However, this approach has not yet been widely adopted.

As cities become denser, using limited road space for low-capacity, resource-
intensive modes like privately owned passenger cars (PCs) is impractical
[45]. PCs, which are parked 95% of the time, occupy valuable urban space,
highlighting the inefficiency of a car-dominated transport system [156]. The
future of urban mobility should prioritize public transport (PT) modes that
efficiently pool individual travel needs in larger, yet flexible, vessels [45]. As
numerous transfers between routes are a major cause of discomfort for today’s
PT users, it is vital to optimize the connectivity between PT routes to approach
seamless urban mobility [45].

Recent technological advancements offer new mobility solutions in this regard.
The concept of shared mobility stands out as a promising approach in urban
areas, reducing the negative impacts of car-dominated transport while increasing
user satisfaction [152]. Transitioning towards zero-emission modes, notably
electric vehicles, further mitigates urban mobility’s negative externalities such
as noise and air pollution [152]. Additionally, advancements in autonomous
driving promise more efficient land use, reduced energy consumption, improved
traffic performance, and enhanced cost-effectiveness and safety [152].

However, the introduction of new mobility trends, particularly autonomous
vehicles, has been met with both anticipation and skepticism. While AVs offer
potential benefits like efficient driving, safer vehicles, and enhanced shared
and on-demand mobility services [196], their introduction requires careful
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management to avoid undesired effects [128]. For instance, the enhanced
comfort of non-shared robotaxis could diminish the use of public transport,
leading to greater capacity-space inefficiencies and a rise in individual car usage
[97, 132, 110]. On the other hand, some studies suggest that AVs may primarily
cater to irregular trips during evenings and weekends, rather than replacing the
routine trips typically associated with public transport and private car usage
[90, 73]. This suggests a potential increase in the overall number of vehicles
on the road, rather than their substitution. Additionally, the expected traffic
flow improvements from AVs may be limited by the presence of human-driven
cars. These conventional vehicles are unable to fully leverage the benefits of
real-time information sharing between vehicles (V2V) and infrastructure (V2X)
to prevent accidents and ensure smooth traffic flow. Consequently, the actual
benefits of AVs considerably depend on their penetration level, shared mobility
adoption, and interaction with other transport modes [196]. Moreover, while
AVs may reduce accidents, their effects on congestion and pollution are still
uncertain [45]. Inefficient bundling of rides could result in extra empty mileage
[162, 34, 202], which may counteract some of the environmental advantages,
such as reduced energy consumption from smoother driving.

The integration of shared mobility, electromobility, and AD offers a promising
solution to these challenges. However, the introduction of demand-responsive
transport (DRT) modes such as SAEV fleets strongly depends on user acceptance,
technological advancements, policy frameworks, and economic factors [152].
While shared mobility addresses significant challenges and may reduce private
car ownership, it may also face social constraints by not adequately addressing
comfort factors. People’s natural resistance to change, coupled with uncertainty
about AVs, affects their willingness to adopt new mobility solutions [89,
163]. Moreover, automation also introduces complexity across industries,
leading to job losses, moral dilemmas, and challenges in human-machine
interactions [45, 152]. As for EVs, concerns about global sustainability remain,
particularly regarding the environmental impact of battery production and
vehicle lifecycle [152]. Consequently, strong political leadership through
regulatory interventions is crucial to ensure that new mobility concepts are
both sustainable and economically viable [81, 57]. As AV technology evolves,
collaboration between policymakers and manufacturers becomes essential to
avoid policy misalignment with technological advancements [200].
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1.3 Driving cycles in vehicle prototyping and
methods for SAEV drive cycle deduction

The scope of the preceding sections was to elucidate the external forces currently
shaping the automotive sector. While Section 1.1 addressed the economic
landscape of automotive suppliers, emphasizing their need to explore new
business areas and reduce dependence on OEMs through novel prototyping
techniques, Section 1.2 outlined the ongoing transition towards more sustainable
urban travel modes, such as SAEV fleets. Previously published in [209], this
section now provides a concise literature review on the significance of driving
cycles in automotive prototyping and the limitations of conventional methods
in generating reliable driving patterns for new mobility concepts.

Standardized driving cycles are crucial in the automotive industry, particularly
for state-of-the-art emission modeling, performance prediction and virtual
prototyping [117, 65]. Hence, the deduction of realistic and representative
driving cycles has been the focus of research for many decades [117, 7, 171].
Driving cycles are typically defined as time-velocity profiles at a second-by-
second level and can be classified into two categories: modal and transient
cycles. Modal cycles are simplified and consist of different idling, linear
acceleration and steady speed phases. On the other hand, transient cycles reflect
for real-life driving behavior under on-road conditions [65].

The New European Drive Cycle (NEDC) is a standardized modal cycle developed
to assess emission levels of ICE vehicles, consisting of two subsets: the ECE-15
for urban driving and the EUDC for high-speed motorway driving [117]. Despite
criticism for its outdatedness and lack of representativeness for real-world
driving conditions, the NEDC remains widely used in the automotive sector.
However, in 2017, the Worldwide harmonized Light vehicles Test Procedure
(WLTP) was introduced by the United Nations Economic Commission for
Europe to replace the NEDC as the European vehicle homologation procedure.
In contrast to its predecessor, the Worldwide harmonized Light vehicles Test
Cycle (WLTC) [210] is transient, and its data are collected through a chase-car
method by instructed drivers [117]. Besides NEDC and WLTC, many other
legislative driving cycles have been developed by governmental organizations
for various regions and applications. For instance, in Japan, the modal 10-15
mode or more recently the JC08 cycle are employed, while the United States
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rely on the transient Federal Test Procedure cycle (FTP-75) developed by the
US Environmental Protection Agency.

As legislative driving cycles fail to capture typical driving behaviors across
different nations, various techniques have been developed to generate new
national or regional driving cycles [7, 117, 171, 82]. A summary of conventional
methodologies can be found in [222]. The most basic approach involves
synthesizing driving cycles by combining different idling, acceleration and
steady speed phases. However, this modal approach leads to unrealistic
dynamics in the transition zones, resulting in inaccurate emission estimates [7,
52, 112].

Another common technique used to generate new driving cycles involves four
main steps: route selection, data collection, data clustering, and cycle generation
[230, 7, 222]. Route selection refers to choosing the route for data collection,
which can be gathered using on-board measurement, GPS tracking, and/or
the chase-car method. On-road measurements generally provide the most
accurate reflection of the selected route but are subject to a strong bias due
to unusual congestion patterns, necessitating repetitive measurements [230].
In contrast, the chase-car method is less expensive and involves following
target vehicles randomly while mimicking their driving behavior. However,
this approach has the drawback of neglecting careful route selection. The
collected profiles are often divided into micro trips3, which are then clustered
based on traffic conditions, vehicle type, or other key performance indicators
(KPIs). Common techniques for clustering trips include k-means cluster
algorithms [225, 82] or hybrid approaches that combine k-means and support
vector machine (SVM) clustering [230]. Despite their validity, cluster methods
often demand significant computational resources [7]. Subsequently, the final
driving cycle is typically constructed from a pool of available micro trips [7,
222, 230]. The concept behind the micro-trip-based methodology is to identify
micro trips that adequately represent real-world driving diversity but in a more
condensed manner, which is practical and cost-effective for data collection [222,
7]. Typically, algorithms select micro trips based on predefined performance
measures. Alternatively, Monte Carlo methods can generate multiple candidate
cycles by randomly selecting several micro trips and evaluating their KPIs. The

3 A micro trip denotes a trip between two idling phases.
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most suitable cycle in terms of performance is then chosen as the final driving
cycle.

Another statistical technique involves utilizing real-world driving data to gener-
ate synthetic driving cycles through Markov chain processes. As demonstrated
in [171, 194, 86], this method constructs a transition probability matrix of a
Markov chain using measured velocity profiles. Each element in the matrix
represents a particular state determined by current velocity and acceleration,
with transition probabilities stored within each state for moving from one state
to another. Another data-driven approach to derive driving cycles is referred
to as route information mapping, introduced in [65]. This method emphasizes
the importance of incorporating external conditions such as weather, traffic,
and terrain data. A similar approach is taken in [83], where data on slope,
road curvature, and speed limit are combined with traffic information and
driver models to form a control problem that is numerically solved to generate
velocity profiles. However, such data-driven approaches require large databases
of GPS-tracked driving cycles, detailed maps, and/or open access to traffic
information.

All previous methods for deducing driving cycles suffer from a significant
drawback: they rely exclusively on measured data, which makes them unsuitable
for capturing the driving behavior of autonomous vehicles that differ from
human-driven profiles. Therefore, autonomous driving behavior is often
approached by flattening human driving profiles [131, 8, 95]. To this end,
researchers have proposed various approaches, including filter or smoothing
techniques such as moving average, local polynomial regression, kernel density
estimation, and smoothing splines. These methods have also been applied in
motion planning or trajectory optimization for AVs [149, 223]. The smoothing
approach is justified by kinetosis prevention4 and by the vehicle’s improved
perception of traffic conditions, thanks to advanced sensors and car-to-everything
(C2X) communication. Nevertheless, smoothing techniques may erase idling
times (e.g., in stop-and-go patterns or at red signals) and fail to capture
platooning effects or connected driving in a methodologically sound manner.

Conventional approaches to deduce representative driving cycles also fail to
capture the unique driving patterns of emerging mobility concepts, such as

4 To ensure the passenger’s well being, the lateral and longitudinal acceleration is limited.
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Table 1.1: Typical driving characteristics of privately owned vehicles (PCs) compared to shared,
autonomous electric vehicle (SAEV) fleets.

travel mode PC SAV SAV SAEV
source [170] Tab. 2.5 [49] [49]
data acquisition technique survey transport simulation (MATSim)
region Germany Berlin Austin (Texas)
∅ no. of daily trips 1.9 24.4 27.4 15.2
∅ mileage per trip [km] - 6.7 8.2 8.3
∅ daily operating time [h:mm/car] 0:46 7:24 - -
∅ daily mileage [km/car] 30 92.3 253 137

SAEV fleets. Unlike conventional private cars, SAEVs used for urban passenger
transport have distinct driving characteristics (cf. Table 1.1), including higher
daily mileages, increased uptime, and shorter driving ranges limited by battery
capacity. As vehicle development becomes more intricate, obtaining detailed
SAEV driving profiles becomes essential for virtual prototyping to guarantee
optimal on-road performance in future fleet deployments.

As traditional methods fall short in addressing these types of questions, traffic
simulation, particularly microscopic simulation, has gained increasing popular-
ity. Macro, meso, and microscopic traffic simulations vary primarily in the scale
and level of detail with which they represent traffic flow and vehicle interactions,
as illustrated in Figure 1.1. Microscopic frameworks have been employed for
cost-optimized generation of driving cycles [7] and to assess the effects of
automated driving on fuel consumption [102, 185, 199]. The research in [102]
assesses VISSIM’s5 ability to replicate real-world driving cycles, highlighting
that while the simulated profiles satisfyingly emulate aerodynamic speed, they
inadequately capture acceleration patterns. This discrepancy arises from human
drivers’ tendency to accelerate more aggressively at lower speeds, a nuance
overlooked by the simulation, which also neglects stochastic variations around
the target velocity. Similar findings are reported in [7], which integrates micro-
scopic traffic simulation and micro-trip-based methods to derive representative
driving cycles. The authors highlight that default parameters in microscopic

5 PTV GROUP, https://www.ptvgroup.com/de/loesungen/produkte/ptv-vissim/.
Accessed: Sep. 29, 2024.
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Figure 1.1: Schematic representation illustrating the differences between macro, meso, and mi-
croscopic traffic simulations, highlighting their varying scales and levels of detail in
representing traffic flow and vehicle interactions.

simulation lead to unrealistic driving behavior, with simulated velocity profiles
being overly aggressive due to gradients often set to the vehicle’s maximum
acceleration capability. This aspect is also addressed in [199], underscoring
the importance of a well-calibrated traffic model for generating quality driving
cycles. Similarly, the relevance of microscopic traffic models for assessing the
impact of traffic strategies on fuel consumption is scrutinized in [185]. The
authors underscore that microscopic traffic simulation models commonly face
validation challenges when it comes to capturing driving dynamics. Despite
generating detailed velocity profiles, these models typically prioritize macro-
scopic objectives relevant to transportation planning. As a result, they are
often calibrated based on aggregated parameters such as traffic flow, density,
speed, or queue length, rather than considering instantaneous vehicle speed
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and acceleration [199, 185]. Therefore, the speed profiles generated by these
models are often oversimplified and may not be suitable for environmental
studies or automotive requirement engineering. Despite these limitations in
capturing human driving behavior, microscopic traffic simulation tools may
be well-suited for fully automated driving scenarios, as they involve fewer
stochastic variables.

In regard to SAEV fleet driving characteristics, extensive literature exists
exploring the acceptance, simulation, and impact of (autonomous) vehicle
fleets. AV fleets are anticipated to augment network capacity through con-
nected driving and enhanced safety [155]. Conversely, AVs may also amplify
traffic volumes due to increased travel demand resulting from improved travel
comfort, additional empty rides, and smaller vessel sizes compared to public
transportation modes [97]. AV fleet simulations have been scrutinized from
various angles due to their disruptive nature. In this regard, the mesoscopic
multi-agent transport simulation framework MATSim [98] stands out as a
well-established simulation tool. For instance, studies such as [34] and [72]
simulate the citywide replacement of private cars with shared autonomous
vehicle (SAV) fleets in Berlin and Austin, respectively. Both investigations
indicate that each SAV has the capacity to replace ten privately owned cars.
In [155], the impact of SAVs on general trip statistics, such as average trip
duration and vehicle-km traveled, is analyzed using a case study for Munich.
Other studies delve into the influence of various SAV pricing schemes and
service areas on mode choice, as outlined in [132, 110]. The results suggest
that when AV prices are low, their market share increases, leading to a decrease
in the use of public transportation. Moreover, if SAVs operate within small
service areas only, this may inadvertently discourage walking and cycling in
favor of autonomous fleets. Several studies have investigated the electrification
of SAV fleets and its implications for charging infrastructure planning [229, 35,
134, 49]. While SAEVs are more cost-effective in fleet operations compared to
their combustion counterparts, the high initial investment costs for batteries and
charging infrastructure pose challenges to their electrification. However, these
costs can be significantly mitigated through optimal routing and relocation
strategies [229]. The impact of routing and dispatching algorithms on taxi
services is extensively discussed in the literature, as seen in [138, 140, 48].
However, while MATSim excels in large-scale fleet simulation, mesoscopic
traffic simulation tools lack the necessary level of detail to accurately simulate
the dynamics of individual vehicles [203].
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In conclusion, existing publications often focus on generating driving cycles,
modeling autonomous driving behavior, and simulating SA(E)V fleets but
frequently overlook detailed vehicle dynamics. These individual approaches,
while valuable, prove inadequate when applied to broader SAEV contexts and
lack the accuracy required for vehicle prototyping. To our knowledge, there is
currently no comprehensive approach that integrates all these aspects.

1.4 Thesis objective and structure

Building upon the context presented in Sections 1.1 and 1.2, and addressing the
research gap identified in Section 1.3, we now elaborate on our research endeavor:
the development of a model-driven approach to generate comprehensive 24-
hour SAEV driving profiles tailored for automotive prototyping requirements.
Through model-based exploration of SAEV fleets and their inherent driving
characteristics, we seek to facilitate the derivation of component-specific load
profiles essential for modular vehicle design. This not only enhances the
adaptability and cost competitiveness of purpose-built vehicles but also enables
quantitative evaluation of new business models within SAEV ecosystems.

Developing these driving cycles with virtual vehicle prototyping in mind
leads us to delineate six essential key requirements (KRs) for SAEV driving
profiles, as previously outlined in [209]. These KRs also serve as performance
benchmarks for assessing the achievements of this thesis.

In contrast to traditional references that focus exclusively on speed profiles,
our definition of a "driving profile" includes a variety of interconnected time-
series that capture a vehicle’s driving pattern over the course of the day.
KR0/1/5 address essential requirements for our modeling approach, while
KR2-4 represent interlinked time-series of physical and categorical quantities
intended for virtual vehicle prototyping.

• KR0 – DRT travel demand: The widespread adoption of DRT modes is
accompanied by significant uncertainties, making future travel demand
difficult to predict. Thus, we need a method to assess future DRT demand
and its interaction with existing transport modes, enabling responsiveness
to scenarios like city-wide PC bans and traffic-calmed zones. Social
acceptance of DRT greatly impacts SAEV fleet size and mileage.
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• KR1 – SAEV fleet driving patterns: For automotive prototyping, we need
driving profiles that reflect vehicle movement across urban regions over
24 hours, accounting for EV range and charging constraints, as well as
for various DRT fleet routing and dispatching strategies. In technical
component design, understanding both average and worst-case loads is
crucial. Thus, a modeling approach is needed that not only generates
average SAEV driving profiles but also accommodates a range of fleet
vehicles.

• KR2 – Vehicle states: Furthermore, the driving profiles should include
vehicle states like idling, relocating, charging, or occupied to facilitate
optimal climate control and battery preconditioning.

• KR3 – Detailed velocity profiles: Crucially, we need second-by-second
speed profiles that account for diverse driving styles6, road congestion,
and transport infrastructures. As we plan to explore additional AV-related
topics in the future, such as vehicle platooning and connected driving,
we aim to integrate relevant interfaces into our toolchain.

• KR4 – Environmental data: Given the road network’s topography and
the driving cycle’s impact on component design, additional time-series
like altitude or occupancy profiles are important. While accurate EV
charging levels (SOC) are secondary, as they will be determined in vehicle
simulation, estimates should still be considered in transport simulation
to account for realistic driving ranges and charging times.

• KR5 – Feasibility, scalability and transferability: The developed approach
must be practical regarding data availability, automation capacity, and
applicability to different urban areas of varying sizes.

We structure the thesis into three parts. Part I examines the potential of single-
level traffic simulation methods in creating authentic SAEV driving profiles.
Single-level traffic simulation approaches focus on modeling transportation
systems at a specific level of detail or abstraction. Unlike multi-level simulation
approaches, which incorporate different levels of complexity to represent
various aspects of the transportation system, single-level simulations typically

6 Spanning from automation level 0 (human driving) to 5 (fully automated driving) as per SAE
standards [106].
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operate at either a macro, meso, or microscopic level (cf. Figure 1.1). In
Chapter 2, we employ an existing MATSim model to incorporate demand-
responsive travel modes, evaluating the suitability and constraints of mesoscopic
transport simulation for depicting SAEV fleets in multi-modal transport systems.
Moreover, Chapter 3 enriches mesoscopic driving cycles derived from MATSim
simulation with real-world driving data to enhance the accuracy of driving
dynamics. This chapter also explores microscopic traffic simulation with
SUMO, providing a model-based solution to this challenge while concurrently
reducing the need for resource-intensive on-road measurements.

In Part II, the core of the thesis, we present a multi-level traffic simulation
approach aimed at integrating the benefits of large-scale mesoscopic transport
planning with the detailed insights provided by microscopic traffic simulation.
We introduce automated procedures in order to seamlessly bridge both domains,
enabling the construction and population of microscopic SUMO models based on
mesoscopic MATSim simulations. In Chapter 4, we conceive a robust network
matching algorithm aimed at translating mesoscopic network elements into their
microscopic equivalents and vice versa. This chapter serves as a foundational
step for subsequent work. Additionally, Chapter 5 presents a method to refine
MATSim’s sampled travel demand for more detailed microscopic simulations
while also constraining computation requirements. Chapter 6 underscores the
importance of maintaining consistency between micro- and mesoscopic traffic
simulations. Here, we evaluate the coherence of both MATSim and SUMO
in terms of traffic dynamics and network capacity through various analytical
and numerical experiments, providing invaluable insights for the final toolchain
design. Furthermore, in Chapter 7, we introduce a novel calibration approach
aimed at synchronizing spatio-temporal network states in multi-level traffic
simulation.

As an example application in the automotive context, we showcase the toolchain’s
feasibility through a case study on EV powertrains in Part III. In Chapter 8, we
illustrate how distinct driving patterns and behaviors of SAEV fleets, compared
to privately owned cars, result in altered power engine requirements through
vehicle simulation. This study marks the culmination of our research efforts.
Finally, Chapter 9 presents the conclusions of the thesis, along with a brief
outlook.
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2 Driving patterns of
demand-responsive ride-sharing
fleets – a mesoscopic simulation
study with MATSim

Adopting a top-down approach, we embark on our investigation by exploring
suitable single-level methodologies for modeling city-wide demand-responsive
transport in Section 2.1. Employing a comprehensive MATSim simulation study
focused on the city of Berlin (Section 2.2), we forecast future DRT travel demand
using a scenario-based approach and assess the impact of the DRT travel mode
on the global urban transport system (Section 2.3). Shifting to a fleet-centered
perspective, we analyze typical fleet driving characteristics (Section 2.4) and
explore the limits of mesoscopic transport simulation by deriving detailed
driving cycles for individual fleet vehicles (Section 2.5). Additionally, we
examine the uncertainties inherent in mesoscopic DRT simulation (Section 2.6)
and relate them to our specific use case. Parts of the work presented in
Sections 2.2, 2.3, and 2.4 have been included in [120, Sec. 4.7].

2.1 The multi-agent transport simulation
framework MATSim

2.1.1 Fundamentals of the MATSim cycle

MATSim1 [98] is a multi-agent transport simulation framework widely em-
braced in the scientific community for large-scale fleet simulations. It facilitates

1 MATSim, https://www.matsim.org/. Accessed: Sep. 29, 2024.
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activity-based transport modeling, where each user is depicted as an individual
agent adhering to a daily plan. These plans comprise activities (e.g., home,
work, leisure) with specific spatio-temporal properties, linked by trips of var-
ious transport modes (e.g., car, bicycle, public transportation). The traffic
assignment process employs a co-evolutionary algorithm, with agents iteratively
optimizing their daily schedules, competing for space-time resources until
quasi-equilibrium is attained (Fig. 2.1).

Figure 2.1: Schematic illustration of the MATSim cycle, adapted from [98]

In the initial stage (referred to as execution or mobsim), all agents’ activity chains
are concurrently executed within a traffic simulation. This enables the modeling
of interactions among traffic users, including effects such as congestion. To
facilitate the modeling of large-scale scenarios, MATSim employs a spatial
queue model to approximate traffic dynamics [85, 197, 46]. This model offers
sufficient detail for addressing most transportation-related questions while
sidestepping the need for computationally intensive and intricate car-following
models. A more detailed discussion of MATSim’s queue model is presented in
Section 2.5.

During the second step (scoring), the plan executed by each agent undergoes
evaluation based on mode-specific utility functions and predetermined behav-
ioral parameters unique to each agent. The total utility of a plan comprises
three components: (i) the utility derived from activity engagement, (ii) the
generalized travel cost or trip-related disutility (e.g., travel time or monetary
payments), and, if relevant, (iii) the daily mode-specific disutility (e.g., costs of
car-ownership) [47, 101]

𝑆𝑝 =

𝑁∑︁
𝑞=1

𝑆act,𝑞 +
𝑁∑︁
𝑞=1

𝑆trav,𝑞 +
∑︁
𝑚∈𝑀

𝑆day,𝑚. (2.1)
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Here, 𝑆𝑝 represents the total utility of plan 𝑝, 𝑁 denotes the number of activities
within plan 𝑝; 𝑆act,𝑞 signifies the positive utility gained during activity 𝑞; 𝑆trav,𝑞
indicates the negative utility associated with trip 𝑞 to reach activity 𝑞; 𝑆day,𝑚
represents the daily disutility attributed to the utilization of transport mode 𝑚,
and 𝑀 represents the set of available transport modes.

In MATSim, activities are presumed to take place within a 24-hour timeframe,
with the initial and final activities of the day being merged [47]. The agent’s
score steadily rises during activity engagement. The travel disutility for a
single-leg trip 𝑞 is expressed as [101]

𝑆trav,𝑞 = 𝜒
𝑚(𝑞)
trip + 𝛽m · Δ 𝑓𝑞 + 𝛽transfer · 𝑥𝑞transfer

+ 𝛽
𝑚(𝑞)
trav · 𝑡𝑞trav + 𝛽

𝑚(𝑞)
wait · 𝑡𝑞wait

+ (𝛽𝑚(𝑞)
𝑑

+ 𝛽m𝛾
𝑚(𝑞)
d ) · 𝑑𝑞trav (2.2)

where 𝜒𝑚(𝑞)
trip is a mode-specific constant per trip; 𝛽m is the marginal utility of

money; Δ 𝑓𝑞 is the change in monetary budget induced by fares or tolls during
trip 𝑞; 𝛽transfer is the transfer penalty if a public transport (PT) trip involves a
transfer from one transit line to another; 𝑥𝑞transfer takes a value of 0 for PT trips
without line transfer and 1 for trips involving a transfer; 𝛽𝑚(𝑞)

trav is the marginal
utility of time while traveling with mode 𝑚(𝑞); 𝑡𝑞trav is the travel time of trip
𝑞; 𝛽𝑚wait (𝑞) is the marginal utility of time spent waiting for transport mode
𝑚(𝑞), and 𝑡𝑞wait the corresponding waiting time; 𝛽𝑚(𝑞)

d is the marginal utility of
distance traveled by mode 𝑚(𝑞); 𝛾𝑚(𝑞)

d is the monetary distance rate for mode
𝑚(𝑞), and 𝑑𝑞trav denotes the distance traveled on trip 𝑞.

In the third step of the MATSim cycle, known as replanning, each agent opts
for a new plan to execute in the subsequent iteration. Most agents employ a
multinomial logit model to select the optimal plan from their previously executed
ones. Additionally, a portion of agents, typically around 10%, generate a new
travel plan by adjusting route choice, mode choice, and departure time choice
in an existing plan, while discarding the plan with the poorest performance.

Through iterative execution of all three steps, the agents select plans with
higher utilities, thus improving their behavior by learning. This process leads
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the system towards stochastic user equilibrium2, where each agent optimizes
his plan egoistically. The evolutionary approach of the MATSim method is
particularly suitable for studying the impact of transport-related policy measures
or the integration of new transport modes such as SAEV fleets.

2.1.2 Simulation of demand-responsive transport (DRT)

In MATSim, (autonomous) taxi fleets are categorized as demand-responsive
transport modes. Modeling such systems entails addressing the dynamic vehicle
routing problem (DVRP, [179]), a time-dependent version of the well-known
vehicle routing problem (VRP, [60]). The DVRP focuses on determining optimal
(usually minimal-cost) routes for a fleet of vehicles to serve a designated set of
customers.

Recently, modules for DRT schemes have been incorporated into the MATSim
framework. The core functionalities are provided by the dvrp extension [141,
137], which implements the concept of dynamic (ride) requests. These requests
are fulfilled by a fleet of vehicles, which are managed by the VrpOptimizer
that responds to all DVRP-related events, such as the submission of ride requests
or the boarding and alighting of passengers from fleet vehicles.

The dvrp extension offers the essential interfaces for configuring DRT schemes,
enabling extensive customization of the framework. However, the actual
functionality of the supply-and-demand matching algorithm executed in the
optimizer must be implemented by additional MATSim extensions such as
taxi [139], sav [142], or drt [32]. In this thesis, we employ the drt extension,
which we will briefly describe next.

The drt extension allows for both station-based and door-to-door DRT ser-
vices, and unlike the taxi extension, it supports ride pooling where multiple
passengers with different pickup and drop-off locations can share the same
vehicle. When a new ride request is received, the extension incorporates it
into the existing DRT routes in a way that minimizes the vehicle’s additional
operation time.

2 Nash-equilibrium is a state where no individual can improve its satisfaction by unilaterally
changing its behavior (≠ system optimum) [165, 164, 98].
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The ride pooling implementation in the drt extension is governed by two
constraints [32]. Firstly, the total ride time 𝑡r for any additional passenger
sharing the same vehicle must not exceed a specified threshold, defined as

𝑡r <= 𝛼𝑡
direct
r + 𝛽. (2.3)

Here, 𝑡direct
r represents the direct ride time without detours, while 𝛼 and 𝛽

are parameters that capture the maximum allowable time loss due to waiting,
boarding, and detours arising from the pickup and drop-off of other passengers.
It is crucial to emphasize that this ride time constraint does not extend to the
requesting user. Secondly, both the already scheduled customers and the new
passenger must have expected boarding times that fall within a specified time
range 𝑡wait.

The fare for a DRT ride of distance 𝑑 and duration 𝑡 is calculated as follows

𝑓drt (𝑑, 𝑡) = max( 𝑓min, 𝑓base + 𝑓dist𝑑 + 𝑓time𝑡), (2.4)

where 𝑓min is the minimum fare, 𝑓base the base fare per ride, 𝑓dist the fare rate per
distance, and 𝑓time the fare rate per time. The total fare 𝑓drt of each ride is added
as a negative term to the MATSim utility function of the agent performing the
corresponding ride.

2.1.3 Modeling of electric vehicles (EVs)

MATSim enables the simulation of electric vehicle fleets and their charging
infrastructure through the utilization of the ev extension3. This updated version
of the TransEnergySim contribution [218, 219, 33] allows for the definition of
EV-specific attributes, such as battery capacity and initial state of charge (SOC),
as well as charging infrastructure-related details, such as location, charging
power, and the number of charging plugs. The dvrp extension now includes
the former evrp contribution, addressing EV routing problems by accounting
for limited availability of charging vehicles and the increased range constraints
of low-energy vehicles.

3 Source code for EV contribution in MATSim 15.x https://github.com/matsim-org/mats
im-libs/tree/master/contribs/ev. Accessed: May 04, 2023.
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The charging module within the ev extension provides several charging strate-
gies, including fixed-speed charging for traditional AC4 charging, fast-then-slow
charging to mimic DC4 fast-charging, and customizable variable-speed charging
strategies. Various charging logics consider the availability of different charging
stations, occasionally leading to vehicle queuing at busy stations. Upon reaching
a charging station, the charging model determines the energy needed for the
electric vehicle to recharge to its desired state of charge and the time required
for this process. A simplified battery model, assuming a linear relationship
between the battery’s SOC and its available energy, is employed.

The discharge module in MATSim differentiates between driving and idling
energy consumption. Idling energy refers to the constant energy drain of
auxiliary devices at given temperatures. Driving energy consumption can be
simulated using (i) user-specified fixed energy consumption, (ii) a look-up-
table approach based on a physical EV model [67], or (iii) a macroscopic
average-speed energy consumption model [172]. The look-up-table approach
reads a csv file containing precalculated energy consumption for given road
slopes and vehicle speeds, inherently accounting for aerodynamic drag, rolling
resistance, drive-train efficiency, and regenerative braking. In contrast, the
average-speed energy consumption model relies on statistical evidence regarding
the relationship between average speed and other statistics describing speed
profiles at the level of individual road sections.

2.2 Scenario definition

With the fundamentals of MATSim introduced, we now aim to leverage its
existing DRT and EV-related contributions to simulate SAEV fleets in a realistic
study.

4 AC and DC denote two distinct types of electric current. AC, or alternating current, reverses
its direction periodically, commonly used in residential and commercial settings. DC, or direct
current, flows steadily in one direction and is frequently employed in batteries and electronic
devices.
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2.2.1 Base scenario: The MATSim Open Berlin Scenario

As the base case for this simulation study, we utilize the MATSim Open
Berlin Scenario [234] in release version 5.3.5 This scenario comprises a
MATSim transport simulation for the Berlin metropolitan area, encompassing
the principal transport modes of the present-day Berlin transport system: private
car as driver (car), private car as passenger (ride), bicycle (bike), walking
(walk), and public transport (pt).

The road network is derived from OpenStreetMap6 (OSM), encompassing all
roads within the city borders of Berlin down to the level of residential streets.
In the surrounding areas of Brandenburg, only major roads are included (see
Fig. 2.2). Public transport is simulated based on real-life schedules. Bike
and walk modes are approximated using beeline distances and modeled with a
constant speed.

The Open Berlin Scenario incorporates travel demand by considering the daily
activity chains7 of the adult population of the German federal states of Berlin
and Brandenburg (approximately 4.7 million individuals). These activity chains
are generated from a fully synthetic, person-specific, econometric activity
scheduling model detailed by [235]. For instance, Fig. 2.3 illustrates the
spatial distribution of home and work locations for all agents in Berlin and its
immediate vicinity.

The network and activity chains serve as input for the agent-based transport
simulation with MATSim. In the Open Berlin Scenario, the MATSim utility
parameters were calibrated to ensure that the simulation accurately replicates
the observed traffic patterns (mode and distance distributions, as well as
traffic counts) of present-day Berlin [234, 77]. The resulting scenario is
sensitive to measures regarding route, mode, and departure-time choices. The
corresponding utility parameters are summarized in Table 2.1.

5 The data and code required to execute the scenario are freely available on GitHub at https:
//github.com/matsim-scenarios/matsim-berlin/tree/5.3.x. Accessed: Mar. 23,
2020.

6 OpenStreetMap, https://www.openstreetmap.com. Accessed: Sep. 29,2024.
7 The model represents the following activity categories: home, work, leisure, shopping, and

other. These are combined into daily activity chains, e.g., home-work-home or home-work-home-
leisure-shopping-home.
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Figure 2.2: Road and public transport network in the central area of the Open Berlin Scenario. The
red line indicates the border of Berlin state (figure adapted from [234]).

Figure 2.3: Distribution of home and work locations of agents in the central area of the Open Berlin
Scenario. The red line indicates the border of Berlin state (figure adapted from [234]).
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Table 2.1: Utility parameters of the Open Berlin Scenario

bicycle car pt walk
𝜒day (EUR) 0 -5.3 -2.1 0
𝜒trip (EUR) -1.9 -0.525 0 0
𝜒dist (EUR/km) 0 0.20 0 0

For reasons of computational efficiency, we conduct the following DRT simula-
tions only for a subsample of the population, following a common practice in
the MATSim community [e.g., 98]. Typically, 10% samples are used, where
each simulated agent represents 10 individuals in reality. However, due to
the substantial CPU time required by the current DRT implementation in
MATSim—where a 10% sample simulation takes about a month to run—we
have chosen to use a 1% sample (approximately 470,000 agents) for this study.
Consequently, when analyzing the simulation data, we scale the number of
trips (and related quantities) by a factor of 100 to estimate the actual transport
performance. In Section 2.6.4, we discuss how small sample sizes affect the
statistical significance of our findings.

2.2.2 Future DRT fleet scenarios

We defined two future scenarios where the Berlin transport system is expanded
with a large fleet of autonomous taxis offering DRT services. For simplicity,
EV range and charging constraints are not simulated at this stage, as they
increase runtime without being critical for this thesis, as these functionalities
are already integrated into the MATSim framework. The first scenario targets
the broad market with an affordable ride-pooling DRT service, accommodating
up to 5 passengers in a single taxi vehicle (P5-10af). The second scenario
caters to a more premium market segment with an individual DRT service
where customers do not share rides in the taxi vehicles (I-10af). Therefore,
the two scenarios have significantly different fares (see Table 2.2). Further
considerations, such as sensitivity to different fleet sizes, fare levels, congestion
pricing, and competition between fleet operators, are addressed in Section 2.6.2.
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Table 2.2: DRT fares and key cost parameters of selected DRT fleet scenarios

scenario base P5-10af I-10af
𝑓min (EUR) - 1.0 2.0
𝑓base (EUR) - 0.0 0.0
𝑓dist (EUR/km) - 0.18 0.30
𝑓time (EUR/min) - 0.0 0.0
𝜒car

daily (EUR) 5.3 10.6 10.6

𝜒car
dist (EUR/km) 0.2 0.2 0.2

In both of our future scenarios, we utilize the Open Berlin Model as the base
case. We introduce the DRT service as a new travel mode and employ MATSim
to simulate how this new service influences the mode choice of agents and,
consequently, the traffic patterns. To achieve this, we conduct 500 mobsim
iterations in MATSim until the system reaches a new user equilibrium. During
the first 400 iterations, 5% of the agents modify their plans to explore new
modes, departure times, and routes, respectively.8 In the last 100 iterations,
plan innovation is disabled, and agents can only choose between previously
known plans.

We implement the DRT service on a city-wide scale, within the political borders
of the state of Berlin, as depicted by the red line in Fig. 2.2. All agents with at
least one trip within the service area are considered potential DRT customers,
allowing them to explore the new DRT mode in the simulation. DRT passengers
are served in a door-to-door mode, meaning they are picked up directly at their
origin location and dropped off at their destination. For the ride time constraint
described in Eq. 2.3, we set 𝛼 = 1.5 and 𝛽 = 1200 s [cf. 32]. The limit on the
expected boarding times is set to 𝑡wait = 1200 s. Furthermore, we assume that
the usage of private cars will be discouraged by regulatory measures such as
road tolls or increased taxes. We approximate such policies by doubling the
daily car costs 𝜒car

daily in our future scenarios compared to the Open Berlin base
scenario (see Table 2.2). Costs play a significant role in the attractiveness of

8 For agents using private cars as non-driving passengers (ride mode), the transport mode is fixed.
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transport modes. Thus, increasing the daily car costs discourages the use of
private cars, making other modes more appealing.

Initially, our fleet vehicles are randomly distributed within the service area.
Starting from iteration 2, the vehicles retain their last position from the previous
iteration. Idle taxis remain stationed at their last known position, without any
rebalancing9. In this pilot study, we assume that there is an "unlimited" supply
of taxi vehicles10, thereby disregarding the effects of capacity bottlenecks. The
combination of no rebalancing and an unlimited number of fleet vehicles is
anticipated to result in a significantly lower proportion of empty rides compared
to a profit-optimized fleet setup from the perspective of a mobility service
provider. Profit optimization is outside the scope of this study.

2.3 Transport system analysis

2.3.1 Impacts of DRT on global mode choice and shift

In Fig. 2.4, we display the mode share distribution by trip count (left panel)
and travel distance (right panel) for our future scenarios P5-10af and I-10af,
compared to the Open Berlin reference data (base). This analysis considers
only trips originating within the Berlin city borders, which align with the
operation area of our DRT service.11 By increasing the daily costs of private
cars and offering an efficient autonomous taxi service, the contribution of
cars to cumulated travel distances decreases notably from 22.6% (base) to
11.0% for the pooling scenario (P5-10af) and 8.7% for the individual scenario
(I-10af). Concurrently, the new DRT service captures a substantial fraction of
the cumulated travel distance, accounting for 11.5% and 27.4% for P5-10af and
I-10af, respectively (cf. Table 2.3).

9 In fleet management, rebalancing refers to the process of strategically relocating vehicles within
a fleet to optimize their distribution across a service area. This is typically done to ensure that
vehicles are positioned where they are most likely to be needed, thereby maximizing service
efficiency and minimizing customer wait times.

10 Technically, the fleet size in the simulation is limited, but the limit is set to a value well above the
maximum number of cars requested.

11 The mode distribution for the complete Open Berlin scenario, which includes all of Brandenburg
and thus rural areas, exhibits a significantly higher usage of private cars than in the city of Berlin.
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Figure 2.4: Distribution of mode share by trip count (left panel) and travel distance (right panel).
Car users as passengers (ride mode) are excluded, as their fraction remains constant.

In the DRT pooling scenario P5-10af, the share of bike and walk modes
decreases slightly, while the usage of public transport mode increases marginally.
Conversely, in the DRT individual scenario I-10af, bike (6.9%) and public
transport (37.4%) travel distances decrease significantly compared to the base
case (11.7% and 46% for bike and public transport, respectively), as the new
DRT mode offers much shorter travel times (cf. Table 2.3).

The DRT service similarly affects the mode distribution by trip count (cf.
Table 2.4). However, the relative shares of the standard modes differ notably
from the distribution weighted by trip distance, primarily due to the prevalence
of short-distance walking trips.

We also note that the total distance covered by private cars and autonomous
taxis behaves differently from the cumulated travel distance: while the vehicle
mileage of 82,800,000 km in the pooling scenario P5-10af is over 10% below the
vehicle mileage of the base scenario (91,700,000 km), the individual scenario
I-10af results in a slight increase in vehicle mileage to 92,800,000 km.

The Sankey plots in Figs. 2.5 and 2.6 provide a detailed visualization of the mode-
shifts observed in the ride-pooling and individual DRT scenarios, respectively.
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Table 2.3: Mode share by trip distance in percent

base P5-10af I-10af
bicycle 11.7 11.2 6.9
car 22.6 11.0 8.7
drt 0.0 11.5 27.4
pt 46.0 46.8 37.4
ride 15.9 15.9 15.9
walking 3.8 3.6 3.8

Table 2.4: Mode share by trip number in percent

base P5-10af I-10af
bicycle 15.5 14.1 10.1
car 17.7 9.7 8.1
drt 0.0 10.1 20.1
pt 27.4 27.4 22.1
ride 10.1 10.1 10.1
walking 29.3 28.6 29.5

In the ride-pooling DRT scenario P5-10af, the DRT mode primarily attracts
previous car and bicycle users, with only a small number of pedestrians and
public transport users switching to the DRT mode. Additionally, due to the
increased daily car costs relative to the base scenario, a significant portion
of former car users also transition to bicycle and public transport modes in
P5-10af. Conversely, in the individual DRT scenario I-10af, the DRT mode is
considerably more appealing and attracts substantial proportions of former car,
bicycle, and public transport users.
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Figure 2.5: Mode shift from the base scenario (left) to the P5-10af model with ride-pooling DRT
service (right).
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Figure 2.6: Mode shift from the base scenario (left) to the I-10af model with individual DRT
service (right).
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2.3.2 Performance evaluation of the DRT service

Pooling scenario P5-10af In our pooling scenario, the simulation forecasts
1,050,200 DRT trips within a 24-hour period. These trip requests are handled
by 76,400 taxi vehicles, with a maximum of approximately 24,000 being active
simultaneously. The temporal distribution of ride requests, displayed in the
top left panel of Fig. 2.7, exhibits a sharp increase around 6 am, peaking at
about 40,000 requests per 30-minute interval around 10 am, followed by a
gradual decline in the evening hours. In the top right panel of Fig. 2.7, vehicle
occupancies throughout the simulation are depicted using different colors.
Despite being a pooling service, the majority of vehicles predominantly carry a
single passenger, with some accommodating two or three passengers. Instances
of higher occupancy are rare. Moreover, there are always some fleet vehicles
without passengers, such as when en route to a pickup. The envelope of the
occupancy profile represents the total number of active fleet vehicles at each
time interval, peaking at approximately 24,000 vehicles.

Waiting times for DRT passengers are depicted in the middle panels of Fig. 2.7.
The overall distribution, shown as a histogram in the left panel, exhibits a
prominent peak for waiting times shorter than 120 s, followed by a gradual
decline. This distribution results in an average waiting time of approximately
450 s. Throughout the day, average and median waiting times remain relatively
stable, with slightly lower values observed during nighttime, as illustrated in the
right panel. However, the maximum waiting time exhibits significant variation
over time, with occasional outliers surpassing one hour, likely attributed to
local congestion near the passenger’s location.

The distribution of travel distances for all DRT trips, illustrated in the bottom
left panel of Fig. 2.7, exhibits a prominent peak at approximately 3 km, followed
by a rapid decline and an extended tail extending up to about 50 km. This
distribution results in an average trip distance of approximately 8 km. The daily
mileage distribution of all fleet vehicles displays a broader profile, with a peak
around 90 km and a total mileage of 7,054,500 km, as shown in the bottom
right panel of Fig. 2.7. The daily empty mileage per vehicle is predominantly
centered at zero, with a total empty mileage of 566,900 km (empty factor12

0.08). None of the taxi vehicles travel more than 30 km without passengers.

12 empty mileage divided by vehicle mileage
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Figure 2.7: Selected KPIs for DRT model P5-10af. Top left: Number of ride requests over time.
Top right: Occupancy profile of fleet vehicles over time (passenger count is color
coded). Middle left: Distribution of waiting times for all ride requests. The vertical
line represents the average waiting time (448.8 s). Middle right: Waiting profile over
time, showing average, median, minimum, and maximum waiting times per 30-minute
interval. Bottom left: Distribution of DRT ride distances, with the average ride distance
(8.1 km) indicated by the vertical line. Bottom right: Histograms depicting vehicle
driven-mileage distribution (blue), vehicle empty-mileage distribution (orange), and
vehicle passenger-mileage distribution (green).
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Due to pooling effects, the passenger mileage distribution per vehicle extends
to larger values compared to the vehicle mileage, resulting in a total passenger
mileage of 85,346 person-kilometers and a revenue factor (passenger mileage
divided by vehicle mileage) of 1.21.

Individual taxi scenario I-10af For our individual taxi scenario, the simu-
lation predicts 2,089,500 DRT trips over a 24-hour period, served by a total
of 142,500 fleet vehicles. This trip volume is significantly higher than the
1,050,200 trips of the pooling scenario, indicating greater user preference for
the taxi service. This preference is evident in shorter waiting times for the
individual scenario (averaging around 350 s, as shown in the middle panels of
Fig. 2.8) compared to the pooling scenario (around 450 s). Additionally, ride
times are shorter in the individual scenario since fleet vehicles do not need to
deviate for other passengers’ pickups. As the negative impact on agents’ utility
from travel episodes (Eq. 2.2) is directly tied to travel time (sum of waiting
and ride time), individual DRT rides are more attractive than pooled rides
(assuming comparable fares). In our simulation, this attractiveness persists even
though the individual taxi service is more expensive than the pooled offering.

The temporal distribution of ride requests (top left panel of Fig. 2.8) exhibits a
broad peak between 9 am and 4 pm, with steep flanks on both sides. Vehicle
occupancy (top right panel of Fig. 2.8) follows a similar profile, reaching a
maximum of approximately 70,000 simultaneously used fleet vehicles around
4 pm. In an individual taxi service, the maximum occupancy is limited to one
passenger per vehicle. Similar to the pooling scenario, a non-negligible fraction
of taxis operate without passengers, particularly while en route to a pickup.

The distribution of travel distances for all DRT trips (bottom left panel of
Fig. 2.8) peaks at approximately 5 km, slightly higher than in the pooling
scenario (3 km), reflecting the higher minimum fare. DRT travel distances
extend up to approximately 50 km, resulting in an average trip length of about
8 km, comparable to the pooling scenario. The daily mileage distribution of
all fleet vehicles exhibits a broad peak around 130 km, with a total mileage
of 18,624,000 km (bottom right panel of Fig. 2.7). The daily empty mileage
per vehicle is sharply peaked at zero, totaling 1,739,900 km (empty factor
0.09). No vehicle travels more than 40 km without passengers. Without pooling
effects, the total passenger mileage (1,684,000 person-km) falls short compared
to the vehicle mileage, resulting in a revenue factor less than 1 (0.91). This
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Figure 2.8: Selected KPIs for scenario I-10af of the DRT model. Top left: Number of ride requests
over time. Top right: Occupancy profile of fleet vehicles over time, with the number of
passengers color coded. Middle left: Distribution of waiting times for all ride requests,
with the average waiting time (353.2 s) indicated. Middle right: Waiting profile over
time, displaying average, median, minimum, and maximum waiting times per 30-minute
time bin. Bottom left: Distribution of DRT ride distances, with the average ride distance
(8.1 km) marked. Bottom right: Histograms illustrating the distribution of vehicle
driven mileage (blue), vehicle empty mileage (orange), and vehicle passenger mileage
(green).
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discrepancy is also evident in the passenger mileage per vehicle distribution,
which covers a narrower range than the vehicle mileage distribution.

2.4 Average driving patterns of ride-sharing
fleets

2.4.1 Aggregated performance metrics of DRT fleets

For easy comparison, we compile key metrics that characterize the DRT system
performance in Table 2.5. One aspect to note regarding fleet utilization is
that, as discussed in Section 2.2, the fleet size for this pilot study has been
intentionally set to a notably large number to avoid capacity bottlenecks within
the DRT system. Consequently, in the P5-10af scenario, only about a third of
the utilized DRT vehicles are simultaneously active (or approximately 50% in
the I-10af scenario). To ensure economically viable fleet operation, a mobility
service provider will likely seek to improve this ratio by reducing fleet size.
However, this reduction may lead to decreased vehicle availability, thereby

Table 2.5: Selected KPIs of the DRT system. Simulation data with fleet context (*) have been
scaled by a factor of 100 to estimate the actual transport performance.

P5-10af I-10af
# DRT trips* 1,050,200 2,089,500
# DRT vehicles in use (24h)* 76,400 142,500
max # simultaneously active DRT vehicles* 24,000 70,000
DRT mileage (km)* 7,054,500 18,624,000
DRT emtpy mileage (km)* 566,900 1,739,900
DRT passenger mileage (pkm)* 8,534,600 16,884,000
empty factor 0.08 0.09
revenue factor 1.21 0.91
∅ mileage per taxi and day (km) 92.3 130.7
∅ empty mileage per taxi and day (km) 7.4 12.2
∅ passenger mileage per taxi and day (km) 111.4 118.5
∅ waiting time (s) 444.8 353.2
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lowering the Quality of Service (QoS). Additionally, the service area plays a
pivotal role, substantially influencing both QoS and fleet profitability. Future
research could optimize scenarios for fleet size and QoS, leveraging demand
prediction and optimized DRT dispatching and routing.

2.4.2 Identification of representative fleet vehicles

Based on suitable ensemble estimates 𝜉 𝑗 (where 𝑗 may be of type mileage,
operation time, number of rides . . . ), it is possible to select representative
vehicles for automotive requirement engineering. To this end, for each vehicle
𝑖, we calculate the L2 distance of this vehicle’s attributes, 𝜉𝑖, 𝑗 , to a set 𝐽 of
ensemble estimates

𝑑𝑖 =

√︄∑︁
𝑗∈𝐽

(𝜉𝑖, 𝑗 − 𝜉 𝑗 )2 (2.5)

and minimize the distances 𝑑𝑖 to find the representative vehicle.

Since different attributes have quite different value ranges and units, Eq. 2.5
may lead to distances that are dominated by deviations in only a subset of the
selected attributes. To avoid this problem, we use a slightly modified formula
to calculate the distance

𝑑𝑖 =

√√∑︁
𝑗∈𝐽

( 𝜉𝑖, 𝑗 − 𝜉 𝑗
𝑀 𝑗

)2
, (2.6)

where 𝑀 𝑗 = | max(𝜉𝑖, 𝑗 − 𝜉 𝑗 ) | ensures a normalization of the different distance
contributions.

Table 2.6 provides a summary of vehicle attributes corresponding to the
ensemble median (P50) and 95th percentile (P95) in simulations P5-10af and
I-10af, using the attribute set 𝐽 = {mileage, operation time, number of rides}
defined in Eq. 2.6. Contextual fleet statistics for both scenarios are also
included. Although mean and median values are similar, P95 values show
greater variability from the ensemble centroids, also highlighted by relatively
large standard deviations (𝜎) and attribute outliers (max).

Figure 2.9 showcases essential ensemble metrics from the P5-10af simulation
using a plot matrix. In this visualization, the distributions of labeled attributes
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Figure 2.9: Plot matrix for scenario P5-10af, illustrating DRT simulation data. The
descending diagonal displays distributions for the labeled attributes 𝐽 =

{mileage, operation time, number of rides}, while bivariate scatterplots above the di-
agonal show color-coded L2 distances from mean values. Below the diagonal, contour
plots provide kernel density estimates, with some decile lines omitted for clarity. Mean
and median values are indicated by red and magenta crosses, respectively, and the P95
value is represented by a green cross.
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Table 2.6: Performance metrics for the ensemble median (P50) and 95th percentile (P95) in DRT
simulations P5-10af and I-10af, alongside contextual fleet statistics.

mileage operation number of max. velocity ∅ velocity
(km) time (min) movements (km/h) (km/h)

P5-10af

𝜎 55.4 138.9 13.7 25.3 4.4
min 0.4 1.9 1 14.9 7.6
∅ 92.3 242.2 24.4 82 22.5
P50 88.5 233.5 24 80 22.1
P95 189.2 476 47 119 29.4
max 255.7 646.6 67 120 58.8

I-10af

𝜎 53.2 141.9 10.4 19.5 2.8
min 2.0 6.4 1.0 23.9 13.0
∅ 130.7 365.9 26 90.3 21.4
P50 131.4 374.3 27 80 21.2
P95 216.9 580.0 42 119.2 26.2
max 317.9 846.6 58 120.0 45.4

are displayed along the descending diagonal. Above the diagonal, bivariate
scatterplots feature color-coded L2 distances to the mean values. Below, contour
plots depict kernel density estimates, with each contour line representing a
decile. Mean and median values are marked with red and magenta crosses,
respectively, while the P95 value is denoted by the green cross.

2.5 MATSim’s limits with respect to detailed
driving dynamics

With MATSim demonstrating its suitability for modeling the daily driving
patterns of SAEV fleets in city-wide scenarios, our focus now shifts to evaluating
MATSim’s ability to replicate realistic vehicle driving dynamics, crucial for
automotive prototyping. Portions of this section have been previously published
in [209, 207].
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2.5.1 MATSim’s spatial queue model

MATSim is microscopic in terms of demand modeling but mesoscopic with
respect to traffic dynamics. Despite its spatial queue (SQ) model, MATSim
ignores the agents’ exact position on a link to save computational resources.
To produce more realistic flow dynamics, the queue model [85, 197, 46] was
extended with elements of the link transmission model [224] by introducing
backward traveling holes [1]. As a result, the SQ model now resembles
Newell’s simplified kinematic wave model [167] and is also consistent with the
LWR-model-family [129, 182]13. Under stationary conditions, the extended
queue model features an idealized fundamental diagram which is defined by
the minimum of the density-dependent sending function 𝑆(𝜌) and receiving
function 𝑅(𝜌). As depicted in Figure 2.10, the FD results in an overall triangular
shape parametrized by the free-flow speed 𝑣, the backward wave speed 𝑤, the
ultimate (flow) capacity 𝑞, and the maximum density 𝜌̂.

13 Refer to [78, 1] for more on how MATSim relates to existing traffic flow theory.
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Figure 2.10: Idealized fundamental diagram defined by the minimum of the density-dependent
sending function 𝑆 (𝜌) and receiving function 𝑅 (𝜌) (adapted from [78]). In a
stationary case on a homogeneous road segment, the average flow 𝑞 through any cross-
section is described by this diagram based on the road’s average vehicle density 𝜌. Flow
initially increases linearly with density at low densities, with the gradient representing
the free-flow velocity 𝑣. Upon reaching its maximum value 𝑞̂ = 𝑣𝑤𝜌̂/(𝑣 + 𝑤) (flow
capacity), it then decreases linearly at higher densities. Here, the gradient corresponds
to the backward wave speed 𝑤, the negative ratio of vehicle length to the safety gap in
congested conditions.
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In non-stationary state, the receiving and sending function are expressed as [78]

𝑅(𝑡) = min{ 𝜌̂𝐿 −𝑈𝑄(𝑡), 𝑞𝛿} (2.7)
𝑆(𝑡) = min{𝐷𝑄(𝑡), 𝑞𝛿} (2.8)

where 𝐿 represents the link length, 𝛿 denotes the discrete time step, and𝑈𝑄 and
𝐷𝑄 are the respective upstream and downstream queues. The vehicle queues
are computed for each time step 𝛿 as follows

𝑈𝑄(𝑡) = 𝑈𝑄(𝑡 − 𝛿) + 𝛿
[
𝑞in (𝑡 − 𝛿) − 𝑞out (𝑡 − 𝐿/|𝑤 |)

]
(2.9)

𝐷𝑄(𝑡) = 𝐷𝑄(𝑡 − 𝛿) + 𝛿
[
𝑞in (𝑡 − 𝐿/𝑣) − 𝑞out (𝑡 − 𝛿)

]
. (2.10)

In intuitive terms, all vehicles 𝛿𝑞in that have recently entered the link are placed
in the upstream queue𝑈𝑄, while those that left the link 𝐿/|𝑤 | time units ago
are now removed from𝑈𝑄 [78]. A similar approach is used for the downstream
queue.

The queue model is typically subject to three constraints [100]: (i) Vehicles may
enter a link 𝑖 only when sufficient space is available, determined by the storage
capacity parameter 𝑁𝑖 . This parameter represents the maximum number of
vehicles allowed to queue up on a link, calculated as the ratio of link length 𝐿𝑖
and vehicle length 𝑙veh multiplied by the number of lanes 𝑛𝑖,lanes on that link.
Additionally, vehicles may leave a link only (ii) once their free-speed travel time
𝑇0 has passed. This travel time is calculated as the ratio of link length 𝐿𝑖 and
speed limit 𝑣𝑖,0, disregarding the vehicle’s maximum speed capability at this
point. Lastly, vehicles may leave a link (iii) only if the link’s outflow capacity,
represented by the flow capacity parameter 𝑄𝑖 , has not been exceeded. This
parameter simulates a throttling mechanism, allowing vehicles to pass only at
intervals of 3600

𝑄𝑖
× 𝑛𝑖,lanes seconds.

As discussed in Sec. 2.2.1, MATSim facilitates sample runs to enhance
computational efficiency by simulating only a subset of agents. For example,
in a 10% run, each simulated vehicle is weighted as ten cars, occupying a net
space of 75 m on the network (instead of 7.5,m in a 100% sample scenario). To
maintain traffic dynamics, the flow and storage capacities 𝑄 and 𝑁 are adjusted
accordingly and multiplied by a factor 𝑓 𝑓 ,𝑠 = 0.1 [209, 98]14. Additionally, to

14 Exceptions to this rule and their necessity are discussed in Sec. 2.6.4.
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enable heterogeneous traffic modeling, MATSim’s queue sorting order can be
changed from the first-in-first-out principle (FIFO) to a passing mode, where
all vehicles are sorted by their earliest link exit time [2].

2.5.2 Implications for the deduction of realistic driving
profiles

MATSim inherently allows for the deduction of vehicle trajectories and status
profiles. Every agent’s action, such as entering or leaving a road segment
(link), is recorded. This data enables the easy derivation of daily status
and speed profiles, as illustrated in Figure 2.11. However, since MATSim
employs a simplified queue model to approximate traffic dynamics, it does
not provide precise information on a vehicle’s position within a link. Only
average link speeds can be extracted, which are insufficient for automotive
requirement engineering. More realistic speed profiles can be obtained through
post-processing and filtering techniques (e.g., as proposed in [205]). However,
the accuracy of these speed profiles depends heavily on MATSim’s ability to
model congestion patterns accurately, such as spillback effects from queuing
vehicles in upstream links.

Unfortunately, the queue model has limitations in congestion modeling because
MATSim prioritizes handling large scenarios efficiently. As a result, traffic and
driving dynamics are simplified [9]. This may lead to inaccurate congestion
patterns and distorted vehicle dynamics, particularly on short links or in sample
runs.

The flow capacity functions like a batch system: a capacity of 600 cars/h means
a vehicle can leave a link only every six seconds, causing newly arriving vehicles
to queue. This can result in unrealistically long passing times. For example,
two subsequent vehicles on a 15 m link would require at least 6 seconds for the
rear car to pass, even with a free flow velocity of 50 km/h, as the exit is blocked
by the first vehicle.
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Figure 2.11: Status (top) and average link-speed profile (bottom) for a selected MATSim car,
derived from the MATSim event file. Relevant vehicle events (e.g., LinkEnterEvent,
LinkLeaveEvent, and other DRT-specific events) are captured using EventHandler
interfaces [239]. Post-processing of this information generates status and speed
profiles for the chosen agents.

The stucktime parameter15 exacerbates this issue by temporarily violating the
downstream link’s storage constraint, allowing a surplus of vehicles on a link.
In 10% sample runs, vehicle queues can extend to 300 m on a 10 m link, with
the second vehicle taking at least 1 minute to pass, the third 2 minutes, and the
fourth 3 minutes16. Technically, in 1% sample runs, it is possible to enforce four
vehicles, each with a weight of 100, to occupy a short link without triggering
an error. This results in a total queue length of 3 km, calculated as 4 cars x
100 weight x 7.5 m vehicle length. It is important to note that under these
conditions, queues do not extend back onto upstream links, preventing MATSim
from accurately modeling spatial congestion patterns, even if the flow capacity
method is theoretically sound17.

15 To counteract gridlocks, the stucktime parameter bypasses the storage capacity constraint if the
first vehicle in the queue is stuck for too long, ensuring minimal flow even in very congested
conditions [98].

16 Given a nominal flow capacity of 600 cars/h, corresponding to 60 cars/h in a 10% sample run.
17 We emphasize at this point that MATSim’s core functionalities remain unaffected by these artifacts,

as its primary aim is to capture realistic trip-wise travel times, not the precise spatio-temporal
positions of vehicles.
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As a consequence, short links act as temporary vehicle sinks, storing excess
vehicles that would otherwise cause spillback on upstream links. Consequently,
average link-speed profiles become inaccurate under congested conditions, often
showing near-zero speeds on short links and nearly free-flow speeds on the
preceding links. Potential efforts to enhance the realism of these average link
speed profiles through post-processing must address this issue. For example,
applying filtering techniques with larger ’window sizes’ can smooth out these
artificial congestions, both spatially and temporally, thereby mitigating their
impact. However, caution is warranted, as the objective is not to eliminate all
extreme driving events, such as stop-and-go patterns.

Before delving into techniques for obtaining more detailed driving dynamics
in Chapter 3, we first take a necessary detour to assess the uncertainties in
MATSim DRT simulation with respect to SAEV mode acceptance and fleet
driving patterns. This evaluation will help us determine whether a MATSim-
based approach is suitable for our overall endeavor of SAEV drive cycle
deduction. Relying on MATSim in this context offers the advantage that our
key requirements KR0, KR1, KR2, and KR4 (see Section 1.4) are inherently
met by its core functionalities.

2.6 Assessing uncertainties in MATSim DRT
simulation

The MATSim Open Berlin Scenario [233, 234] provides a robust foundation
for deriving reliable SAEV driving cycles. Its agent-based framework is highly
suitable for exploring new travel modes within scenario-based contexts and
deriving the corresponding travel demand. Following thorough calibration,
as delineated by [234], the Open Berlin Scenario effectively models the
complexities of Berlin’s current transport system, making it an optimal starting
point for implementing the DRT travel mode.

However, it is essential to recognize the inherent limitations of any model in
fully capturing the complexity of reality, despite efforts to achieve realism.
Additionally, the lack of real-world data for SAEV fleets hinders the validation of
DRT models against actual fleet performance, increasing modeling uncertainties.
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Acknowledging these factors, this section evaluates the inherent uncertainties
in MATSim DRT simulation related to SAEV mode acceptance and average
driving patterns. Our investigation focuses on three key aspects: (i) identifying
global uncertainties in SAEV travel demand modeling, (ii) analyzing output
sensitivity to variations in DRT-specific input parameters, and (iii) assessing the
robustness of average SAEV driving patterns in response to increased population
rates simulated in MATSim (cf. sample shares in Sec. 2.2.1) and variations in
random seed in the steady state (cf. MATSim iterations in Sec. 2.2.2).

2.6.1 Global uncertainties related to SAEV modeling

As previously discussed in Chapter 1.2, significant socio-technological and
regulatory uncertainties are associated with the introduction of SAEV fleets.
While future fleet operators are prepared to assume certain risks, such as high
acquisition costs, range anxiety, and charging inconvenience—factors that might
have deterred individuals from purchasing EVs—the widespread market entry
of SAEV fleets is also constrained by several AV-related issues that MATSim
cannot fully address.

Notably, the absence of psychological models in the MATSim Open Berlin
Scenario prevents the modeling of technology aversion concerning AVs. While
MATSim theoretically permits the incorporation of sub-populations to address
SAEV mode acceptance based on demographic factors (e.g., social background,
education, gender, age, technical affinity), this capability is usually not applied
due to parameterization challenges. Instead, MATSim implicitly accounts for
user reservations and decision-making processes by adjusting the agents’ overall
utility, such as by imposing higher "costs" associated with SAEVs18.

Unfortunately, this utility-based approach lacks consistency in mirroring real-
world population mobility behavior, as MATSim operates on the assumption
of rational agent behavior and grants agents omniscient knowledge of the
mobility system. This enables them to anticipate all route-based travel times
and frequently evade congestion by selecting more advantageous travel modes
or routes [9]. To achieve a more realistic portrayal of flawed agent behavior, one
could consider simulation runs that have not yet reached steady user equilibrium

18 Compare DRT fares and costs in Tab. 2.2 with utilities of other modes in Tab. 2.1
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or diminish agents’ memory of beneficial plans. However, exploring these
approaches is beyond the scope of this thesis.

Furthermore, while MATSim simulations can effectively model dedicated
AV/EV lanes or city-wide bans on private cars to encourage SAEV mode
acceptance, MATSim lacks the capability to model the enhanced traffic flow
achieved through the utilization of advanced sensors and V2X communication
by AVs. Increased AV velocities could approximate this scenario; however,
in urban areas, a vehicle’s speed is constrained by the road’s legal speed limit
rather than its maximum speed capability.

Another aspect not accounted for is the temporal variability in SAEV mode
acceptance. This variability may arise from temporal fluctuations in the choice
dimension (e.g., weather, seasonal effects, or global economic conditions)
and/or the internal state of the decision-maker (depicting inherent motivations
such as personal preference and experience) [99]. For instance, the inclination
to choose biking or walking modes notably declines during cold and rainy
conditions. Additionally, the usage of public transport reached historic lows
during the COVID-19 pandemic due to increased health concerns, leading
people to shift towards more individual transport modes like private cars [27].
Moreover, a person’s mode choice may evolve over time based on factors such
as household size or ecological beliefs. Although we did not address these
effects in our study, we recommend consulting Horni et al. [99] for a deeper
understanding of temporal choice variability in MATSim. For our automotive
requirement engineering purposes, we considered this issue less relevant.

2.6.2 Sensitivity analysis with respect to fleet KPIs

To emphasize how drastically fleet KPIs can change depending on the underlying
DRT scenario, we present Table 2.7, which exemplifies the MATSim simulation
outputs for seven different scenarios (A-G). Each scenario is classified into one
or more of four focal groups to assess the impact of (i) ride-pooling, (ii) DRT
service area, (iii) private car penalties, and (iv) varying DRT fares on SAEV
mode acceptance and fleet characteristics. Unlike the DRT scenarios P5-10af
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and I-10af detailed in Sec. 2.2.2, we modify only one input parameter at a time
to individually evaluate the impact of each variable.19

In automotive requirements engineering, it is crucial to acknowledge the wide
variation in daily SAEV driving patterns. Table 2.7 illustrates that the average
daily mileage (R7) and operation time (R8) can vary significantly, depending
on the DRT mode’s appeal to different user groups. This ranges from 20
kilometers in 3.7 hours per day to 120 kilometers over 9.4 hours per day. As
demonstrated in Chapter 8 on power engines, these differences significantly
impact the operational lifetime of the EV system and its components.

Simulation scenarios A and B in the first focal group assess the impact of ride-
pooling without changes to the pricing scheme, unlike scenarios P5-10af and
I-10af shown in Table 2.2. In scenario A, each DRT vehicle accommodates up to
five passengers, while scenario B offers a non-pooled taxi service, transporting
only individuals or groups from the same household. The DRT mode share
significantly increases with this premium service due to reduced waiting times
from the absence of detours, making it highly attractive as both services have
similar fees. However, economically, the non-pooled service is less profitable.
Despite similar empty mileage ratios, the revenue factor for the premium service
is considerably lower, necessitating more vehicles to meet customer demand
due to the lack of pooling efficiency.

The second focus is on the impact of the DRT service area, as demonstrated
by scenarios C and D. Scenario C encompasses the entire ("full") city of
Berlin, defined by the red state border shown in Fig. 2.3, while scenario D is
confined to the "inner" city, delineated by the S-Bahn ring enclosed by lines
S41/S42. Scenario C covers more suburban, less densely populated areas, while
scenario D focuses on highly profitable areas with high trip density. Contrary to
expectations, the high trip density in scenario D does not result in higher pooling
efficiency, larger revenue factor, or lower empty factor. Despite significantly
lower waiting times and in-vehicle travel times, scenario D is less profitable
than scenario C.

This counterintuitive result arises from second-order effects: even with high
customer service, the DRT travel mode is less attractive in scenario D, as

19 For a comprehensive discussion on the impact of EV charging strategies on DRT performance,
please refer to [134, 49, 229].
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Table 2.7: Key performance indicators for DRT fleet scenarios (A-G) with varying DRT-specific
inputs. Each scenario is categorized into one or more of four groups to assess the impact
of (i) ride-pooling, (ii) DRT service area, (iii) private car penalty, and (iv) DRT fare.
Performance metrics are divided into fleet-related (F1-6), vehicle-based (R7-10), and
service-related (S11-12) categories. "Full" city refers to all of Berlin within the state
border, while "inner" city denotes the central area within the S-Bahn ring lines S41/S42.
Revenue and empty factor denote the ratio of passenger mileage to total vehicle mileage
and the ratio of empty mileage to total vehicle mileage, respectively. All simulations use
a 1% MATSim sample population, and, for clarity, fleet-related results (F2-4) are not
extrapolated to 100%. All simulations are based on the MATSim Open Berlin Scenario
[233, 234], supplemented with a DRT travel mode.
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up (i) impact ride-pooling factor x x
(ii) impact DRT service area x x
(iii) impact private car penalty x x x
(iv) impact DRT fares x x x
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service area full full full inner full full full
pooling capacity 5 1 5 5 5 5 5
price (EUR/km) 0.18 0.18 0.18 0.18 0.18 0.18 0.10
base price (EUR) 0 0 1 1 1 1 0
min price (EUR) 1 1 0 0 0 0 1
constant daily car costs (EUR) -10.6 -10.6 -10.6 -10.6 -5.3 -26.5 -10.6
car costs (EUR/km) -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2

D
RT

pe
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ric

s

F1 DRT mode share (%) 6.1 17 3.7 0.8 3.1 4.2 5.6
F2 # DRT vehicles 764 1988 579 209 521 676 695
F3 # DRT trips 10502 30362 6186 1196 4911 6972 9446
F4 daily DRT mileage (km) 70545 245332 45099 4238 31993 51463 82723
F5 empty factor 0.08 0.08 0.09 0.12 0.12 0.08 0.07
F6 revenue factor 1.21 0.92 1.13 0.98 1.01 1.16 1.3
R7 ∅ mileage (km/car) 92.3 123.4 77.9 20.3 61.4 76.1 119
R8 ∅ operation time (h/car) 7.4 4.5 6.5 3.7 6 6.5 9.4
R9 ∅ # movements (1/car) 24.4 26.4 18.7 9.7 16.3 17.9 24.6
R10 ∅ velocity per taxi (km/h) 22.5 20.7 23.9 19 22.4 24 23.3
S11 ∅ customer waiting time (min) 7.4 4.5 6.5 3.7 6 6.5 9.4
S12 ∅ in-vehicle travel time (min) 21.6 21.1 19.9 11.3 17 20.7 28.4
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evidenced by smaller mode shares. We infer that the average trip lengths in
the downtown area are too short, making the base price relatively expensive
and thus rendering the DRT mode less attractive. To analyze the impact of the
base fare independently of the DRT service area, scenarios A and C—both
covering the entire city but differing in base and minimum fares—are examined.
The base price entails a fixed fee before the first kilometer is driven, while the
minimum price is charged at the end of the trip if the kilometer-based fee is
below this threshold (otherwise, the kilometer-based fare applies). Results from
both scenarios indicate that the minimum fee imposes less financial strain on
customers, making the travel mode more attractive.

The third focal group examines the impact of private car penalization on DRT
mode acceptance and usage (simulations C,E,F). As expected, when private
car usage is more expensive (scenario F), the DRT mode share increases
significantly. Conversely, when private car usage is not strongly penalized
(scenario E), the DRT service becomes less attractive in comparison. This low
mode adoption leads to fewer pooling opportunities, resulting in high empty
factors and substantially lower revenue values.

The fourth focus evaluates the impact of DRT pricing models (simulations A,
C, and G) on fleet use pattern. Generally, high prices per kilometer combined
with a minimal base price (scenario A) favor medium trip lengths. Low prices
per kilometer make long-distance trips more appealing (scenario G); however,
these lead to longer operation times and consequently longer customer waiting
times. Interestingly, despite the seemingly inconvenient scenario for customers,
this model yields the most profitable DRT fleet configuration. Due to the
relatively cheap ride service, customers seem willing to accept longer ride
detours resulting from pooling. The high pooling efficiency on longer trips
leads to larger revenue factors. In contrast, a high price per kilometer combined
with a base fee (simulation C) favors short-distance trips.

2.6.3 Output variability due to different random seeds

Transport simulation tools are essential for infrastructure decision-making
and investments. For these tools to be reliable, their outputs must be robust
to stochastic effects; otherwise, the variability of results can overshadow the
measures being considered [177]. MATSim, like other agent-based models
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that rely heavily on discrete choice models, is inherently non-deterministic.20

It frequently uses random numbers, for example, to determine which agent
undergoes innovation by selecting, cloning, and mutating their daily plans [99].
The sequence of random numbers is determined by a seed, so initializing a
pseudo-random number generator with the same seed will produce the same
sequence.21 Due to this stochastic nature, running a MATSim scenario 𝑁 times
with identical parameters but varying random seeds will produce 𝑁 independent
simulation outputs [78].

Stochastic effects are intentionally implemented in many simulation frameworks
to represent model uncertainties. Many phenomena in mobility and transporta-
tion systems are not fully understood [78]. Thus, stochastic model outputs and
their variability offer a more accurate representation of real-world processes
and their inherent uncertainties. To make sense of these outputs, multiple seed
trials should be evaluated using statistical techniques such as the arithmetic
mean or empirical variance [78]. However, large-scale micro-simulations
are computationally expensive, so many studies rely on a single run. This
is often due to the fact that decisions based on a single run are still better
than those made without any simulation information [99]. Some studies have
investigated the random seed variability of MATSim simulations based on
different metropolitan scenarios [177, 31, 98, 195].

In [177], random seed variability was analyzed at the link level for Santiago de
Chile using a 10% sample. The authors performed 100 seed trials with 100
MATSim iterations each22. A key finding was that the relative accuracy of
estimated link volumes generally increases with link load, although deviations
of up to 10% were observed even for high-traffic links. The share of links with
high variance in daily load remained constant across trials. Some busy links
showed high error-proneness, which is troublesome as busy links are often the
focus of infrastructural measures, highlighting the need for further geographical

20 While [147] claims that MATSim is deterministic because its outputs can be reproduced using a
fixed random seed, we argue that reproducibility does not necessarily imply determinism. A
model can be stochastic yet still produce reproducible outcomes when randomness is controlled.

21 However, this does not render the model deterministic; it simply ensures that the random processes
within the model produce consistent results across runs. By our definition, deterministic models
are characterized by the complete absence of randomness, even when controlled.

22 The authors suggest that 100 iterations might not suffice to achieve a stable user-equilibrium,
possibly contributing to output variability.
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analysis. Additionally, seed-related variation in link volumes exceeded the
variability observed in subsequent user-equilibrium iterations within the same
seed. While mode share variability was not an issue, travel speed variability
was similar to individual link load variability.

In [31], the uncertainty of travel times was investigated in a case study of Hanover,
Germany (10% sample). They recommended a technique for estimating the
number of simulation runs needed for stable results. Sixteen different seed
trials with 750 MATSim iterations each were performed. They found minimal
variance in global average travel time but significant variability in individual
travel times due to the agents’ large decision space involving time, route, mode,
and destination choice [99]. District-level uncertainties were moderate as agent-
level variabilities compensated at aggregated levels, showing that aggregation
reduces variability, as empirically shown in [195] and formally proven in [98].

[98] further demonstrated, using a Zurich 10% test case, that average variability
in agents’ executed plan utilities was approximately 3% at the person level,
while population-level variability was minimal (0.087%). Nonetheless, [99]
cautions against relying solely on aggregation to control sampling error, noting
that spatial aggregation of urban and rural areas may not be meaningful. Both
[31] and [99] agree that higher aggregation levels require fewer runs.

Interestingly, [31] found that 6 out of 16 seed runs had identical travel time
distributions, suggesting that simulation output may settle into discrete states
for each agent. For example, nearly 22% of private cars exhibited a single state
where travel time was constant across runs. This finding is intriguing given that
an agent’s travel time is influenced by the travel behavior of other agents, and
the reasons for these discrete states are not yet fully understood.

Unfortunately, there is limited literature on the seed variability of ride-hailing
services. To address this, we conducted two seed trials with 1% and 10%
sample populations. The results, shown in Figures 2.12 and 2.13, indicate
that lower sample shares lead to higher seed-related output variability. For
the 1% seed trials (Figure 2.12), the second run shows an 8.2% higher DRT
mode acceptance, resulting in a 29.3% increase in fleet vehicles. This higher
travel demand improves pooling efficiency, reducing empty factors and waiting
times. However, the significant mode share difference suggests the simulation
may not have reached a stable user-equilibrium despite 500 iterations. In
contrast, the 10% seed trials (Figure 2.13) show that all fleet-related, and thus
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Figure 2.12: Relative difference between two seed trials with a 1% sample run. Fleet KPIs from
the first run are normalized to 100% (black dashed), while KPIs from the second run
are shown in relative terms (red solid).

Figure 2.13: Relative difference between two seed trials with a 10% sample run. Fleet KPIs from
the first run are normalized to 100% (black dashed), while KPIs from the second run
are shown in relative terms (red solid).
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aggregated, KPIs vary by less than 1%, indicating that seed-related uncertainties
are negligible for sample populations of 10% or larger.

However, vehicle-specific travel times exhibit some variability across different
seed trials with 10% sample populations. While our number of seed simulations
is insufficient to draw statistically significant conclusions, we estimate deviations
of up to ±10%, consistent with findings in [177]. This variability in individual
travel time is acceptable, as it reflects the variations typically observed in
real-world driving. To support this, we refer to the bottom panel of Figure 7.14,
which shows that individual MATSim travel times generally fall within the
range of Google Navigation estimates. In fact, one might even argue that
MATSim’s travel time variability is too conservative23, as Google’s estimates
vary by up to ±40% at night and ±50% during the day.

2.6.4 Distorting effects of MATSim sample shares

Agent-based transport simulation is particularly demanding in terms of com-
puting time and memory consumption. To perform large-scale simulations
efficiently, it is common practice to simulate only a randomly selected subset of
agents. For example, in a MATSim 10% sample run, each agent represents ten
agents, and network capacities are proportionally reduced to preserve traffic
dynamics.

However, proportional downscaling in small sample runs (<10%) leads to
inconsistencies in travel time and distance for private cars [133], affects the
pooling efficiency and fleet size of ride-hailing services [111], and creates other
artifacts that distort simulation results and driving dynamics [66, 207]. To
minimize these effects, MATSim network capacities are occasionally adjusted
non-linearly to achieve more realistic representations of traveled distance and
time distributions [169, 238]. For instance, a heuristic factor 𝛾 is introduced in
[169] to describe the ratio of flow and storage capacity for a given sample share
𝑥 ∈]0, 1]

𝛾 = 4√𝑥 = 𝑓f

𝑓s
. (2.11)

23 or that agents are overly efficient at avoiding congestion
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With a flow capacity factor of 𝑓f = 𝑥, the storage capacity factor 𝑓s can be
expressed as

𝑓s = 𝑥
𝛼 (2.12)

where the exponent 𝛼 equals 0.75 [133]. Thus, for a 10% sample run, instead
of reducing both flow and storage capacity factors to 0.1, the storage capacity
factor is set to 𝑓s = 0.59. The efficacy of the exponent 𝛼 is questionable,
however. In [133], the exponent had little impact on average travel time across
various sample runs 𝑥 = {0.01/0.05/0.1/0.2/0.5/1}. Average travel time for
private cars depends heavily on the sample share 𝑥, forming a U-shaped curve
with minimum travel time at around 𝑥 = 0.1 − 0.2. The authors question the
reliability of small sample runs, as their results deviate from the general trend of
reduced average travel times with higher MATSim iterations across all sample
shares.

The insufficient validity of small sample runs is also confirmed by [66], who note
that population sampling is challenging when agents belong to the same social
community (e.g., households). Instead of randomly drawing agents, samples
should be drawn at the community level to ensure all or none of its members
are included. Small sample shares are acceptable only for highly aggregated
data, but detailed traffic flow analysis requires higher sample shares [133],
especially for infrastructural decision-making. Additionally, small sample runs
are susceptible to outliers, potentially skewing overall results due to the small
sample size, leading to errors in aggregated KPIs [31].

Similar to the household issue, representing ride-pooling services is challenging
for small sample runs due to discretization errors [98]. For instance, in a 10%
sample run with a vehicle capacity of 4, a taxi picking up a second customer
effectively carries 20 people. This requires identical departure and destination
locations, making such events less frequent than in a 100% sample where each
agent represents one person. Consequently, ride-pooling is less effective in
small sample runs, as fewer ride-pooling requests lead to smaller, less flexible
taxi fleets, resulting in longer waiting times and less appealing services. This
is confirmed by [111], who studied the impact of sample shares on fleet size
and pooling rate of ride-hailing services in two German regions: (a) the eastern
inner-city of Berlin with sample shares of 𝑥 = {0.05, 0.1, 0.15, 0.2, 0.25} and
(b) the rural district of the Vulkanic Eifel with 𝑥 = {0.1, 0.2, ..., 0.9, 1}.
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They found a non-linear relationship between trip density (thus, sample share
𝑥) and ride-hailing parameters. Contrary to naive assumptions, fleet size and
other KPIs cannot be proportionally up-scaled by a factor of 𝑥−1 to obtain 100%
sample results, as this leads to overestimations of DRT fleet size, operating
hours, and vehicle kilometers. The authors provide corrected up-scaling factors
based on their experiments, as shown in Table 2.8. For instance, to normalize
the fleet size of a 10% sample to 100%, the correct up-scaling factor is not 10
but 4.34, as a non-linear factor of 𝑥−0.637 is applied instead.

Table 2.8: Adjusted scaling factors for DRT fleet size, operation time, and vehicle kilometers in
Berlin’s eastern inner-city, derived from [111] as functions of sample size 𝑥 ∈]0, 1]
using non-linear regression.

corrected coefficient of factors
scaling factor determination 1% 10%

fleet size 𝑓sz = 𝑥−0.637 𝑅2 = 0.9954 18.79 4.34
operation hours 𝑓op = 𝑥−0.662 𝑅2 = 0.9975 21.08 4.59
vehicle-kilometers 𝑓km = 𝑥−0.928 𝑅2 = 0.9999 71.80 8.47

The authors also observed that larger sample shares enhance the pooling effect
and increase the revenue factor (ratio of revenue distance to total distance). A
revenue factor of 1 means pooling compensates for additional empty mileage
from pick-up trips. For the eastern Berlin test case, the revenue factors for
𝑥 = {0.05, 0.1, 0.15, 0.2, 0.25} samples are approximately 1.16, 1.22, 1.25,
1.28, and 1.31, respectively.

The findings from [111] are highly relevant to our work, but the up-scaling
factors provided cannot be directly applied to our scenario. Using the corrected
fleet size scaling factor 𝑥−0.637 from Table 2.8 for our 1% and 10% sample runs
of the Open Berlin Scenario did not yield identical results as would be expected
if the factor accurately enabled the calculation of 100% sample values.24 This
discrepancy is likely due to two factors. First, the test case setups are too
different to assume identical up-scaling factors, even though both focus on
Berlin, as shown in Table 2.9.

24 With well-fitting regression models, typically evaluated by a high coefficient of determination
(𝑅2 ≈ 1), the 100% fleet size (𝐹1 = 𝐹𝑥 · 𝑥−0.637) should remain relatively stable across all
sample shares (𝑥 ∈]0, 1]).
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2.6 Assessing uncertainties in MATSim DRT simulation

Table 2.9: Model differences between our Berlin test case and the one analyzed in [111].

Open Berlin Scenario Berlin Scenario
(own DRT configuration) with DRT by [111]

Demand modeling land-use & survey data survey & mobile phone data
Service area Berlin full city eastern Berlin
Pooling capacity 5 4

Service quality
max. waiting time 90% of all waiting times

of 20 min below 10 min
DRT fares & utilities cf. scenario A in Table 2.7 not provided
Fleet size limit pre-set dynamically

Second, the uncertainties in 1% sample runs, as evidenced in Figure 2.12 (with
deviations in fleet size reaching up to 30%), are too large for effective use
in regression modeling. [111] also deliberately excluded small sample sizes
from regression analysis. Curve fitting yields more accurate results with larger
sample sizes (𝑥 ≥ 0.05), as the associated up-scaling factors (𝑥𝑘) converge
towards one when approaching 100% samples

lim
𝑥→1

𝑓 (𝑥) = lim
𝑥→1

𝑥𝑘 = 1. (2.13)

Based on the specific behavior described in Equation 2.13, scenario-specific
upscaling factors (𝑥𝑘) can be approximated for selected ride-hailing attributes
𝐹 = {fleet size, operation time, vehicle kilometers} using two arbitrary sample
runs 𝑥1 and 𝑥2 :

𝑘 =

log
(
𝐹𝑥1
𝐹𝑥2

)
log

(
𝑥2
𝑥1

) . (2.14)

The corresponding 100% sample results 𝐹1 can then be determined using:

𝐹1 = 𝐹𝑥1 · 𝑥𝑘1 . (2.15)
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However, our exclusive reliance on 1% and 10% sample runs precludes us
from applying this approach effectively, as 1% runs lack sufficient reliability.
Unfortunately, we lack the resources to generate higher sample shares and
derive corrected rescaling factors independently. Unlike [111], where travel
demand was synthesized from anonymized mobile phone data [166], our
demand generation relies solely on land-use and survey data. This method is
time-consuming and typically results in smaller sample shares (we only have
1% and 10% sample demands) compared to the more automated mobile data
approach, which offers greater sample coverage.

In conclusion, sample shares significantly impact DRT key performance in-
dicators. Proportional up-scaling (𝑥−1) leads to substantial overestimation of
KPIs such as fleet size, vehicle operation time, and mileage. Without accurate
up-scaling factors, we must rely on those suggested by [111] or accept these
uncertainties. Further research is warranted.

2.6.5 Uncertainties put into perspective

Modeling the driving behavior of SAEV fleets is inherently subject to many
uncertainties. While MATSim effectively captures the impacts of different
pricing schemes, dispatching strategies, and interactions with other travel modes
on average driving patterns, the wide range of relevant modeling levers means
driving characteristics can vary significantly. This variability complicates
DRT predictions and allows for considerable flexibility in simulation outcomes.
Given the broad range of possible future DRT scenarios25, it is essential
to acknowledge this variability, especially when using data for prototyping.
Balancing cost-saving potentials through optimized component sizing with the
need for safety margins in fatigue analyses requires careful consideration.

In addition to the variability in daily driving behavior shown in Table 2.7,
scenario uncertainties can reach 10-30% due to the stochastic nature of 1%
sample runs influenced by different random seeds. Consequently, simulation
results should be seen as guiding principles rather than fixed outcomes. To

25 e.g., DRT as a transit feeder connecting passengers to main transit hubs, or a city-wide private
car ban where a DRT fleet replaces all private vehicles
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2.6 Assessing uncertainties in MATSim DRT simulation

enhance output stability, future MATSim simulations should use sample
populations of at least 10

Caution is also needed when extrapolating sampled scenarios to 100% popula-
tions. As shown in Table 2.8, the up-scaling of fleet-related KPI does not follow
the reciprocal of the sample size 𝑥. Although we lack precise scaling factors for
our simulations, we can infer that the average daily mileage per vehicle (ratio
of total vehicle-km to fleet size) is also influenced by this new insight. This is
because fleet size and total vehicle kilometers have distinct scaling factors ( 𝑓sz
and 𝑓km)26. According to [109], the average km per car should be multiplied by
𝑓km
𝑓sz

= 8.47
4.34 = 1.9 for a 10% sample scenario to represent a 100% population

sample. This significantly increases component strain and must be carefully
considered during prototyping. By contrast, the average operation time per
vehicle remains nearly constant, as the adjusted re-scaling factors are similar
𝑓op
𝑓sz

≈ 1.

26 Previously, both 𝑓sz and 𝑓km were identical, making the up-scaling of vehicle-centered metrics
unnecessary, as their ratio amounted to one.
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3 Advanced methods for detailed
driving dynamics

In this chapter, we develop two distinct approaches to overcome MATSim’s
limitations in modeling detailed driving dynamics, aiming to derive more
realistic velocity profiles (KR3). First, we seek to enhance MATSim’s aver-
age link-speed profiles with real-world data (Sec. 3.1). Second, we explore
microscopic traffic simulation with SUMO (Sec. 3.2), offering a model-based
solution to this challenge, thereby reducing the need for resource-intensive
on-road measurements. Both approaches are compared in a test case study
(Sec. 3.3), with their implications for the thesis scope also discussed.

3.1 Integrating real-world measurements to
enhance MATSim drive cycles

As a first attempt to obtain more realistic driving dynamics, we develop a
post-processing procedure that replaces MATSim’s simplified velocity profiles
with real-world driving data in a piece-wise manner. This method represents an
updated and expanded version of our enrichment approach published in [209].
Before detailing the method, we first examine the underlying real-world driving
data.

3.1.1 Driving cycle data set description

Real-world measurement campaign The quality of enriched driving cy-
cles is directly tied to the range of underlying on-road measurements [209].
Therefore, we require a substantial number of real-world measurements en-
compassing various driving behaviors, road types, and congestion levels for
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genuine representation. However, driving cycles with severely congested traffic
are particularly scarce, as they are less useful for conventional dynamometer
testing and are seldom the focus of measurement campaigns.

The real-world driving cycles used in this thesis originate from a joint research
project1 between the Research Institute of Automotive Engineering and Vehicle
Engines Stuttgart (FKFS) and Robert Bosch GmbH in the Stuttgart region. In
this project, a Citroën C-Zero was equipped with multiple sensors to quantify the
energetic impact of various car components under varying ambient conditions.
Several metrics were redundantly recorded to limit the risk of signal loss
and sensor failure. For example, the vehicle motion was captured using two
independent GPS trackers, a contact-free optical sensor, and a longitudinal
acceleration sensor, all at a rate of 50 Hz. Differences in traveled distance
between all four measurement devices were found to be marginal (<3%). Due to
frequent GPS signal dropouts in the tunnel-rich Stuttgart region, speed profiles
were mainly derived from the acceleration sensor2. In total, this source provided
us with 41 hours of raw data, covering a total driving distance of 1643 km
over various terrains. For more details on the vehicle routes, please refer to
Figure 3.1.

Data cleansing and preprocessing techniques Measured data typically
contains systematic and random errors, so we implement multiple data-cleansing
measures on the recorded velocity profiles. Once these profiles are sufficiently
conditioned, we derive related distance-, acceleration-, and jerk-time series
through integration and differentiation, respectively. This ensures that cleaning
measures are consistently reflected in all metrics.

First, we omit sampling points where the car idles for prolonged periods,
typically at the start and end of measurement runs, without affecting actual
waiting periods (e.g., at traffic lights). Second, we scan the velocity-time series
and its derivatives for duplicate entries and missing data that cause unrealistic
driving dynamics, such as excessively high acceleration rates (Figure 3.2, upper
panel). When the acceleration sensor loses track of the current motion (e.g.,

1 "Bordnetzmessungen am Elektrofahrzeug" (C-Zero), 2013
2 Although these sensors primarily measure acceleration using a mass-spring system, they can

also provide velocity metrics by integrating the acceleration data over time.
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© OpenStreetMap

Figure 3.1: Routes of measured driving cycles from an aerial perspective. The bluish line represents
the "FKFS-Rundkurs" data set with 23 independent cycles, featuring urban, suburban,
and motorway segments over a 60 km track, typically taking 65 to 95 minutes. This
circuit was designed by the FKFS Institute of the University of Stuttgart to serve as a
representative driving cycle for the Stuttgart region. The reddish line shows a minor
urban cycle of 9.1 km and 17 to 21 minutes duration, driven 32 times for a total of 286
km. The purple data set includes mixed road character cycles with no predetermined
route, covering 228 km over 12 hours from 9 different cycles.

due to stark shocks like potholes), the speed values typically default to zero
(Figure 3.2, lower panel). These false zero-speed segments are problematic
as they imply misleading EV charging opportunities and cool-down times for
power electronics and thermal components [69]. To mitigate this issue, we
identify unrealistic acceleration spikes and employ cubic spline interpolation to
enhance signal continuity. A significant challenge here is to replace erroneous
data while minimizing the total amount of data altered. Therefore, to avoid
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Figure 3.2: Acceleration spikes (top panel) caused by tracking dysfunction of the acceleration
sensor. Velocity values erroneously set to zero (bluish line in bottom panel) lead to
acceleration rates tending towards infinity. Corrective measures involve identifying
affected velocity segments and replacing them with cubic spline interpolation (reddish
line in bottom panel).

using heavily altered driving cycles in subsequent enrichment procedures, we
flag interpolated segments in the time series accordingly.

Thirdly, we address signal denoising to reduce inaccuracies of power demand
estimation in vehicle simulation, akin to challenges encountered in dynamometer
testing [69]. Highly variable speed profiles can cause errors in state of charge
(SOC) and energy consumption calculations. Commonly addressed using
binomial smoothing or Savitzky-Golay filters (e.g., [146, 189]), we reduce the
sampling rate of velocity profiles from 50 Hz to 1 Hz by averaging 50 sample
points, as we do not require data resolution greater than 1 Hz. This adjustment
effectively mitigates white noise while maintaining computational efficiency.

As expected, the rate of data conditioning markedly affects driving metrics,
as shown in Table 3.1. This table compares driving characteristics of four
selected drive cycles (I-IV) in their raw and conditioned states across varying
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3.1 Integrating real-world measurements to enhance MATSim drive cycles

Table 3.1: Comparison of driving metrics between raw and conditioned velocity profiles at various
interpolation ratios 𝜂int. Symbols 𝑥̂, 𝑥, and 𝑥̃ denote maximum, mean, and median
velocity and acceleration values, respectively. Metrics further include total distance
traveled 𝑑tot, standard deviation 𝜎x, idling ratio 𝜂idle, and distance-normalized number
of stops 𝑁 . Deviation exceeding 30% and 60% from the unprocessed raw data is
highlighted in yellow and red, respectively, to indicate significant deviations.

𝜂int 𝑑tot 𝑣̂ 𝑣 𝑣̃ 𝜎v 𝑎̂+ 𝑎̂− 𝜎a 𝜂idle 𝑁

% km km/h km/h km/h km/h m/s2 m/s2 m/s2 % 1/km
I raw - 59.1 108.0 55.3 56.6 14.3 0.43 -0.49 1.19 4.9 0.46

filtered 3.0 60.5 108.0 56.6 57.0 13.5 0.30 -0.34 0.49 2.8 0.23
II raw - 7.8 63.2 21.1 18.7 10.6 1.29 -1.31 2.16 34.4 3.95

filtered 9.6 9.1 63.2 24.5 25.4 10.8 0.40 -0.44 0.56 29.9 0.77
III raw - 6.7 60.1 17.9 10.7 10.2 1.21 -1.54 2.18 41.8 5.11

filtered 14.7 9.0 60.1 24.1 26.7 10.8 0.39 -0.48 0.53 31.0 0.78
IV raw - 13.3 85.0 15.1 1.2 11.5 1.40 -1.31 2.04 47.0 9.27

filtered 25.8 22.6 85.0 25.7 23.4 12.7 0.38 -0.39 0.52 26.9 1.55

interpolation ratios (𝜂int)3. Notably, higher interpolation rates have minimal
effect on maximum velocity (𝑣̂) and velocity standard deviation (𝜎v), but
significantly alter mean and median velocity (𝑣 and 𝑣̃). Acceleration metrics,
such as maximum positive and negative accelerations (𝑎̂+, 𝑎̂−) and acceleration
standard deviation (𝜎a), show more pronounced differences due to the removal
of artificial acceleration spikes. Significant deviations are also observed in the
vehicle’s idling ratio (𝜂idle)4 and its number of stops (𝑁) per kilometer. Both
metrics are significantly reduced by data conditioning, greatly influencing EV
energy consumption and charging behavior.

Overall, gaps in signal acquisition have a greater impact on driving metrics
than initially anticipated, emphasizing the necessity and potential risks of
over-processing data during conditioning. Extensive data conditioning alters
natural driving behavior, making heavily modified driving cycles inappropriate
for our cycle enhancement goals. Consequently, we discard all cycle segments
that, when segmented into one-minute intervals, exhibit an interpolation ratio

3 𝜂int: The proportion of sampling points that have been altered within a time series.
4 𝜂idle: The proportion of time the vehicle remains stationary with the engine operating, despite

not moving.
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𝜂int > 20%. As a result, from the initial 42 hours of raw driving cycle data
(approximately 2,520 one-minute intervals or ’mini-cycles’), 2,188 remained
after data cleansing and preconditioning. Of these, 1,954 valid mini-cycles met
the interpolation criteria and were used for enrichment purposes.

This minute-wise segmentation serves as a preparatory step for our enhancement
procedure. Our goal is to replace MATSim’s average link-speed profile with
real-world cycles that share similar driving metrics, applied in a piece-wise
manner. In doing so, we aim to overcome MATSim’s limitations in spatial
congestion modeling (as detailed in Sec. 2.5.2) by diffusing severe congestion
on short links across space and time. If a full driving cycle does not end at a
multiple of 60 seconds, zeros are appended to the time series to account for
typical vehicle stopping behavior.

3.1.2 MATSim driving cycle enhancement procedure

The method presented here refines our approach published in [209]. In that
preliminary study, we replaced MATSim’s simplified speed profiles with minute-
wise segments of synthetic nature (as opposed to real-world measurements)
having similar average velocities. Figure 3.3 illustrates the results, with the
orange and blue lines representing MATSim’s raw and enriched profiles,
respectively.

In [209], we found our initial method satisfactory in terms of increased realism.
However, their application to larger test cases revealed certain shortcomings
that we aim to mitigate in this more advanced approach. The limitations of this
initial enrichment procedure were as follows [209]:

• The underlying drive cycle dataset lacked real-world measurements at the
time of its publication, relying instead on a limited set of synthetic driving
cycles5. This artificial dataset failed to capture the full spectrum of human
driving behavior, impacting the realism of the enriched MATSim profiles.

• The developed enrichment procedure was deterministic, favoring optimal
solutions based solely on average velocity and acceleration criteria. This

5 For more information on the synthetic driving cycles employed, please refer to [209].
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Figure 3.3: Illustration of an enriched average link-speed profile from MATSim using the method
outlined in [209]. Red dashed lines denote the transition between two consecutive
one-minute segments.

approach lacked a stochastic component, leading to driving dynamics
dominated by a few well-fitting segments rather than reflecting the
variability of longer velocity profiles, such as daily trajectories.

• Acceleration rates between consecutive segments were limited to accept-
able values (< 5 m/s2) in the initial approach, with segments failing this
criterion discarded and replaced iteratively. However, this simplified
approach frequently led to errors during vehicle simulation. For instance,
the controller struggled to accurately follow the target signal, especially
under conditions of high acceleration rates on steep gradients, resulting
in distorted EV energy consumption.

To address these shortcomings, we propose the approach outlined in Figure 3.4.
We start by providing a step-by-step description to clarify the intuition behind
the procedure. Where appropriate, the procedure is mathematically formalized
as we proceed. Additional equations and explanations are provided at the end
of this section.
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Figure 3.4: Schematic representation of the enrichment procedure. A selected MATSim speed
profile 𝑉MAT

𝑣𝑖𝑑
(𝑡 ) is divided into 𝑁 one-minute segments 𝑣𝑖 (𝑡 ) , similar to all real-world

cycles 𝑅 𝑗 ∈ ℜ. For each segment 𝑣𝑖 (𝑡 ) , the average speed 𝑣̄ and the maximum speed
limit 𝑠 encountered by the vehicle (𝑣𝑖𝑑) during the MATSim simulation are calculated.
These metrics define the desired state 𝑍𝑣𝑖𝑑

𝑖
, represented by the dark gray tiles within

the time-dependent 𝑣̄, 𝑠-planes. The enrichment process proceeds as follows: for
the MATSim segment 𝑣𝑖+3, the real-world cycle segment 𝑅𝑞 is identified as a valid
match (see (a)). Using the segment’s friend list 𝐹𝑞 , real-world cycles 𝑅 𝑗 ∈ ℜ with
similar speed values at their shared boundary with 𝑅𝑞 are identified (see (b)). These
candidates are ranked based on the error margin 𝜖 2

dv, which penalizes deviations between
the last velocity value of 𝑅𝑞 and the first speed value of its potential successor 𝑅 𝑗 .
Simultaneously, all cycles 𝑅 𝑗 ∈ ℜ are evaluated for their ability to match the desired
state 𝑍𝑣𝑖𝑑

𝑖+4 using the time-dependent candidate list 𝐶𝑖+4 (see (c)). Ranking metrics 𝜖 3
𝑣̄

and 𝜖 2
𝑠̂

are used to penalize discrepancies in average speed and speed limit. The sets
𝐹𝑞 and 𝐶𝑖+4 are then combined, with intersecting elements forming the decision list
𝐷 (see (d)). Based on all three error margins, an element-wise score 𝑆 𝑗,𝑖 is calculated,
which ultimately determines the probability 𝑃𝑗,𝑖 that a cycle 𝑅 𝑗 ∈ 𝐷 will be chosen
to replace the MATSim segment 𝑣𝑖+4 (see (e)). The final enriched velocity profile
𝑉ENR
𝑣𝑖𝑑

(𝑡 ) is then assembled from the sequence of chosen real-world cycles 𝑅 𝑗 .
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A selected MATSim speed profile, denoted as𝑉MAT
𝑣𝑖𝑑

(𝑡) for a given vehicle (𝑣𝑖𝑑),
is aligned with its corresponding speed limit profile6 𝑆MAT

𝑣𝑖𝑑
(𝑡). Both profiles

are segmented into one-minute intervals, expressed as 𝑣𝑖 (𝑡) and 𝑠𝑖 (𝑡). Here,
𝑣𝑖 (𝑡) represents the velocity profile during the 𝑖-th one-minute cycle, where
𝑡 ∈ [0, 60) and 𝑖 = 1, 2, . . . , 𝑁 , with 𝑁 being the total number of one-minute
segments in 𝑉MAT

𝑣𝑖𝑑
(𝑡). This segmentation process is similarly applied to all

real-world driving cycles ℜ = {𝑅 𝑗 | 𝑗 = 1, . . . , 𝐽}, where 𝐽 represents the total
of 1,954 valid one-minute driving cycles.

For each one-minute segment 𝑖, the average speed 𝑣̄𝑖 from 𝑣𝑖 (𝑡) and the
maximum speed limit 𝑠𝑖 from 𝑠𝑖 (𝑡) encountered by the vehicle during the
MATSim simulation are calculated. These metrics define the desired state
𝑍𝑣𝑖𝑑
𝑖

, represented by the dark gray tiles within the time-dependent 𝑣̄, 𝑠-planes
in Figure 3.4. The desired state is mathematically expressed as:

𝑍𝑣𝑖𝑑𝑖 =

(
𝑣̄𝑖

𝑠𝑖

)
=

©­«
1
60

∑59
𝑡=0 𝑣𝑖 (𝑡)

max
𝑡∈[0,60)

𝑠𝑖 (𝑡)
ª®¬ . (3.1)

The challenge is to identify an appropriate real-world cycle 𝑅 𝑗 for each MATSim
segment 𝑣𝑖 (𝑡) that matches the desired state 𝑍𝑣𝑖𝑑

𝑖
– thus the target statistics

(𝑣̄𝑖 , 𝑠𝑖) – with sufficient precision. Suppose that for the velocity segment 𝑣𝑖+3,
the real-world cycle 𝑅𝑞 is identified as a valid match (highlighted in orange as
(a) in Figure 3.4). To identify a suitable real-world cycle 𝑅 𝑗 for the subsequent
MATSim segment 𝑣𝑖+4, the following steps are applied.

Since the final enriched speed profile 𝑉ENR
𝑣𝑖𝑑

(𝑡) is composed of a series of
real-world driving cycles ℜ (see Eq. 3.7), we first assess the inter-compatibility
of these cycles. For a given segment 𝑅𝑞 , we refer to its friend list 𝐹𝑞 (see (b) in
Figure 3.4) to identify potential real-world cycles 𝑅 𝑗 with compatible speed
values at their shared boundary. A ranking is performed based on the error
margin 𝜖2

dv (Eq. 3.2), which penalizes deviations between the last velocity value
of the cycle 𝑅𝑞 and the first velocity value of its potential successor 𝑅 𝑗 .

6 The speed limit profile is a time series that tracks the prevailing speed limit for each second the
vehicle operates, derived from post-processing of MATSim network and event file.
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Next, we evaluate each real-world driving cycle 𝑅 𝑗 ∈ ℜ for its ability to
match the desired state 𝑍𝑣𝑖𝑑

𝑖+4
7 using the time-dependent candidate list 𝐶𝑖+4(c)8.

The ranking metrics used are 𝜖3
𝑣̄

and 𝜖2
𝑠

(detailed in Eq. 3.2), which penalize
discrepancies in average speed 𝑣̄ and maximum legal speed limit 𝑠. This
approach prevents congested real-world motorway cycles or access ramp
maneuvers from being mixed into urban MATSim profiles. The sets 𝐹𝑞 and
𝐶𝑖+4 are then combined, with their intersecting (𝐾) elements forming the
decision list 𝐷𝑖+4 (d). Based on all three error metrics (𝜖2

dv, 𝜖3
𝑣̄
, and 𝜖2

𝑠
), an

element-wise score 𝑆 𝑗 ,𝑖 (Eq. 3.3) is calculated. This score serves as an indicator
of the probability 𝑃 𝑗 ,𝑖 (Eq. 3.4), which represents the likelihood that cycle 𝑅 𝑗
is chosen as a valid solution for segment 𝑣𝑖+4 (e).

If the decision list 𝐷 is empty9, the computation resets to two MATSim
segments prior (here 𝑣𝑖+2), generating alternative series of 𝑅 𝑗 by reassessing
the probabilities 𝑃 𝑗 ,𝑖 to select the next suitable segment 𝑅 𝑗 . If this still leads
to a dead end, the back iteration expands to even earlier MATSim segments.
However, this situation was rarely encountered, underlining the robustness of
our enrichment procedure.

The element-wise selection of appropriate real-world cycles 𝑅 𝑗 and their
assembly into the enriched profile 𝑉ENR

𝑣𝑖𝑑
(𝑡) can be mathematically expressed as

follows. Let 𝜓 represent a feature variable from the attribute set Ψ = {𝑣̄, 𝑠, d𝑣}.
We calculate the error margin 𝜖𝜓 using

𝜖𝜓 =
|𝜓𝑅 𝑗 − 𝜓𝑍 |

max( |𝜓𝑅 𝑗 − 𝜓𝑍 |)
, (3.2)

where 𝜓𝑍 represents the corresponding attribute of the desired state 𝑍 , and
max( |𝜓𝑅 𝑗 − 𝜓𝑍 |) provides normalization across all real-world cycles 𝑅 𝑗 ∈ ℜ.
For the error margin 𝜖dv, which penalizes speed deviations at the boundary

7 Specifically, the statistics (𝑣̄𝑖+4, 𝑠𝑖+4 )
8 Unlike the static friend list (𝐹𝑞), the dynamic candidate list (𝐶𝑖+4) is not precomputed. Its

elements are generated on the fly for each 𝑣𝑖 (𝑡 ) , adapting over time to minimize memory usage.
9 This phenomenon occurs when the preceding friend list 𝐹 or candidate list 𝐶 are sparsely

populated due to inadequately fitting target statistics (𝑣̄, 𝑠, 𝑑𝑣). Given𝐷 = 𝐹 ∩𝐶, the candidate
list 𝐷 may be empty as a consequence.
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between two consecutive cycles 𝑅 𝑗 in ℜ, we use the attribute 𝜓𝑅 𝑓 of 𝑅 𝑗’s
friend 𝑅 𝑓 10 as the reference, instead of the desired state 𝑍 .

The element-wise scoring parameter 𝑆 𝑗 ,𝑖 is then computed as

𝑆 𝑗 ,𝑖 = 𝜖
3
𝑣̄ + 𝜖2

𝑠 + 𝜖
2
dv. (3.3)

In this scoring process, we assign the greatest weight to the error margin in
average velocity 𝜖3

𝑣̄
. This is done to minimize deviations in the overall distance

traveled per day between the MATSim speed profile 𝑉MAT
𝑣𝑖𝑑

(𝑡) and the enriched
speed profile 𝑉ENR

𝑣𝑖𝑑
(𝑡). Given the scores 𝑆 𝑗 ,𝑖 for all elements 𝑅 𝑗 in the decision

list 𝐷, we calculate the probability 𝑃 𝑗 ,𝑖 as follows:

𝑃 𝑗 ,𝑖 =
exp

(
−𝑆 𝑗 ,𝑖

)∑𝐾
𝑘=1 exp

(
−𝑆𝑘,𝑖

) . (3.4)

Here, the term exp(−𝑆 𝑗 ,𝑖) guarantees that lower scores, which represent better
matches, result in higher probabilities. Meanwhile, the sum in the denominator
normalizes these probabilities, so that the total probability across the 𝐾 elements
in the decision list 𝐷 = {𝑑1, 𝑑2, ...𝑑𝑘} adds up to 1.

To determine which element is selected based on the given probabilities, we
first compute the cumulative probabilities for each element in the decision list.
This is achieved by summing the probabilities sequentially. For an element
𝑅 𝑗 ∈ 𝐷, the cumulative probability 𝐶 𝑗 is given by:

𝐶 𝑗 =

𝑗∑︁
𝑘=1

𝑃𝑘,𝑖 , (3.5)

where 𝑃𝑘,𝑖 is the probability associated with the 𝑘-th element and 𝐶 𝑗 represents
the cumulative probability up to and including element 𝑅 𝑗 . We then generate
a random number 𝑟 uniformly distributed between 0 and 1 to simulate the
outcome of a probabilistic dice roll. To select the element, we identify the

10 By analogy, each 𝑅 𝑗 in the friend list 𝐹 is referred to as a potential friend.
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smallest index 𝑗 for which the cumulative probability𝐶 𝑗 is greater than or equal
to the random number 𝑟. In other words, we find 𝑗 such that:

𝐶 𝑗 ≥ 𝑟. (3.6)

By following these steps, we ensure that the selection of each element 𝑅 𝑗 is
proportional to its probability 𝑃 𝑗 ,𝑖 . The outcome of the dice roll determines
the real-world cycle 𝑅 𝑗 that is assigned to the MATSim segment 𝑣𝑖 (𝑡).

This selection is recorded in a mapping function, which is then used to assemble
the final enriched profile 𝑉ENR

𝑣𝑖𝑑
(𝑡). Let 𝜎(𝑖) be a function that maps each

MATSim segment 𝑣𝑖 (𝑡) to a specific real-world cycle 𝑅𝜎 (𝑖) . This mapping
function 𝜎(𝑖) identifies which real-world cycle 𝑅 𝑗 is selected to replace the 𝑖-th
segment of the original MATSim profile (e.g., 𝜎(𝑖 + 3) = 𝑞 for segment 𝑣𝑖+3
as shown in Figure 3.4). Since 𝜎(𝑖) is not necessarily sequential, 𝑅 𝑗 may not
follow the order 𝑗 = 1, 2, . . . , 𝑁 and can be repeated. The enriched velocity
profile 𝑉ENR

𝑣𝑖𝑑
(𝑡) is then formed by concatenating these selected cycles:

𝑉ENR
𝑣𝑖𝑑 (𝑡) = 𝑅𝜎 (𝑖) (𝑡 − 60(𝑖 − 1)) for 𝑡 ∈ [60(𝑖 − 1), 60𝑖). (3.7)

Here, the time 𝑡 is adjusted by 60(𝑖 − 1) to properly align each selected cycle
within the overall profile. Over the entire duration of the MATSim profile
(consisting of 𝑁 one-minute segments), the enriched velocity profile 𝑉ENR

𝑣𝑖𝑑
(𝑡)

can also be expressed as a piecewise function:

𝑉ENR
𝑣𝑖𝑑 (𝑡) =


𝑅𝜎 (1) (𝑡) for 𝑡 ∈ [0, 60)
𝑅𝜎 (2) (𝑡 − 60) for 𝑡 ∈ [60, 120)
...

...

𝑅𝜎 (𝑁 ) (𝑡 − 60(𝑁 − 1)) for 𝑡 ∈ [60(𝑁 − 1), 60𝑁).

(3.8)

The so generated profile 𝑉ENR
𝑣𝑖𝑑

(𝑡) is considered acceptable if the daily traveled
distance deviates by no more than 5% from the daily mileage of the original
MATSim profile 𝑉MAT

𝑣𝑖𝑑
(𝑡). The relative error 𝑒day, rel

𝑣𝑖𝑑
is calculated as follows:
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𝑒
day, rel
𝑣𝑖𝑑

=

����( 𝑇∑
𝑡=1
𝑉ENR
𝑣𝑖𝑑

(𝑡) · Δ𝑡
)
−

(
𝑇∑
𝑡=1
𝑉MAT
𝑣𝑖𝑑

(𝑡) · Δ𝑡
)����

𝑇∑
𝑡=1
𝑉MAT
𝑣𝑖𝑑

(𝑡) · Δ𝑡
, (3.9)

where 𝑣𝑖𝑑 represents the vehicle’s identification number, 𝑇 signifies the total
number of seconds in one day, and Δ𝑡 is the time step (1 second).

Given the possibility of multiple enriched velocity profiles 𝑉ENR
𝑣𝑖𝑑,𝑏

(𝑡) for a
single MATSim driving cycle 𝑉MAT

𝑣𝑖𝑑
(𝑡) due to stochastic variations in the

enrichment process, we generate 𝐵 = 1000 such profiles per MATSim vehicle.
The enriched profile 𝑉ENR

𝑣𝑖𝑑,𝑏
with the smallest relative error 𝑒day, rel

𝑣𝑖𝑑,𝑏
in traveled

distance (Eq. 3.9) is selected as the best match. The results of this analysis are
shown in Figure 3.5.

Figure 3.5: Stochastic variations in the enrichment process for a given MATSim profile 𝑉MAT
𝑣𝑖𝑑

(𝑡 )
across 1000 trials (𝐵 = 1000). The left panel shows the relative deviations in daily
mileage between multiple enriched profiles𝑉ENR

𝑣𝑖𝑑,𝑏
(𝑡 ) and the original MATSim profile.

On average, the deviation is approximately 1.2%, with the best result featuring a relative
error of 0.24%. The right panel presents a scaled histogram of the frequency distribution
of these relative errors.

81



3 Advanced methods for detailed driving dynamics

In our scenario, the average deviation between the enriched and original profiles
is approximately 1.2%, with deviations exceeding 2% being rare. These results
fall within an acceptable range. For comparison, the acceleration sensor’s
neglect of latitudinal headway contributes to larger offsets (greater than 3%) in
daily traveled distance.

3.1.3 Profile smoothing for autonomous driving

Since real-world measurements do not capture autonomous driving behavior,
we apply a smoothing technique to our enriched profiles, similar to the approach
in [131, 120]. Specifically, we use a smoothing spline that minimizes the
following objective function11:

𝑝
∑︁
𝑖

𝑤𝑖 (𝑦𝑖 − 𝑠(𝑥𝑖))2

︸                  ︷︷                  ︸
MSE-term

+ (1 − 𝑝)
∫ (

d2𝑠

d𝑥2

)2

d𝑥,︸            ︷︷            ︸
curvature-term

(3.10)

where 𝑤𝑖 denotes the specified weight (in our case set to one), and 𝑝 is the
smoothing parameter that controls the extent of smoothing. The first term
represents the mean square error (MSE) between the value 𝑦𝑖 and its smoothed
counterpart 𝑠(𝑥𝑖) at point 𝑥𝑖 . The second term describes the second derivative
of 𝑠 with respect to 𝑥, reflecting the curvature of 𝑠 at 𝑥𝑖 .

The smoothing parameter 𝑝 ranges between 0 and 1, balancing the two terms:
𝑝 = 0 corresponds to a least-squares linear fit, while 𝑝 = 1 favors a cubic spline
interpolation with a stronger emphasis on minimizing the MSE term. The
influence of the smoothing parameter 𝑝 on the velocity profile and acceleration
distribution is illustrated in Figure 3.6.

The choice of smoothing level depends on the specific AV scenario [131]:

Autonomous driving profiles should minimize extreme events such as abrupt
accelerations and sudden braking, typical of human-operated vehicles. Ad-

11 "Smoothing Splines Documentation," MATLAB, https://de.mathworks.com/help/curv
efit/smoothing-splines.html. Accessed: Jun 19, 2023.

82

https://de.mathworks.com/help/curvefit/smoothing-splines.html
https://de.mathworks.com/help/curvefit/smoothing-splines.html


3.1 Integrating real-world measurements to enhance MATSim drive cycles

Figure 3.6: Impact of smoothing parameter 𝑝 on velocity profile (left) and acceleration distribution
(right). When 𝑝 = 0 it produces a linear interpolation with least-square error (maximal
smoothness), while 𝑝 = 1 results in a cubic spline approximation (no smoothing).
Increased smoothing flattens extreme driving events, reducing acceleration rates, as
shown by the bluish kernel density estimates in the right panels. Pre-published in [120].

vanced capabilities in intelligent and connected vehicles allow anticipation of
upcoming driving conditions, enabling smoother responses to dynamic traffic
situations. Thus, profiles of fully automated vehicles in highly intelligent
transport environments are expected to exhibit very smooth behavior (𝑝 → 0).

Conversely, autonomous vehicle movements are heavily influenced by inter-
actions with other vehicles, especially in congested traffic conditions where
human-driven vehicles still dominate. Factors like traffic signals and signs
significantly shape AV driving behavior. Therefore, during the initial phase of
AV implementation, speed profiles should mirror those of human-driven cars to
prevent delays, missed signals, or collisions with other vehicles. In this context,
excessive smoothing should be avoided (𝑝 → 1).

As shown by the bluish kernel density estimates in the right panels of Figure 3.6,
increased smoothing results in lower acceleration rates. To determine an
appropriate smoothing factor 𝑝, we refer to the recommended AV acceleration
rates discussed in [144]. The authors suggest that AV acceleration rates should
strike a balance between the smooth behavior of rail-based public transport and
typical human driving. Given the absence of commercially available automated
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vehicles, optimal AV driving behavior is inferred from various literature values
and experimental studies, as outlined in Table 3.2.

Table 3.2: Anticipated longitudinal and lateral acceleration rates in ms−2 for AD, derived from
the smooth driving behavior of rail-based public transport (leftmost column) to typical
human driving (rightmost column) (partially from [144, 114]).

(a) (b) (c) (d) (e) (f) (g)
Light Rail semi AD AD AD comfort typical upper limit

Transit (Tesla S) (Wizard) (FKFS) formula human driver human driver
[40, 144] [144] [226] [144] [127, 144] [114, 104, 36, 193] [114, 104, 36, 193]

𝑎+lon 1.3 1.3 2.0 2.05 2.1 2.47 4.86
𝑎−lon -1.3 -1.3 -2.6 -2.35 -2.1 -3.27 -7.47
𝑎+lat 1.3 1.3 2.1 2.05 2.1 4.10 5.3
(a) Acceleration rates in rail-bound transport are maintained relatively constant to minimize jolts and

jerks, enabling passengers to engage in secondary activities such as working, reading, or watching
a movie. Real-world experiences report maximum longitudinal acceleration rates of 1.3 ms−2 for
S-Bahn Stuttgart, consistent with international Light Rail Transit (LRT) standards [144, 40].

(b) Semi-automated vehicle behavior provides another benchmark. During road measurements with a
Tesla Model S, automated lane changes and overtaking maneuvers recorded maximum accelerations
around 1.3 ms−2, aligning with LRT values [144].

(c) A study by Eindhoven University simulated autonomous vehicle driving scenarios using a specially
trained driver (known as a ’wizard’) while participants evaluated comfort levels and acceleration
preferences [226]. Maximum longitudinal accelerations of up to 2 ms−2 and decelerations of
−2.6 ms−2 were deemed acceptable, with some participants preferring lower acceleration values
when in a passenger role.

(d) Recommended AD acceleration rates, as discussed in [144], are guided by the smooth driving
behavior of rail-based public transport on one end and typical human driving behavior on the other.

(e) An additional reference point is the ride quality score UIC rq note [127, 201] issued by the
international Union of Railways (UIC) to estimate railway route comfort. For automated vehicles, a
comparable UIC rq value of 1.4 is desired, corresponding to a defensively average parameterization.
A suitable combination of relevant parameters was iteratively determined by [144], resulting in
2.1 ms−2 for both longitudinal and lateral acceleration.

(f-g) Data on typical human acceleration rates were extracted from [114], who synthesized findings
from [104, 36, 193].

Deviating slightly from the recommended AD acceleration rates by [144]
(highlighted in yellow in Table 3.2 (d)), we select a smoothing factor of
𝑝 = 0.08, ensuring that 99.99% of all velocity-acceleration pairs remain below
2 ms−2 (cf. Figure 3.7).
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Figure 3.7: Effect of smoothing factor 𝑝 on velocity-acceleration pairs (approximately 17,000 total).
The left panel shows kernel density estimates for v-a events in original (unsmoothed)
driving cycles (𝑝 = 1), while the right panel shows smoothed cycles (𝑝 = 0.08). The
scaled contour lines facilitate comparison between panels. Noticeable reduction in
extreme acceleration events is observed.

3.2 Microscopic traffic simulation in SUMO

Our second approach to enhancing MATSim’s average link-speed profiles
involves subjecting mesoscopically simulated vehicle trajectories to additional
microscopic traffic simulation, as discussed in [209, 207].

Numerous microscopic traffic simulation tools are available, each offering
distinct features and tailored to specific fields of application. For our work, we
select the open-source framework SUMO12 (Simulation of Urban Mobility)
[135], which is widely utilized in traffic management, traffic light evaluation,
and vehicular communication studies. SUMO is well-established within the
scientific community and provides multiple interfaces that allow external
applications to interact with the simulation in real-time. We employ the
Traffic Control Interface (TraCI) to retrieve and manipulate object attributes
instantaneously. Additionally, our choice of SUMO is reinforced by its existing

12 SUMO, https://sumo.dlr.de/docs/index.html. Accessed: Sep. 29, 2024.
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use in corporate applications, which facilitates the seamless integration of our
solution with established tool pipelines.

We opted against a city-wide simulation of SAEV fleets directly in SUMO for
three primary reasons. First, the simulation of SAEV travel demand requires an
agent-based modeling component, as no real-world data are available. Since
SUMO is not inherently agent-based [168], it necessitates integration with
the Java Agent Development Framework (JADE) [13] to model SAEV mode
acceptance. Second, estimating SAEV travel demand in competition with other
modes (such as public transport and private cars) is computationally intensive,
requiring iterative simulations to achieve a quasi-user equilibrium. SUMO
is not capable of performing such extensive multi-modal simulations within
a reasonable timeframe. Even with MATSim, which is known for efficiently
handling large-scale scenarios, achieving equilibrium in DRT simulations can
take several weeks, depending on the simulated population share (typically 1%
to 10%) and the number of iterations. Third, SUMO requires more detailed
network data than MATSim, and the quality of OSM data is often insufficient
[79]. This necessitates extensive network refinement, which is impractical on
a large scale due to the significant time and resource demands. In contrast,
MATSim is more tolerant of network modeling errors.

As a result, we decided to leverage MATSim for SAEV travel demand modeling
and other computationally intensive tasks, while reserving SUMO for localized
network areas to enhance detail, particularly in driving dynamics. This approach
optimizes computation runtime. After conducting extensive simulations in
MATSim, as detailed in Chapter 2, we explore SUMO in a subsequent test-
case analysis in Sec. 3.3. Specifically, we assess (i) whether SUMO meets
our requirements for detailed driving dynamics, (ii) how effectively SUMO’s
operational principles and interfaces can be integrated, potentially leading
to a robust coupling of the two tools, and (iii) whether this multi-layered
traffic simulation justifies the additional modeling effort compared to our less
elaborate, data-driven enrichment procedure.

3.2.1 Car-following model by Krauss

Subjecting MATSim SAEV vehicles to subsequent microscopic simulation in
SUMO enables us to replace the spatial queue model—which is insufficient for
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our use case—with a sophisticated car-following model. This provides a more
realistic representation of the ego-vehicle’s interactions13 with other vehicles
and network infrastructure.

Traffic dynamics in SUMO are modeled using car-following models, such as
the Krauss model [122] and the Intelligent Driver Model (IDM) [204], as well
as lane-change models like LC2013 [71]. In this study, we employ the default
Krauss model, where vehicles travel as fast as possible while maintaining a safe
distance from the vehicle ahead. The safe speed (𝑣safe) is calculated as follows
[121]:

𝑣safe (𝑡) = 𝑣𝑙 (𝑡) +
𝑔(𝑡) − 𝑣𝑙 (𝑡)𝜏

𝑣
𝑏
+ 𝜏

(3.11)

where 𝑣𝑙 (𝑡) represents the speed of the leading vehicle, 𝑔(𝑡) is the gap to the
leader, 𝜏 denotes the reaction time, 𝑏 is the maximum deceleration of the
following vehicle, and 𝑣 is the mean velocity of both the following and leading
vehicles.

Since 𝑣safe may exceed the prevailing speed limit 𝑣limit or the vehicle’s
maximum capability 𝑣capa, the desired velocity is constrained to 𝑣des =

min{𝑣safe, 𝑣limit, 𝑣capa}. Additionally, SUMO includes a driver imperfection pa-
rameter 𝜎, which introduces random deceleration to simulate speed fluctuations
and spontaneous traffic jams under high-density conditions. Each vehicle also
draws an individual speedFactor from a normal distribution to reflect a range
of human driving styles, including drivers who notoriously stay above or below
the legal speed limit. The speedFactor is defined as norm(mean, dev),
where mean is the mean of the normal distribution, and dev is the standard
deviation. For instance, a speedFactor="norm(1,0.1)" produces a speed
distribution where 95.4% of vehicles travel between 80% and 120% of the
legal speed limit.14 To mitigate extreme deviations in driving behavior, such as
excessive slowing or speeding, the individual speedFactor can be constrained
within specified lower and upper bounds. This is implemented using a truncated
normal distribution, specified as normc(mean, dev, min, max).

13 The term "ego-vehicle" refers to the simulated vehicle at the center of the study, with all
observations, analyses, and interactions considered from its perspective.

14 This range is derived from the standard deviation of normally distributed data.
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Figure 3.8: Elevation (top panel) and velocity profile (bottom panel) for an exemplary ego-vehicle
simulated with SUMO. The reddish area in the bottom panel indicates the prevailing
speed limit encountered by the vehicle throughout its trajectory.

Figure 3.8 illustrates an exemplary velocity profile obtained from a default
SUMO simulation15. The figure also displays information on the prevailing
speed limit and the vehicle’s elevation profile.

3.2.2 Parameter fitting to adapt for autonomous driving

There are numerous contributions to simulate automated driving behavior
in SUMO. Notable models include the integrated Adaptive Cruise Control
(ACC) car-following model16 [151, 220] and the Cooperative Adaptive Cruise
Control (CACC) car-following model17 [151, 220, 221]. These models divide

15 For details on default parameters and vehicle specifications, refer to https://sumo.dlr
.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-
following_model_parameters and https://sumo.dlr.de/docs/Vehicle_Type_Para
meter_Defaults.html. Accessed: Sep. 03, 2024.

16 "ACC Documention," SUMO, https://sumo.dlr.de/docs/Car-Following-Models
/ACC.html. Accessed: Sep. 29, 2024.

17 "CACC Documention," SUMO, https://sumo.dlr.de/docs/Car-Following-Models
/CACC.html. Accessed: Sep. 29, 2024.
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(cooperative) adaptive cruise control into three modes: (i) cruise control, (ii) gap
control, and (iii) gap-closing control. A fourth mode, (iv) collision avoidance,
was introduced within the TransAID project18 when both models were integrated
into SUMO. Modes (iii) and (iv) aim to enable stable and safe car-following
behavior in SUMO, addressing string instabilities19 observed in the original
publication [151], which revealed unstable behavior in ACC-controlled vehicle
platoons.

To simplify the process, we use a modified Krauss model instead of the
aforementioned advanced AD car-following models. This choice improves
computation runtime, which is crucial during the early stages of solution
screening and toolchain development. Should a MATSim-SUMO tool coupling
prove beneficial for our use case, we will ensure that existing contributions
from both MATSim and SUMO, such as car-following models and dispatching
strategies, remain interchangeable. For similar reasons, we have chosen to omit
EV energy consumption and charging behavior from the forthcoming test-case
analysis in Sec. 3.3, given that these elements are already thoroughly addressed
by the MATSim framework.

Drawing from the literature summarized in Table 3.3 and our analysis in
Section 3.1.3, we define two parameter sets for fully automated driving vehicles:
AD-III and AD-IV, as highlighted in yellow in Table 3.3.

(i) The AD-III set is intended for scenarios where human-driven vehicles remain
in operation. As outlined in the yellow-highlighted row of Table 3.3, this model
specifies a minimal gap (𝑔) to leading vehicles that is greater than the technically
necessary minimum. This adjustment prevents human drivers from feeling
pressured. Additionally, the desired speed (𝑣des) is slightly above the legal
speed limit to avoid obstructing human-driven vehicles, which often exceed
speed limits.

(ii) The AD-IV set is designed for simulating connected autonomous vehicles
(CAVs) within fully optimized transportation systems. This model allows for
smaller minimal gaps without the necessity of exceeding speed limits.

18 TransAID, https://www.transaid.eu/. Accessed: Sep. 29, 2024.
19 String instabilities refer to traffic flow patterns in dense traffic conditions, characterized by the

formation of localized clusters or "strings" of vehicles exhibiting unstable behavior, such as
stop-and-go traffic or oscillations in speed and spacing.
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Table 3.3: Parameters in the Krauss car-following model across different levels of automated driving.
The AD levels correspond to the automation levels defined in SAE J3016 [106], with 0
denoting no driving automation and 5 representing full driving automation. Here, 𝑔 is the
offset to the leading vehicle in traffic jams; +𝑎/−𝑎 are the acceleration and deceleration
rates for the vehicle type; −𝑎̂ represents the maximum emergency deceleration; 𝜎
denotes the driver imperfection ranging from 0 to 1; 𝜏 is the desired (minimum)
time headway (reaction time); and the SpeedFactor represents the individual speed
multiplier drawn from a normalized distribution characterized by mean and standard
deviation.

selected Krauss-based AD 𝑔 +𝑎 −𝑎 -𝑎̂ 𝜎 𝜏 speedFactor

car-following models level 𝑚 𝑚/𝑠2 𝑚/𝑠2 𝑚/𝑠2 𝑠 mean deviation
SUMO default 0 2.5 2.6 4.5 9 0.5 1.0 1 0.1
human-I [183] 0 - 2.0 4.0 - 0.5 0.7 1.03 0.103
human-II [183] 0 - 2.0 4.0 - 0.5 0.7 1.04 0.161
from human to 0 2.5 2.6 4.5 8 0.5 1.0 - -
autonomous 1 2 3.05 4.5 8 0.4 0.95 - -
driving [136] 2 1.5 3.5 4.5 8 0.3 0.9 - -

with 3 1.25 3.6 4.5 8 0.2 0.8 - -
adaptions 4 0.75 3.7 4.5 8 0 0.7 - -

from [123, 181] 5 0.5 3.8 4.5 8 0 0.6 - -
AD-I [84] 5 - 1.3 1.3 - 0 0.1

AD-II [183] 5 - 2.0 4.0 - 0 0.4 1 0
AD-III 5 2.5 2.0 2.0 8 0 0.4 1.1 0
AD-IV 5 0.5 2.0 2.0 8 0 0.4 1 0

Both Krauss parametrizations assume fully automated driving capabilities
(Level 5 as per SAE J3016 [106]), with zero driver imperfection (𝜎 = 0) and
uniform vehicle speed capacities (i.e., zero speedFactor deviations). Note that
lateral driving dynamics and cooperative driving strategies are not incorporated
in these models.
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3.3 Test case analysis with focus on human
driving behavior

In this section, we evaluate the extent to which the methods described in
Sections 3.1 and 3.2 can produce sufficiently realistic driving dynamics within
a case study of limited spatial scope. This assessment aims to refine the
focus of our thesis and provides an initial indication of whether a multi-level
traffic simulation approach, integrating MATSim and SUMO, is viable for the
broader context of our use case. The test case analysis presented here has been
previously published in our work [209].

3.3.1 Methodological approach and test case design

We use an existing MATSim model for the Stuttgart region to extract and
populate three distinct network areas. The MATSim model, developed by
Robert Bosch GmbH in collaboration with the Verband Region Stuttgart, utilizes
activity-chain based travel demand generated by mobiTopp [145]. This agent-
based travel demand model was developed by the Institute for Transport Studies
(IfV), Karlsruhe Institute of Technology and integrated into MATSim based on
the work of [39]. We have identified three test cases, each varying in road type,
network topology, and right-of-way rules:

1. The Bergheimer Steige test case features no crossroads but includes sharp
turns and road gradients up to 15%. This scenario aims to analyze the
impact of slopes and curves on vehicle speed in simulations.

2. The Motorway A8 (from Kreuz Stuttgart to AS Stuttgart Möhringen) is
used to examine traffic dynamics on motorways.

3. The Kräherwald test case (from Kräherwald/junction Zeppelinstraße
to the University of Stuttgart) exhibits a mixed inner-city and highway
character and forms part of the FKFS cycle, as illustrated in Figure 3.9.

All test cases are simulated for a single day in both MATSim and SUMO. For
each test case, driving cycles are generated through three distinct approaches:
(a) standard MATSim simulation (Sec. 2.1), (b) enhanced MATSim simulation
incorporating real driving cycles through an enrichment procedure (Sec. 3.1),
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© OpenStreetMap

© Google Maps © Google Maps

Figure 3.9: The right plot shows the FKFS circuit, with the grey rectangle highlighting the
Kräherwald test case. The zoomed trajectory of this test case is at the center, and
the left plot presents the spatial velocity profiles of 22 measured FKFS cycles for the
Kräherwald test case. To enhance readability, each cycle was given an offset in the
longitudinal direction.

and (c) SUMO simulation using travel demand synthesized from MATSim
and (Sec. 3.2). The results are evaluated with respect to driving dynamics and
energy-related KPIs, and are benchmarked against real-world driving cycles.
Although our primary aim is to simulate autonomous driving, the focus here is
on human driving characteristics to facilitate profile validation with real-world
data.

Energy-related KPIs are derived from vehicle simulations conducted in GT-
Suite20, utilizing the vehicle specifications outlined in Table 3.4. We use an
existing EV model [190] (see Sec. 8.2), which is specifically designed to identify
the optimal EV architecture and powertrain configuration for particular use cases.
The energy-related KPIs, along with driving dynamics, are compared to 22
GPS-tracked FKFS cycles for the Kräherwald test case. To ensure comparability
and to account for systematic errors introduced be the vehicle model in GT-Suite,
measured velocity profiles are also utilized in GT-Suite simulations to calculate

20 GT-SUITE, https://www.gtisoft.com/gt-suite/gt-suite-overview/. Accessed:
Sep. 29, 2024.
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Table 3.4: Vehicle specifications as used during GT-Suite simulation

parameter value
vehicle mass 𝑚 1545 kg
rolling resistance coefficient 𝜇r 0.011
frontal area of the vehicle 𝐴 2.2 m2

drag coefficient 𝐶d 0.27
friction coefficient 𝜇 1
battery capacity 𝐸bat 60 kWh
engine power 𝑃eng 200 kW

energy consumption, despite the availability of real-world energy consumption
data.

3.3.2 Network generation and travel demand synthesis

To construct a SUMO network based on an existing MATSim model, we
independently import the relevant geographical area from OSM using SUMO’s
NETCONVERT tool. Although it is possible to import SUMO networks directly
from MATSim, this method is suboptimal for our purposes because MATSim
omits certain network details that SUMO requires.

Figure 3.10 illustrates the differences between MATSim and SUMO networks
for the Bergheimer Steige area in Stuttgart. MATSim networks can be imported
using an OSM network reader with varying levels of detail: simpler networks
with fewer links (Fig. 3.10, panel b)) or more complex networks that more
accurately capture curved road shapes (using the keep-path configuration, as
shown in Fig. 3.10, panel c)). However, the more detailed network performed
poorly in our simulations due to numerous short links, which caused artifacts
as discussed in Section 2.5.2.

MATSim paths, regardless of their import resolution, integrate adjustments for
road geometry and elevation differences, leading to path lengths that closely
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Figure 3.10: Comparison of network representations for the Bergheimer Steige test case, as
described in Section 3.3.1. The top panels provide an aerial view of the entire test
case, highlighting differences in road geometry and network topology across the
various network import methods in MATSim and SUMO. The bottom panels focus on
a selected traffic node, illustrating variations in network granularity and realism. Key
metrics presented in the respective bottom-right corners include the path length 𝑑, the
number of road segments (links) into which the test case is divided, and the travel
time 𝑡 under free-flow conditions. In panel a) (Google Maps), additional metrics such
as beeline distance 𝑑bee and height differences △ℎ are also shown.

align with those from Google Maps21. In contrast, SUMO networks, while
featuring advanced network design (Fig 3.10, panel d)), do not automatically
account for length variations due to altitude differences in their two-dimensional
representation. To address this, we incorporate altitude data from an additional
elevation model.

Travel demand in our SUMO simulation is entirely derived from MATSim.
We begin by identifying all MATSim links surrounding the selected test cases
and recording the vehicles traversing these links, including their vehicleID,
route, and entry and exit times. As MATSim handles a sampled population,
we scale the travel demand in SUMO by injecting cloned vehicles. To prevent
severe gridlocks, we introduce a random time offset, drawn from a Gaussian
distribution, to the entry times of these cloned vehicles. Once departure times

21 Google Maps, https://www.google.com/maps. Accessed: Sep. 29, 2024.
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are established, we manually map MATSim linkIDs to SUMO edgeIDs22 and
generate the final trips file for SUMO. These vehicle trips are then converted
into vehicle routes using SUMO’s DUAROUTER tool. Due to the – by design
– limited scale of the test cases, characterized by single roads with minimal
alternative routes, the routes in SUMO closely align with those in MATSim.

3.3.3 KPI comparison

The assessments presented refer to Table 3.5, which summarizes aggregated
KPIs for each test case and simulation approach (MATSim, enriched, and
SUMO). To optimize computation runtime, only a subset of simulated vehicles
was tracked at a microscopic level for each test case. The table specifies
the respective number of simulated and microscopically tracked vehicles in
parentheses. Data labeled ’enriched’ refers to the initial enrichment procedure
described in Section 3.1.2 and [209], rather than the advanced method outlined
later in the same section, which was developed to overcome limitations in the
original approach.

Aggregated vehicle dynamics and energy metrics The average traveled
distance of all tracked vehicles is comparable across simulation scenarios, with
variations primarily due to differences in network design and import methods.
In both MATSim and SUMO, changes in road attributes in OSM result in the
creation of new links or edges. However, while SUMO represents road segments
as continuous (curved) edges, MATSim uses straight lines, introducing artificial
nodes to approximate road geometry. Consequently, one SUMO edge often
represents multiple MATSim links, resulting in longer distances in SUMO due
to the representation of road curvature. In small test cases like ours, deviations
in average travel distance between MATSim and SUMO may seem significant,
but these differences diminish on a larger scale.

The distances calculated for the enriched scenario are artificial and do not
align with actual target trajectories, which is a major drawback of our initial
enrichment procedure. These discrepancies in traveled distance also affect

22 For further details on network representation and terminology in MATSim and SUMO, please
refer to Sec. 4.2.1.
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Table 3.5: Aggregated KPIs for three test cases (Bergheimer Steige, Motorway A8, and Kräherwald).
The number of tracked and simulated ego-vehicles for each test case is indicated in
parentheses. Data previously published in [209].
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∅ traveled distance in km 5.5 5.4 5.7
∅ traveled time in min 7.8 8.2 6.6
∅ congestion rate 0.82 0.76 0.85
∅ velocity in km/h 52 48 53
∅ energy consumption in kWh/100km 11.8 12.4 15.6

secondary metrics such as travel time and energy consumption. Therefore, our
more sophisticated enrichment approach emphasizes selecting enriched cycles
with a high fit in daily mileage (cf. Figure 3.5) to mitigate this issue. The
Motorway test case, in particular, exhibits discrepancies in traveled distance
exceeding the 5% error margin. These deviations are also attributed to the
limited availability of high-speed one-minute segments. The driving cycle
dataset referenced in Sec. 3.1.1 was not available at the time of our initial
enrichment procedure described in [209]. Thus, the accuracy of the enrichment
procedure highly depends on a diverse set of measured driving cycles.

Average travel time, velocity, and energy consumption are highly dependent
on congestion. Different approaches in modeling traffic dynamics (queue
vs. car-following models) and road networks (node-based vs. sophisticated
intersections) lead to different traffic conditions, causing the same vehicle to
experience varying delays in MATSim and SUMO. The left panel of Figure 3.11
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shows discrepancies in traffic states 𝜆 between MATSim and SUMO, displayed
in a log-log plot where each dot represents a tracked vehicle. The traffic state,
defined as the ratio of free-flow travel time to actual travel time, indicates
free-flow conditions at 𝜆 = 1 and blocked roads near 𝜆 = 0. Due to SUMO’s
allowance for overspeeding (up to 20%) and link length discrepancies with
MATSim, traffic states greater than 𝜆 = 1 can result. A perfect match in traffic
state would theoretically result in a diagonal line, but Figure 3.11 (left) reveals
that this alignment is rarely achieved, warranting further investigation. The
histograms on the right indicate that MATSim traffic conditions are generally
too optimistic, as vehicle queues fail to propagate upstream properly (see
Sec. 2.5.2), or occasionally too pessimistic, particularly on short links.

Significant differences in velocity and acceleration distributions emerge across
all simulation approaches. Figure 3.12 shows scaled velocity and acceleration
histograms for 359 simulated vehicles in the Bergheimer Steige test case,
with both metrics tracked every second. Pure MATSim simulation yields
unrealistic driving dynamics, considering only average link speeds and showing
minimal acceleration variations. Acceleration rates predominantly remain zero,
with abrupt transitions between links constrained by the speed limits of the
subsequent links. Although the enriched profiles are more realistic, they partially
inherit this deficiency in driving behavior from MATSim and do not fully
overcome MATSim’s limitations in spatial congestion modeling, as discussed
in Section 2.5.2. In contrast, SUMO exhibits bell-shaped distributions centered
around local maxima. Both enriched MATSim and SUMO simulations limit
maximum acceleration to ±5 m/s2 by design; however, SUMO’s acceleration
rates are excessively uniform and exhibit overly smooth distributions compared
to real-world data, as also noted in [7, 102, 199].

Time-dependent speed profiles Figure 3.13 illustrates the time-dependent
velocity profile for a selected MATSim vehicle in the Bergheimer Steige test
case (blue line). The corresponding vehicle representations for the enrichment
approach and SUMO simulation, each having the same vehicle ID, departure
time, and trajectory, are depicted in red and green respectively. Although the
departure times are synchronized across all simulation approaches23, the vehicle

23 This is not universally the case in SUMO; significant congestion on a vehicle’s departure link
may introduce artificial delays in its network entry time.
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Figure 3.11: Inconsistencies in traffic state (𝜆 = 1 for free-flow driving conditions, 𝜆 = 0 for
blocked roads) between MATSim and SUMO across all investigated test cases. Left:
Log-log plot of tracked vehicles. Right: Histograms of traffic states, separated by test
case.

Figure 3.12: Scaled velocity (left) and acceleration (right) distributions for 359 simulated and
tracked vehicles in the Bergheimer Steige test case with d𝑡 = 1s resolution. Red
dashed lines indicate mean values.
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Figure 3.13: Time-dependent velocity profiles of a selected vehicle in the Bergheimer Steige test
case, as simulated by different approaches.

experiences varying delays due to differences in traffic conditions, network
distances, and the modeling of right-of-way rules at intersections.

The step-like nature of MATSim’s profile is a result of its average link speed
representation, while SUMO exhibits notable oscillations around the target
velocity, likely attributable to driver imperfection (𝜎). However, the uniform
amplitude and high frequency of SUMO’s oscillations deviate from real-world
driving dynamics. While these discrepancies could be mitigated with a better-
tuned car-following model, further refinement is unnecessary as our primary
focus is on future AD applications, where accurately replicating human driving
behavior is not a priority.

3.3.4 Comparative analysis of simulated versus real-world
driving cycles

In this section, we evaluate the accuracy of our simulations by comparing the
simulated driving cycles for the Kräherwald test case with 22 GPS-tracked
real-world cycles (refer to the FKFS test course detailed in Sec. 3.1.1). The
analysis is restricted to the portion of the FKFS cycles that corresponds to the
Kräherwald test case, as illustrated in the right panel of Figure 3.9.
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Figure 3.14: Stacked velocity-space profiles for 22 measured FKFS cycles (a) and 444 simulated
SUMO vehicles (b) in the Kräherwald test case. Panels (c) and (d) present the
minimum, mean, and maximum velocity values for both measured and simulated data
at each point along the trajectory.
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Spatial velocity profiles and their variations Figure 3.14 presents a com-
parison of the stacked velocity-space profiles for 22 real-world FKFS driving
cycles (panel a) and 444 simulated SUMO vehicles (panel b) in the Kräherwald
test case. Panels (c) and (d) display the minimum, mean, median and maximum
velocity values for both measured and simulated data at each point along the
trajectory. The trajectory, as shown in Figure 3.9, includes four successive
traffic lights and a merge onto another arterial road, resulting in sudden ve-
locity drops in both datasets (panels a and b). While the FKFS data represent
free-flow driving conditions only, the SUMO simulation captures congestion
and extended queues, particularly at traffic signals and intersections (panel b).
Furthermore, real-world drivers typically adjust their speed in anticipation of
upcoming speed limit changes (highlighted by the red dashed lines in panel
c), whereas the simulation reflects these changes in a more step-like manner
(panel d). Although this simplification may not adequately represent human
driving behavior, it may be advantageous for autonomous vehicles, which could
potentially adapt to speed limits in a similar fashion.

Vehicle-based performance metrics For further validation, we limit our
comparison to simulated vehicles that exhibit traffic conditions analogous to
those in the real-world FKFS data. As all FKFS driving cycles represent free-
flow traffic, the analysis of congested scenarios remains infeasible. Table 3.6
reports the driving KPIs for a selected simulated vehicle in conjunction with

Table 3.6: Benchmarking of simulated vehicle KPIs against measured FKFS data under free-flow
driving conditions (𝜆 ≈ 1). The simulated vehicle is identical (i.e., has the same vehicle
ID, departure time, and route); however, its spatio-temporal trajectory was derived
using three distinct methods (MATSim, enriched, SUMO). As real-world reference, we
selected three randomly chosen FKFS vehicles.

simulated cycles measured FKFS cycles
performance metrics MATSim enriched SUMO car 1 car 2 car 3
distance in m 5489 5460 5698 5951 5955 5942
average velocity in m/s 16.4 15.2 15.6 15.0 14.5 17.2
travel time in min 5.6 6.0 6.1 6.6 6.9 5.8
energy consumption in kWh/100km 20.1 18.3 18.8 18.8 22.0 19.6
traffic state 𝜆 0.95 0.88 0.9 0.87 0.84 0.99
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three randomly chosen FKFS vehicles. Overall, the KPIs demonstrate strong
agreement under free-flow conditions, regardless of the method used for driving
cycle extraction (MATSim, enriched, SUMO).

The velocity distributions under free-flow conditions reveal significant discrep-
ancies. As illustrated in Figure 3.15 (left), real-world drivers, represented by
FKFS cycles (red), generally exhibit higher driving speeds compared to those
simulated in SUMO (blue). The SUMO simulations show velocity peaks at
approximately 45 and 75 km/h, whereas the FKFS data peaks are observed
around 62 and 82 km/h. Additionally, SUMO displays a higher frequency of
near-zero velocities, indicative of frequent stops at traffic signals. This is further
confirmed by the cumulative velocity distribution in Figure 3.15 (right), where
the SUMO distribution shifts toward lower velocities, attributed to delays caused
by traffic lights. In contrast, MATSim’s velocity distribution (purple) shows
poor alignment with FKFS data, likely due to its simplified queuing model.
While the enrichment technique (yellow) mitigates some of these discrepancies,
it continues to closely follow the trends observed in MATSim.

The validation of simulated driving cycles against FKFS measurements is
constrained by two key factors: (i) the 22 measured cycles are statistically
insufficient to represent driving behavior for the Kräherwald test case over a
full day, and (ii) accurate validation of individual driving profiles necessitates

Figure 3.15: Probability-normalized velocity distribution (left) and cumulative velocity distribution
(right) for free-flow driving conditions across all simulated (MATSim, enriched,
SUMO) and measured (FKFS) data.
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precise modeling of the ego-vehicle’s environment, including surrounding traffic
and traffic signals—capabilities that neither MATSim nor SUMO can fully
achieve. Comprehensive environmental modeling would require the integration
of radar and LIDAR data.

3.3.5 Discussion and implications for thesis scope

This section presents a summary of the quantitative results from the preceding
sections and aligns them with the key requirements (KR0-5) outlined in
Section 1.4. We seek to identify a suitable solution approach for SAEV
drive cycle deduction and pinpoint areas warranting further research to address
remaining gaps and challenges. We also discuss the feasibility and automation
potential of a prospective MATSim-SUMO tool coupling for this purpose.

Given the uncertainty regarding the future role of SAEV fleets, we require
an effective method to determine SAEV travel demand (KR0) in a scenario-
based manner. SAEV fleets will be accepted if they prove more beneficial
in daily use compared to other existing travel modes. Due to its agent-based
nature, MATSim is particularly well-suited for this type of modeling, with the
enrichment procedure also offering this capability by inheritance. Although
SUMO, empowered by JADE, can perform agent-based simulations, its high
level of detail and data requirements make it less efficient for repetitive, large-
scale multi-modal simulations. Therefore, we favor MATSim-based approaches
to meet KR0.

A similar reasoning applies to the city-wide deduction of SAEV driving patterns
(KR1). Due to the coarser granularity and lower data requirements of MATSim
and its ability to cope with sampled population data, MATSim surpasses
SUMO in terms of modeling effort, computation time, and scalability. SAEV
fleet simulation involves numerous parameters, each significantly impacting
SAEV mode adoption. Testing different charging, dispatching, or relocating
strategies demands substantial computational power. Combined with the need
for repetitive simulations to gauge SAEV travel demand, DRT simulations
are particularly time-consuming, especially when tracking all fleet vehicles
microscopically. Addressing these issues with purely microscopic traffic
simulation is not practical, as its added level of sophistication further strains
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simulation time. Here again, MATSim’s runtime advantages and comprehensive
DRT and EV features also benefit the enrichment approach.

For tracking individual vehicle states (KR2) and additional environmental data
(KR4), both MATSim and SUMO provide effective solutions. In particular,
SUMO excels in this aspect, allowing for the querying of instantaneous vehicle
states with high temporal resolution, down to millisecond intervals if needed.
In contrast, MATSim’s spatial-temporal resolution is coarser than that of
SUMO. Its link-wise scope leads to less detailed time-series data, with metrics
aggregated or static over road segments. This limitation is mitigated by enriched
MATSim profiles, although these profiles become synthetic and do not reflect
specific vehicle trajectories. With minute-wise drive cycle enhancement, longer
downtime phases in MATSim, such as charging and extended idling periods,
remain sufficiently consistent. However, shorter downtime durations, lasting
only seconds, are overwritten with new driving behavior. Since MATSim lacks
an accurate representation of stop-and-go patterns and intersection dynamics,
overwriting these details is deemed acceptable for our purpose.

The core of this thesis focuses on deducing realistic SAEV speed profiles (KR3)
that capture complex driving dynamics. Both MATSim and SUMO effectively
capture aggregated trip statistics such as average velocity, traveled distance, and
time, under similar traffic conditions. However, traffic conditions for a given
vehicle can vary significantly between approaches due to differences in traffic
dynamics modeling and network representation.

MATSim’s simplified queuing model results in unrealistic velocity and acceler-
ation profiles, rendering it unsuitable for automotive prototyping. Although
the enrichment procedure produces velocity profiles that closely resemble
real-world driving, its reliance on historical data presents a major drawback
for autonomous driving applications. This data-driven approach lacks sen-
sitivity to varying driving styles and secondary effects, such as platooning
or V2X efficiencies. Conversely, SUMO enables the deduction of detailed
speed profiles. While its driving dynamics may seem too artificial for realistic
human driving, they are suitable for representing autonomous vehicles, which
involve fewer stochastic modeling elements. Additionally, when integrated with
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VANET24 simulators, such as Veins25, SUMO gains access to a powerful set of
features for studying intelligent transport systems and (connected) autonomous
driving. This integration allows for exploration of vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications and their impacts on traffic flow,
safety, and efficiency. Leveraging these functionalities through a SUMO-based
approach offers clear advantages.

SUMO also excels in its extensive features for adjusting driving dynamics
through the selection and parameterization of appropriate car-following and
lane-changing models. Driving profiles deduced from SUMO are sensitive to
actual traffic conditions and transport infrastructures, displaying a wide range
of driving maneuvers. However, SUMO does not account for the reduced
velocities human drivers adopt in narrow curves or on road gradients for comfort
and vehicle power limitations. Addressing these shortcomings necessitates
advanced vehicle simulation tools, such as GT-Suite or CarMaker26.

While road slopes and their impact on energy consumption can be modeled
in both MATSim and SUMO27 in simplified manners, accurate height data is
necessary. Unfortunately, non-proprietary data (such as OSM) often reflects
the Earth’s surface only and does not account for the real altitude of road
tunnels, leading to incorrectly steep road gradients. While this issue may be
neglected in flat areas like Berlin, it becomes problematic in hilly and tunnel-rich
regions such as Stuttgart. When vehicle simulators use such deficient elevation
profiles combined with corresponding speed profiles, the simulation controller
frequently fails to achieve desired speeds in power-demanding situations (e.g., in
instances where higher velocities coincide with steep road gradients), resulting
in fatal simulation errors or significantly overrated energy consumption. As
our focus progressively shifted to Berlin, we did not pursue this issue further,
despite recognizing the need for improvement.

24 VANET stands for Vehicular Ad Hoc Network, a network architecture used in intelligent
transportation systems and wireless communication.

25 Veins [198] combines the network simulator OMNeT++ [214] with the road traffic simulator
SUMO.

26 IPG CarMaker, https://ipg-automotive.com/de/produkte-services/simulation-
software/carmaker/. Accessed: Sep. 29, 2024.

27 See MATSim’s EV modeling in Section 2.1.3 and [143, 126, 188, 187, 213, 116] for SUMO
capabilities.
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In summary, neither pure MATSim nor SUMO alone is suitable for deriving
representative SAEV driving cycles, as compiled in Table 3.7. While MATSim
excels in KR0 and KR1, it lacks the spatial-temporal resolution and detail
required for accurate driving dynamics (KR3) and time-series data (KR2-4).
Conversely, SUMO excels in detailed, microscopic simulations and modeling
connected autonomous vehicles within intelligent transport systems. However,
it faces challenges with large-scale simulations, especially when the travel
demand for new mobility concepts is uncertain. Enhancing MATSim to
improve detail and driving dynamics introduces limitations similar to those of
microscopic traffic simulators, such as significantly increased computation time
and modeling effort. The enrichment procedure enhances detail but relies on
historic human-driven cycles, making it inflexible to emerging driving concepts.
Additionally, the enrichment only partially mitigates MATSim’s congestion
modeling deficiencies. Thus, we prefer a model-based solution to a data-driven
approach.

In terms of practical (large-scale) feasibility and automation capability (KR5),
the three simulation approaches exhibit significant differences. MATSim-
based approaches excel with lower data demands and greater robustness
against simulation errors and imperfect networks. In contrast, SUMO is less
resilient. SUMO’s highly detailed networks require precise data, including
accurate junction information and traffic light positions. However, SUMO’s
autogenerated networks often suffer from issues due to the incomplete or
inaccurate data from underlying OSM sources28, and the complexities of the
data can challenge default import functionalities29. This results in problems like
faulty turning lanes, inaccurately placed traffic lights, inadequately configured
junctions, and uncoordinated traffic light operations, with manual corrections
being highly time-consuming. Furthermore, SUMO approaches are prone to
artificial deadlocks, such as conflicting vehicle turns, which do not resolve
naturally and require specialized solutions30.

28 Although proprietary map providers offer more detailed data, they also lack comprehensive
traffic light information, such as cycle times and control methods (fixed or actuated), as this is not
crucial for navigation. Thus, integrating multiple data sources does not fully resolve the issue.

29 Experience has shown that adjusting import heuristics, such as the spatial parameters for
aggregating neighboring junctions into a single cluster, can resolve certain network issues but
may simultaneously worsen problems in other network areas.

30 SUMO options such as time-to-teleport or ignore-junction-blocker may address
some issues but necessitate extensive post-processing if the ego-vehicle is affected. A vehicle
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Table 3.7: Evaluation of the suitability of different approaches for modeling detailed SAEV driving
profiles and the potential effectiveness of a MATSim-SUMO coupling (✓ suitable,
o limited suitability, - not suitable, () anticipatory only, not tested, ? uncertain)

key requirements
pure enriched pure MATSim-SUMO

MATSim MATSim SUMO coupling

K
R0 agent-based modeling

✓ ✓ - ✓
of SAEV travel demand

K
R1

efficient SAEV fleet simulation ✓ ✓ (o) ✓

- EV range & charging constraints ✓ ✓ (o) ✓

- fleet dispatching & routing ✓ ✓ (o) ✓

- pricing strategy & service area ✓ ✓ (o) ✓

K
R2 extraction of vehicle states o ✓ ✓ ✓

K
R3

realistic velocity profiles
- human / autonomous driving -/- ✓/o o/(✓) o/✓
- reflecting traffic conditions and o o ✓ ✓

- divers transport infrastructures - - ✓ ✓

- platooning & C2X-communication - - ✓ ✓

K
R4 environmental data such as

o/✓/✓ -/-/o o/(✓/✓) o/✓/✓
- height / speed limit / occupancy profiles

K
R5

suitability & feasibility
- fulfillment of KR0-4 - o - ✓

- data availability ✓ o o ?
- resilience to imperfect networks ✓ ✓ - ?
- automation capability ✓ ✓ ✓ ?
- computational demands ✓ ✓ o ✓

overall suitability - o - (✓)
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Considering the key requirements KR0-KR4, coupling MATSim with SUMO
appears to be the most effective approach for deriving representative SAEV
drive cycles. Such a hybrid simulation approach leverages the strengths of both
frameworks, where MATSim efficiently handles large-scale, city-wide SAEV
simulations, and SUMO manages detailed, local traffic dynamics and vehicle
interactions. However, the practical feasibility and automation potential of such
a tool-coupling are still uncertain. While it capitalizes on the strengths of both
MATSim and SUMO, it may also inherit their limitations, such as the extensive
effort needed to set up SUMO’s microscopic networks. To address these
challenges, strategies must be developed to simplify SUMO’s network setup,
automate network adjustments and traffic light configurations, or reconcile
SUMO’s high data requirements with MATSim’s less restrictive mesoscopic
demands to improve SUMO’s resilience to network imperfections.31

Another challenge in coupling MATSim with SUMO is their inherent incom-
patibility. Significant differences in traffic flow and network modeling raise
concerns about whether these systems can be effectively integrated. Specifically,
it is crucial to determine if SUMO can accurately incorporate and simulate
the travel demand generated by MATSim without causing severe gridlocks in
SUMO’s more congestion-prone microscopic environment. To address this,
we must analyze the discrepancies between the frameworks in detail, focusing
on global network capacities, achievable traffic flows by junction type, and the
effects of differing network representations and traffic dynamics on routing and
traffic performance.

The complexity of this problem constitutes a significant academic challenge
and will henceforth be the central focus of this thesis. In Part II, we detail the
design of a multi-level simulation approach for deriving microscopic SAEV
driving profiles from mesoscopic transport simulation. We begin with the
design and implementation of a robust meso-micro network matching routine

positioned first at an intersection is automatically teleported to the next free road segment of
its route if it remains stationary for an extended period. In contrast, when the junction blocker
option is activated, vehicles do not account for the presence of other vehicles obstructing traffic
flow within intersections.

31 While enhancing SUMO’s network setup with superior data import heuristics may seem
straightforward, the task is complex. Despite our initial enthusiasm, we found that achieving this
automation within the limited resources of this thesis is unfeasible. Scientific communities have
grappled with these issues for over a decade, due to the inherent complexity of the problem.
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3.3 Test case analysis with focus on human driving behavior

in Chapter 4. This enables the automated population of SUMO networks
from travel time-calibrated MATSim simulations (Chapter 5) and facilitates the
aforementioned consistency assessments (Chapter 6). Based on the results, we
will further refine our tool-coupling approach as necessary.
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4 Automated matching of meso and
microscopic network elements

In this chapter, we address the matching of road networks from meso- and
microscopic traffic simulations, using MATSim and SUMO as representative
tools. We begin with an introduction to graph theory in Section 4.1, providing
the foundational concepts necessary for exploring network structures. In
Section 4.2, we explore the intricacies and differences between meso- and
microscopic network representations. Finally, in Section 4.3, we propose
a method for the automated matching of network elements. The matching
concepts introduced are applicable to other meso- and microscopic traffic
simulation frameworks. However, when applied to different frameworks,
adjustments tailored to the unique characteristics of each tool will be required
to resolve discrepancies in network representations.

4.1 Fundamentals of graph theory and their
MATLAB implementation

To establish a foundation for our network matching approach, we provide a
concise introduction to graph theory and its significance in network analysis.
Graph theory is a branch of mathematics that provides a systematic framework
for modeling and analyzing relationships between objects. Its applications
extend across diverse fields, including computer science, mathematics, social
sciences, and biology.

At its core, graph theory examines the concept of a "graph," which consists of
a set of "vertices" (or junctions, in our case) and "edges" (representing road
segments). The edges define the pairwise connections between the vertices.
Graphs can be classified into various types, such as weighted, bipartite, directed,
or undirected, depending on the specific nature of the problem.
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4 Automated matching of meso and microscopic network elements

An undirected graph is a mathematical structure denoted as an ordered pair
𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of vertices and 𝐸 ⊆ {{𝑥, 𝑦} | 𝑥, 𝑦 ∈
𝑉 and 𝑥 ≠ 𝑦} is a subset of unordered pairs {𝑥, 𝑦}, with 𝑥 and 𝑦 being distinct
vertices in 𝑉 [15]. In this context, the vertices 𝑥 and 𝑦 are referred to as the
endpoints of the edge {𝑥, 𝑦}. The term multiple edges describes cases where
two or more edges exist between the same pair of vertices. When looped edges1

are allowed, the definition of 𝐸 extends to include cases where 𝑥 = 𝑦.

In directed graphs (or digraphs), the edge set is defined as 𝐸 ⊆ {{𝑥, 𝑦} | 𝑥, 𝑦 ∈
𝑉2 and 𝑥 ≠ 𝑦}, where each edge has a direction, with 𝑥 and 𝑦 denoting the tail
and head of the directed edge, respectively [15]. In this framework, the edge
{𝑦, 𝑥} is considered the inverse edge of the directed edge {𝑥, 𝑦}.

A subgraph refers to a smaller graph derived from a larger graph by selecting
a subset of its vertices and the edges between them [63]. Formally, a graph
𝐺′ = (𝑉 ′, 𝐸 ′) is a subgraph of 𝐺 = (𝑉, 𝐸) if and only if 𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸 .

In the context of GPS navigation and travel planning, weighted directed graphs
are frequently utilized. In such graphs, each edge is associated with one or
more numerical values known as weights. These weights typically represent
parameters such as road length, travel time, or other associated costs.

The MATLAB library2 provides a comprehensive set of tools for working
with weighted directed graphs. In MATLAB, the representation of vertices
(or nodes) and edges, along with their respective weight attributes, is managed
through data structures referred to as NodeTables and EdgeTables. These
data structures function as repositories for the relevant graph information.

In forthcoming work, the term MATSim digraph denotes a directed graph
representation of the MATSim road network, while SUMO digraph refers to
the analogous directed graph representation of SUMO’s microscopic network.
After parsing and converting both MATSim and SUMO network data into
corresponding MATLAB digraphs, we employ various object functions to
perform operations on these graph structures. These operations include tasks
such as extracting subgraphs, removing isolated edges, conducting breadth-first

1 A looped edge is an edge that connects a vertex to itself.
2 "Digraph Documentation," MATLAB, https://de.mathworks.com/help/matlab/ref/d
igraph.html. Accessed: Sep. 29, 2024.
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4.1 Fundamentals of graph theory and their MATLAB implementation

searches3 ,4 [119] and visualizing the graph. Given its relevance to our matching
routine, we next address the challenge of finding the shortest path between two
nodes.

In network routing, the shortest path problem5 refers to the task of identifying
a path between two nodes that minimizes the total weight of the connecting
road segments. Specifically, for undirected graphs, the shortest path problem
can be formulated as follows [62]:

A path is a sequence of vertices denoted as 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) ∈ 𝑉×𝑉×· · ·×𝑉 ,
where each vertex 𝑣𝑖 is adjacent to 𝑣𝑖+1. Two vertices are considered adjacent if
they share a common edge, which we denote as 𝑒𝑖, 𝑗 , connecting 𝑣𝑖 and 𝑣 𝑗 . For an
undirected graph 𝐺 and a real-valued weight function 𝑓 : 𝐸 −→ R, the shortest
path from vertex 𝑣𝑖 to vertex 𝑣𝑛 can be defined as the path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑛)
that, out of all possible paths of length 𝑛, minimizes the sum

∑𝑛−1
𝑖=1 𝑓 (𝑒𝑖,𝑖+1).

The Dĳkstra algorithm [64] is a widely recognized method for efficiently finding
the shortest path in weighted graphs with non-negative edge weights. The
algorithm maintains a set of visited vertices and iteratively explores the unvisited
vertices with the smallest tentative distances from the source vertex. In the
following, we employ the MATLAB implementation of Dĳkstra’s algorithm to
address shortest path problems.

Alternative approaches include the Bellman-Ford algorithm [14, 80] and the A*
algorithm [91]. The Bellman-Ford algorithm handles graphs with arbitrary edge
weights, including negative values, by leveraging dynamic programming. This
ensures the shortest path is found even in the presence of negative weight cycles.
In contrast, the A* algorithm [91] is a heuristic search method particularly
suited for large graphs. It combines a cost function (the actual cost to reach a
node) and a heuristic function (an estimate of the cost to reach the destination

3 Breadth-first search [119] is an algorithm used for the systematic exploration of tree and graph
data structures. It starts traversal from a given node and explores all neighboring nodes at the
present depth level before moving on to nodes at deeper levels. This method contrasts with
Depth-First Search [119], which explores a branch of the graph to its maximum depth before
backtracking and exploring other branches.

4 "BFsearch Documentation," MATLAB, https://de.mathworks.com/help/matlab/ref
/graph.bfsearch.html. Accessed: Sep. 29, 2024.

5 For further details on this topic, refer to [173].
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4 Automated matching of meso and microscopic network elements

from a node) to prioritize node exploration, efficiently examining the most
promising paths first.

4.2 Preparatory steps for MATSim-SUMO
network alignment

4.2.1 Differences in network representation

Assuming both MATSim and SUMO derive their network data from the
same map provider (in our case, OSM), a key distinction between MATSim’s
mesoscopic network representation and SUMO’s microscopic interpretation
lies in the dimensionality of the network. As illustrated in the lower-left panel
of Figure 4.1, MATSim network elements are one-dimensional, where nodes
represent junctions in a point-like manner, and links denote road segments
with linear appearances. In contrast, SUMO networks provide a more realistic
representation with junction and edge objects that possess distinct shapes (see
lower-right panel of Figure 4.1).

In the context of MATSim, each node is uniquely identified by a distinct
identifier (ID) and is associated with corresponding XY-coordinates. Although
MATSim can incorporate additional intersection-related features such as traffic
lights or lane configurations [237, 236], traffic stream priorities are typically
determined based solely on the outflow capacity 𝑄𝑖 of the links, as detailed in
Section 2.5.1.

In contrast, link objects in MATSim have a more complex set of attributes. The
from and to attributes specify the originating and terminating nodes, defining
the geometric structure of the network. Additional attributes include link length,
capacity, speed limit, the number of lanes, and permitted transportation modes.
By default, the original OpenStreetMap road identifier and street type are also
retained within the MATSim network file. It is important to note that all
MATSim links are unidirectional. The structural composition of a MATSim
network.xml file is as follows:
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4.2 Preparatory steps for MATSim-SUMO network alignment

1 <network>
2 <nodes>
3 <node id="100222579" x="3512258.722172523" y="5402776.230694266" >
4 </node>
5 </nodes>
6 <links capperiod="01:00:00" effectivecellsize="7.5" effectivelanewidth=

"3.75">
7 <link id="1" from="490652" to="75789739" length="30.52" freespeed="

13.89" capacity="600.0" permlanes="1.0" oneway="1" modes="car" >
8 <attributes>
9 <attribute name="origid" class="java.lang.String" >600579017</

attribute>
10 <attribute name="type" class="java.lang.String" >tertiary</

attribute>
11 </attributes>
12 </link>
13 </links>
14 </network>

Listing 4.1: Structural composition of a MATSim network.xml file, illustrating an examplary
node and link configuration. The example may not be internally consistent.

© OpenStreetMap

Figure 4.1: Visualization of OpenStreetMap network data interpretation by MATSim and SUMO:
An exemplary case study of Potsdamer Brücke, Berlin.
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4 Automated matching of meso and microscopic network elements

Similar to MATSim, SUMO also employs unidirectional edges, with opposing
edges sharing negative IDs. Each SUMO edge is comprised of lane objects
characterized by attributes such as ID, disallowed transport modes, speed,
length, and geometric shape. Junctions are two-dimensional and are defined by
centroids with XY-coordinates, outlined by closed polygonal chains. "Internal
links" standardize the connections between incoming and outgoing lanes within
junctions.

Right-of-way rules, traffic light strategies (e.g., "actuated," "time-based," or
"queue-based"), and other lane interactions are defined within junction objects or
are assigned to dedicated objects (e.g., tlLogic, connection). If not explicitly
specified in OSM data, these rules and strategies are heuristically determined
during network import. Multiple junction objects can be consolidated into
dedicated roundabout objects. An exemplary SUMO network configuration
is illustrated as follows:

1 <net
2 <edge id=" -24751154#0" from="268986891" to="69343073" priority="11"

type="highway.secondary">
3 <lane id=" -24751154#0_0" index="0" disallow="tram rail_urban"

speed="13.89" length="14.89" shape="1772.20,651.44 1781.46,663.10"/>
4 <lane id=" -24751154#0_1" index="1" disallow="tram rail_urban"

speed="13.89" length="14.89" shape="1769.69,653.43 1778.96,665.09"/>
5 </edge>
6 <tlLogic id="100224184" type="static" programID="0" offset="0">
7 <phase duration="82" state="GGGG"/>
8 <phase duration="3" state="yyyy"/>
9 <phase duration="5" state="rrrr"/>

10 </tlLogic>
11 <junction id="100214531" type="priority" x="4063.81" y="1732.46"

incLanes=" -124815278#4_0 124815278#3_0" intLanes=":100214531_0_0
:100214531_1_0" shape="4063.62,1735.66 4064.21,1729.28
4063.79,1729.26">

12 <request index="0" response="00" foes="00" cont="0"/>
13 <request index="1" response="00" foes="00" cont="0"/>
14 </junction>
15 <connection from=" -11283287" to="11283287" fromLane="0" toLane="0"

via=":100225887_0_0" dir="t" state="M"/>
16 <roundabout nodes="3426630575 48783203 48783226 48783230 48783231

48783235" edges="22723674 335564471 34707121 34707122 38424364
38424502"/>

17 </net>
18

Listing 4.2: Structural composition of a SUMO net.xml file, illustrating examples of edge,
tlLogic, junction, connection, and roundabout configurations. The example
may not be internally consistent.
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4.2.2 Comparison and harmonization of network attributes

Harmonizing import heuristics and typemaps for network consistency
Our network matching procedure primarily relies on the congruence of network
attributes between MATSim and SUMO. Consequently, we have observed a
significant enhancement in the quality of matched network elements when
default values during network import are harmonized.6 This alignment is
especially critical for the various typemap configurations, which specify the
legal speed limits assumed by both MATSim and SUMO during network import
from OSM for different road types. As presented in Table 4.1, substantial
differences exist in these speed limits.

Table 4.1: Comparison of typemaps in MATSim and SUMO, outlining legal speed limits (in km/h)
for various road types.

OSM MATSim SUMO
road type highway defaults VSP default urbanDe

motorway 120 120 140 100
-link 80 80 80 60

trunk 80 80 100 50
-link 50 50 80 50

primary 80 80 100 50
-link 60 60 80 50

secondary 30 15 100 50
-link 30 15 80 50

tertiary 25 12.5 80 50
-link 25 12.5 80 50

unclassified 15 7.5 50 −
residential 15 7.5 50 −

living street 10 5 10 −

By default, MATSim utilizes the so-called highway defaults to preset legal
speed limits for specific road types, unless explicitly overridden. To better reflect
realistic urban traffic conditions, including delays from traffic lights, right-of-

6 It is important to note that the actual traffic simulations in MATSim and SUMO utilize their
respective best-practice parameter values. The adapted import settings are solely employed to
align network elements and facilitate the network matching process.
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way rules, and stop-and-go patterns, speed limits on secondary and below are
reduced by 50% through the VSP setting (also referred to as VSPAdjustments).
Additionally, primary road capacities are reduced by 33%, and secondary road
capacities by 20%.

In contrast, SUMO’s default freespeed values are notably higher, even
after country-specific adjustments. To ensure network compatibility, we align
SUMO’s default speed limits with MATSim’s highway defaults. The actual
traffic simulations use VSP settings in MATSim and urbanDe settings in SUMO.

In addition to typemap settings, MATSim introduces non-integer lane numbers
(e.g., 0.5 or 1.5 lanes), which influence link capacity – a concept non-existent in
SUMO. Therefore, for the purposes of our matching routine (and not for actual
traffic simulation), we round MATSim’s lane numbers to the nearest integer
values to ensure compatibility.

Refining network element attributes for effective matching Prior to
initiating the network matching process, we enrich both the MATSim and SUMO
digraphs by augmenting them with additional edge attributes (weights). The
greater the distinctiveness of MATSim’s link attributes, the easier it becomes
to identify the corresponding SUMO edge based on similarity criteria. For
the purpose of node matching, we rely exclusively on the 𝑥 and 𝑦 coordinates,
which serve as appropriate matching attributes.

For edge matching, four primary attributes are employed as the basis for object
matching: edge length, speed limit, number of lanes, and edge orientation. The
first three attributes are natively available in both the MATSim and SUMO
network files. The edge orientation, denoted as 𝛼, is computed in degrees using
the spatial positions of the start and end nodes and their respective geographic
coordinates (𝑥𝑦):

𝛼 =

(
atan2(𝑥2 − 𝑥1, 𝑦2 − 𝑦1) ×

180◦

𝜋
+ 90◦

)
mod 360◦ (4.1)

Here, 𝑑𝑥 = 𝑥2 − 𝑥1 and 𝑑𝑦 = 𝑦2 − 𝑦1 represent the differences in longitude and
latitude, respectively. Adding 90◦ adjusts the angle to fit the convention where
north-facing edges are assigned an orientation of 0◦, and subsequent cardinal
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4.2 Preparatory steps for MATSim-SUMO network alignment

points are determined clockwise (East = 90◦, South = 180◦, West = 270◦). The
modulo 360◦ operation ensures that the angle is within the range [0◦, 360◦).

In all shortest-path calculations, we rely exclusively on the free-speed travel
time, denoted as 𝑇 = 𝐿

𝑉
, as the relevant weight. Previous attempts that focused

on link length (𝐿) yielded unsatisfactory results, such as cases where curved
highways in SUMO were erroneously matched with parallel exit and access
ramps in MATSim, as illustrated in Figure 4.2. By prioritizing free-speed travel
times, our approach mitigates this suboptimal matching behavior and better
accounts for highway hierarchies through the free-speed parameter (𝑉).

Figure 4.2: Shortest path search relying on link length 𝐿 as the decision criterion, illustrated for
the German federal highway B464 exit Holzgerlingen. Instead of matching with its
corresponding MATSim highway, the SUMO highway (red line) is erroneously matched
with an off-highway link path alternative (blue lines) due to the shortest path length
criterion. To preserve highway hierarchy and improve accuracy, we recommend using
free-speed travel time 𝑇 as the decision attribute.

Figure 4.3 presents probability-normalized attribute distributions for MATSim
and SUMO, covering various node and edge characteristics. The Berlin
metropolitan area, as defined in Table 4.2, serves as the geographic region of
interest for this analysis. Although adjustments to link speed and the number of
lanes have resulted in a relatively good alignment of these attributes, notable
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4 Automated matching of meso and microscopic network elements

Figure 4.3: Probability-normalized distributions of node and edge attributes in MATSim (blue)
and SUMO (red) for the Berlin area, as defined in Table 4.2.
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Table 4.2: Network characteristics of the Berlin metropolitan area, defined by coordinates 12.789459,
52.762061 (upper-left) to 14.000702, 52.240415 (lower-right), for different network
import options in MATSim and SUMO. In MATSim, the VSPAdjustments reduce
speed limits on secondary and lower-class links by 50%, primary road capacities by
33%, and secondary road capacities by 20%. SUMO networks without "internal
links" suppress lane-level connections within intersections, causing vehicles to traverse
junctions without detailed simulation. To prevent systematic shortening of route lengths,
edge lengths are measured as the distance between junction centers rather than external
junction boundaries.

MATSim SUMO
- VSP settings - - internal links -

metric with w/o. with w/o.
no. nodes 82221 62726
no. edges 192020 157949
total length in km 26476 24658 26857
edge length in m 137.9 156.1 170.1
∅ edge speed in kmh−1 25.0 33.0 39.8

discrepancies remain in link length. Differences are particularly significant for
edges shorter than 100 meters, while they are less pronounced for edges longer
than 100 meters.

The higher prevalence of shorter links in MATSim can be attributed to two
primary factors. Firstly, MATSim introduces new nodes during network import
whenever there is a significant change in road curvature, whereas SUMO
generates nodes only in response to changes in link attributes. Consequently,
MATSim has a higher proportion of shorter links compared to SUMO, despite
both networks having similar total lengths, as detailed in Table 4.2. Specifically,
for the Berlin metropolitan area, MATSim includes 31% more nodes and 22%
more links than SUMO.

Secondly, SUMO consolidates multiple nodes into a single junction ("cluster"),
with the cluster’s center typically located at the geometric center of the consoli-
dated shape. This approach in SUMO excludes short node-to-node edges (road
segments that would have connected the nodes now clustered), replacing them
with "internal links" (lanes within an intersection). This design choice leads to
a reduced number of short edges compared to those present in MATSim.
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SUMO networks 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 internal links suppress lane-level connections within
intersections, causing vehicles to traverse junctions without detailed simulation.
To prevent systematic shortening of route lengths, edge lengths are measured as
the distance between junction centers rather than external junction boundaries.
Since this approach closely aligns with MATSim’s point-to-point representation
of links, we utilize SUMO networks 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 internal links throughout the
matching procedure. However, we 𝑒𝑛𝑎𝑏𝑙𝑒 "internal links" during simulation to
accurately capture driving behavior within junctions.

4.2.3 Automated vertex offset correction

Both network representations in MATSim and SUMO rely on a planar spatial
reference system, which involves modeling the Earth’s surface as flat. In
this standardized Cartesian coordinate system, all spatial positions are defined
relative to an arbitrary origin point along orthogonal 𝑥 and 𝑦 axes, approximately
aligned with the cardinal directions. Various map projections are available for
transforming the Earth’s inherently curved surface into a planar representation.

For instance, our SUMO networks use the Universal Transverse Mercator
(UTM) projection, specifically ’UTM33’ with an additional offset for Berlin
region. The UTM system divides the Earth into zones denoted by numbers
and letters, strategically positioned to minimize distortion within each zone.
This approach mitigates challenges associated with representing a spherical or
ellipsoidal surface on a flat map.

In contrast, the Open Berlin Scenario [234] in MATSim uses the geodetic
Gauss-Krüger (GK) projection, specifically ’GK4’ for the Berlin region, to
represent its typically larger network areas on a two-dimensional plane. In
this approach, the Earth’s curved surface is approximated as an ellipsoid, and
geographic coordinates (latitude and longitude) are transformed into Cartesian
form, comprising easting and northing values.

To facilitate network attribute comparisons and spatial alignment, we reverse
these map projections by converting planar coordinates back into a geodetic
reference system, where distances and directions are measured directly on the
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4.2 Preparatory steps for MATSim-SUMO network alignment

Figure 4.4: MATLAB digraph representation of an exemplary network excerpt in Berlin revealing
a minor coordinate offset in both longitudinal and latitudinal direction.

Earth’s curved surface. For this transformation7, we employ the World Geodetic
System 1984 (WGS84) as the reference system.

After performing the coordinate transformation, a minor node offset remains
between MATSim and SUMO, as shown in Figure 4.4. Upon visual inspection
using OSM as reference, it appears that MATSim coordinates are generally
accurate. To systematically address this issue, we recalibrate all SUMO
coordinates against a sample of reference checkpoints, specifically nodes with
IDs that are present in both MATSim and SUMO (approximately 70% of the
total nodes). The presence of identical node IDs indicates that their OSM IDs
have not been altered by import heuristics and are, therefore, reliable.

The observed spatial offsets for this subset of nodes are not constant. Panel A
of Figure 4.5 exemplifies the longitudinal offsets of SUMO nodes relative to
their MATSim counterparts. While the longitudinal coordinates match closely
on the left side of the map excerpt, deviations increase substantially toward the

7 We used the Geodetic Toolbox (https://www.mathworks.com/matlabcentral/file
exchange/15285-geodetic-toolbox) by Mike Craymer (2019), MATLAB Central File
Exchange. Accessed: Jun. 11, 2019.
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4 Automated matching of meso and microscopic network elements

right. Combined longitudinal and latitudinal offsets result in spatial deviations
ranging from 10 meters to 24 meters (see Figure 4.5, panel C).

Based on the scattered longitudinal offsets in SUMO (Fig. 4.5, panel A), we
construct an auxiliary plane8 (Fig. 4.5, panel B) onto which all SUMO nodes
are projected. The longitudinal coordinates of the SUMO nodes are then
adjusted according to the offsets indicated by this plane. A similar method is
applied to correct the latitudinal offsets. This process effectively eliminates the
offset between corresponding MATSim-SUMO nodes, reducing the residual
discrepancies to negligible levels (Fig. 4.5, panel D).

4.3 Mathematical procedure for automated node
and edge matching

4.3.1 Scoring algorithm for evaluating network element
compatibility

Our objective is to match all SUMO edges and nodes with their potential
counterparts in MATSim, based on the similarity of their attributes. To quantify
this, we define a scoring metric, denoted as 𝑍𝛽 , where 0 ≤ 𝑍𝛽 ≤ 1, for each
network element 𝛽 ∈ {node, edge}. Here, a score of 0 indicates no match (i.e.,
significant discrepancies in attributes), while a score of 1 denotes a perfect
match, where all attributes of the node or edge are fully aligned.

Let 𝐴edge = {length, speed, lanes, orientation} represent the set of edge at-
tributes. For a specific SUMO edge 𝑠 ∈ 𝑆, where 𝑆 denotes the set of SUMO
edges, let 𝛼𝑠 ∈ 𝐴edge represent a specific attribute of edge 𝑠. Similarly, let 𝛼̃𝑚
represent the corresponding attribute of a MATSim edge 𝑚 ∈ 𝑀 , where 𝑀 is
the set of MATSim edges. The edge-specific score 𝑍edge

𝑠,𝑚 , which evaluates the
similarity between SUMO edge 𝑠 and MATSim edge 𝑚, is defined as follows:9

8 Utilizing the Gridfit Toolbox (https://www.mathworks.com/matlabcentral/fileex
change/8998-surface-fitting-using-gridfit) by John D’Errico (2019), MATLAB
Central File Exchange. Accessed: Jun. 27, 2019.

9 For the attribute "orientation," additional adjustments are applied to ensure that angular differences
are limited to a maximum of 180◦.
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4 Automated matching of meso and microscopic network elements

𝑍
edge
𝑠,𝑚 =

∑︁
𝛼∈𝐴edge

𝜔
edge
𝛼 ×

(
1 − min

(
|𝛼̃𝑚 − 𝛼𝑠 |

𝛼𝑠
, 1

))
︸                           ︷︷                           ︸

𝑍
edge
𝛼

(4.2)

∑︁
𝛼∈𝐴edge

𝜔
edge
𝛼 = 1 (4.3)

Here, 𝜔edge
𝛼 represents the weight factor associated with the attribute 𝛼 ∈ 𝐴edge.

The term
(
1 − min

(
| 𝛼̃𝑚−𝛼𝑠 |
𝛼𝑠

, 1
))

accounts for the relative difference between

the SUMO and MATSim attributes and is referred to as the sub-score 𝑍edge
𝛼 .

This relative difference is normalized to ensure that the score remains within
the defined range. If the difference between 𝛼̃𝑚 and 𝛼𝑠 exceeds 100% of 𝛼𝑠 , the
minimum function ensures the 𝛼-specific sub-score is set to zero. This prevents
large discrepancies in sub-scores 𝑍edge

𝛼 from disproportionately affecting the
overall score 𝑍edge

𝑠,𝑚 .

Similarly, the node-specific score 𝑍node is calculated using the node attribute
set 𝐴node = {longitude, latitude} in the same manner.

4.3.2 Methodology for optimizing attribute weights

With the general scoring function defined, the next step involves the parame-
terization of the attribute-specific weight factors 𝜔𝛽𝛼. Rather than assigning
equal weights to all attributes 𝛼 ∈ 𝐴𝛽 , we adopt an approach based on the
principle that attributes with greater similarity in their probability-normalized
distributions between MATSim and SUMO should receive higher weight.
This principle is illustrated in Figure 4.3, which demonstrates that, intuitively,
the edge attribute orientation should be assigned greater weight in network
matching, while the attribute link length should play a comparatively smaller
role.

To quantify the similarity between two distributions, we initially considered
using the Kolmogorov-Smirnov (KS) divergence [92, 184]. The KS divergence
measures the maximum vertical deviation between two cumulative distribution
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4.3 Mathematical procedure for automated node and edge matching

Figure 4.6: Visualization of the Kolmogorov-Smirnov (KS) divergence based on the cumulative
distribution functions for link length in MATSim (depicted by the blue line) and SUMO
(illustrated by the red line).

functions, as illustrated in Figure 4.6. Using cumulative distributions offers the
advantage of reduced sensitivity to binning effects. However, we did not employ
the KS test in this case because it is applicable only to continuous variables10

and is less sensitive to variations in the tails of the distribution, where vertical
separation is less pronounced.

Instead, we use the Kullback-Leibler (KL) divergence [124, 125] to quantify
the similarity between our empirical distributions, and thereby derive the
appropriate weight factors. The KL divergence measures the extent to which
one probability distribution deviates from another. Let 𝑀 and 𝑆 represent
two attribute distributions within the same probability space 𝑋 . For discrete
distributions, the KL divergence is defined as [41]:

𝐷KL (𝑀 | |𝑆) =
∑︁
𝑥∈𝑋

𝑀 (𝑥) log
(
𝑀 (𝑥)
𝑆(𝑥)

)
. (4.4)

10 Among the six distinct attributes associated with nodes and edges, two are discrete: "edge speed"
and "number of lanes."
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4 Automated matching of meso and microscopic network elements

In the case of continuous random variables, the KL divergence is represented
as an integral:

𝐷KL (𝑀 | |𝑆) =
∫ ∞

−∞
𝑚(𝑥) log

(
𝑚(𝑥)
𝑠(𝑥)

)
d𝑥. (4.5)

Here, 𝑚(𝑥) and 𝑠(𝑥) represent the probability density functions of the distri-
butions 𝑀 and 𝑆, respectively. It is important to emphasize that the Kullback-
Leibler (KL) divergence is always non-negative, with 𝐷𝐾𝐿 (𝑀 | |𝑆) = 0 if and
only if 𝑀 = 𝑆. When the probability of an event is high in distribution 𝑀 , but
low in distribution 𝑆, the KL divergence becomes significantly large, indicating
substantial deviation between the two distributions [41]. Additionally, it is
important to note that the KL divergence is asymmetric, as shown by the
following inequality:

𝐷KL (𝑀 | |𝑆) ≠ 𝐷KL (𝑆 | |𝑀). (4.6)

Figure 4.7 illustrates the characteristic asymmetry observed when applying the
KL divergence to all six node and edge attribute distributions. In this context,
the KL divergence (represented by the red dashed line) can be interpreted
as the cumulative result of the discrete function values. Specifically, the
positive contributions (indicated by blue bars) are partially offset by negative
contributions (represented by red bars), leading to the overall divergence
between the distributions.

To assign weight to the edge attributes 𝛼 ∈ 𝐴edge, we first compute the relative
KL divergence for each attribute:

𝐷
rel,𝛼
KL = 1 − 𝐷KL (𝑀 | |𝑆)𝛼∑

𝛼′∈𝐴 𝐷KL (𝑀 | |𝑆)𝛼′
(4.7)

In this formula, 𝐷KL (𝑀 | |𝑆)𝛼 represents the Kullback-Leibler divergence be-
tween the probability distributions 𝑀 (MATSim) and 𝑆 (SUMO) for the
edge attribute 𝛼. The set 𝐴 refers to the collection of all edge attributes,
𝐴edge, which includes length, speed, lanes, and orientation. The denomina-
tor

∑
𝛼′∈𝐴 𝐷KL (𝑀 | |𝑆)𝛼′ is the total sum of KL divergences across all edge
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4.3 Mathematical procedure for automated node and edge matching

Figure 4.7: Visualization of the KL-divergence (indicated by the red-dashed line) for the corre-
sponding node and edge attributes within a sample map excerpt of MATSim and SUMO.
To enhance clarity, positive contributions are represented in blue, while negative
contributions are denoted in red.
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4 Automated matching of meso and microscopic network elements

attributes in the set 𝐴edge. The subtraction from 1 is applied to convert the
KL divergence into a similarity score, so that a smaller divergence indicates
a greater similarity between distributions, which in turn results in a higher
relative weight for that attribute.

Next, we normalize these relative KL divergences to obtain the attribute-specific
weight factors:

𝜔
edge
𝛼 = 𝐷

rel, norm,𝛼
KL =

𝐷
rel,𝛼
KL∑

𝛼′∈𝐴 𝐷
rel,𝛼′

KL

. (4.8)

This step is essential to ensure that the sum of all weight factors for the edge
attributes equals 1, making the weights comparable across attributes. The
term 𝐷

rel,𝛼
KL represents the relative KL divergence of a specific edge attribute

𝛼 ∈ 𝐴edge, which is then normalized by dividing it by the sum of all relative
KL divergences across the attribute set 𝐴edge.

The result of this equation, 𝜔edge
𝛼 , represents the weight factor assigned to the

edge attribute 𝛼, which quantifies its relative importance in the overall network
matching process. Table 4.3 provides a comprehensive summary of the weight
factors computed for all edge and node attributes.

Table 4.3: Calculated KL-divergences 𝐷𝐾𝐿 (𝑀 | |𝑆) and weight factors 𝜔𝛽𝛼 for all edge and node
attributes. The cumulative weights of the respective node and edge attribute sets are
normalized to sum to one. This normalization ensures that the total contribution of all
attributes within each set – whether node or edge – remains balanced, allowing for a
proportional influence of each attribute in the matching process. Attributes labeled as
"c" represent those of continuous type, while attributes labeled as "d" denote discrete
variables.

attributes 𝛼 ∈ 𝐴𝛽 edge attributes 𝛼 ∈ 𝐴edge node attribute 𝛼 ∈ 𝐴node

length speed orientation no. lanes longitude latitude
types of data c d c d c c

𝐷𝐾𝐿 (𝑀 | |𝑆) × 10−2 0.460 0.477 0.002 0.352 - -
𝐷𝐾𝐿 (𝑀 | |𝑆) rel

𝛼 0.643 0.631 0.998 0.727 - -
𝜔
𝛽
𝛼 0.214 0.211 0.333 0.242 0.5 0.5∑

𝛼∈𝐴 𝜔
𝛽
𝛼 1 1
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4.3 Mathematical procedure for automated node and edge matching

In the case of edge matching, edge orientation is assigned the highest weight,
reflecting its strong influence on the similarity between MATSim and SUMO
networks. Conversely, edge speed and length receive considerably lower weight
factors, indicating their comparatively lesser role in the matching process.
This distribution of weights aligns well with the visual patterns observed in
Figure 4.3.

For node attributes 𝛼 ∈ 𝐴node, a different approach is adopted. We assign equal
weights to longitude and latitude, as both attributes are inherently intertwined
in defining node locations, and treating them separately would undermine
the integrity of the node matching process. Thus, 𝜔node

longitude = 𝜔node
latitude = 0.5,

ensuring that both attributes contribute equally to node similarity.

4.3.3 Detailed procedure for network element matching

Although both MATSim and SUMO use the same source (OSM) to build their
networks and generally preserve the original OSM object IDs for nodes and
edges where possible, relying solely on matching elements by identical IDs
has proven ineffective. While nearly 70% of nodes can be matched using this
trivial approach, very few edges can be matched. Table 4.2 highlights that
MATSim networks contain significantly more edges (+22%) and nodes (+31%)
than SUMO, despite having the same road granularity. Previous research
[209] has shown that SUMO networks can be imported from MATSim, but
this method is also impractical due to MATSim omitting key data that SUMO
requires. Forcing MATSim to retain this additional data (e.g., lane information,
junction shapes, and traffic signaling) complicates network file management
due to increased size. Consequently, we adopted the similarity-based network
element matching approach, developed throughout this chapter, with the detailed
procedure outlined below.

The matching procedure begins with a breadth-first search traversal of the
MATSim digraph11. Each MATSim and SUMO network object is matched
sequentially using the scoring function specified in Equation 4.2. Successful
matches with a score 𝑍𝛽 > 0.8 are recorded in dictionaries that catalog the IDs
of the corresponding MATSim and SUMO objects along with their achieved

11 defined as MATLAB’s graph-based representation of the MATSim network
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4 Automated matching of meso and microscopic network elements

scores. A separate dictionary is maintained to document rejection codes for
objects that could not be matched. It is noteworthy that not all MATSim network
objects will necessarily have suitable counterparts in SUMO. Nevertheless, this
limitation does not hinder the tool coupling process, as our traffic assignment
methodology, described in Chapter 5, effectively handles incomplete path
sequences for ego vehicles. The matching procedure comprises five distinct
techniques:

Part A – Clustered nodes The initial phase involves matching all SUMO
cluster nodes with their corresponding MATSim counterparts. A cluster node
aggregates multiple SUMO network nodes into a complex junction, often with
shared traffic lights, and is identified by a name prefixed with "cluster_" followed
by an enumeration of the merged node IDs, which align with MATSim node
IDs. After successfully matching all cluster nodes, we identify MATSim links
within the boundaries of these SUMO cluster nodes. Since these internal links
do not have direct counterparts in SUMO (represented by lane "connections"
rather than edges), they are assigned a match value of NaN12. In this step,
approximately 10% of MATSim nodes and 4% of MATSim network links are
successfully matched.

Part B – Non-clustered nodes This step involves identifying all remaining
MATSim nodes whose node IDs are also present in the SUMO digraph.
MATSim nodes not found in the SUMO digraph (approximately 20%) are
assigned a match value of "NaN", indicating that a viable node counterpart in
SUMO does not exist. This completes the node matching process.

Part C – Simple edges This phase focuses on matching less complex links
where each SUMO edge corresponds to a single MATSim link, rather than a
sequence of links. We first identify all unmatched MATSim links with viable
start and end nodes13. These nodes allow us to extract subgraphs (see Sec. 4.1)
from both MATSim and SUMO digraphs, including all connecting links. This
subgraph-based method is particularly effective as it also identifies opposing
links with reversed orientations and multi-edges14. By leveraging the reduced

12 "NaN" stands for "Not a Number." It is a special value used in computing to indicate that a value
is missing, invalid, or cannot be calculated.

13 Viable or valid MATSim nodes have a high-fidelity counterpart (𝑍𝛽 > 0) in the SUMO network.
14 Multi-edges are parallel links with identical start and end nodes, but differing in length. They

should not be confused with path sequences involving intermediate nodes.
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4.3 Mathematical procedure for automated node and edge matching

EdgeTables (see Sec. 4.1) of these subgraphs, we can match edge objects
based on attribute similarity. In this process, an additional 73% of MATSim
links are successfully matched, resulting in a cumulative match rate of 77% for
all MATSim links.

Part D – Complex Path Sequences This module tackles the more complex task
of matching entire edge paths in MATSim with their corresponding counterparts
in SUMO, while also handling branched path-finding solutions. Figure 4.8
demonstrates this process, highlighting the challenges of network matching
when there are significant differences between meso- and microscopic network
topologies (upper and middle panel).

We begin by identifying MATSim links with a valid start node. For example,
the blue root node 26984647 in Figure 4.8 (upper panel) exists in SUMO
as a cluster node (middle panel). The goal is to match the MATSim link
{26984647,248564486}. However, the target node 248564486 (blue diamond
in the upper panel) does not exist in SUMO.

For MATSim links lacking a valid end node, we apply a breadth-first search on
the MATSim digraph to explore the (branched) successors of the target node
(248564486), as illustrated by the tree structure in Figure 4.8 (bottom panel).
Exploration terminates when either a viable SUMO counterpart (a "border
node", highlighted in red) is identified or the branch is going to join a previously
discovered branch in the next exploration step (a "branch joiner", highlighted in
yellow).

We then construct a MATSim subgraph from all the explored MATSim nodes in
the tree structure (bottom panel) to reduce the complexity. For each ordered pair
of (root node, border node), we apply the shortest-path algorithm on the SUMO
digraph to identify the corresponding SUMO edge paths. The newly explored
edges and nodes form a new SUMO subgraph, which is then compared with
the MATSim subgraph. Scoring is conducted not on individual edges but on
the entire path, by summing length attributes and averaging length-normalized
speed, orientation, and lane attributes.

For example, as shown in Figure 4.8, the path to the red "border node I"
(723176262) results in a successful match. This implies that all MATSim
links defined by the node sequence 26984647,248564486,1722013566,
1722013583,723176262 (upper panel) are successfully matched with the
SUMO edge {26984647,723176262} (middle panel). In contrast, the path
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4 Automated matching of meso and microscopic network elements

Figure 4.8: Exemplary depiction of the path finding procedure described in Part D of our matching
routine. A chosen network excerpt is receptively illustrated in MATSim network
visualization (top panel), SUMO network rendering (middle panel) and in MATLAB
tree representation (bottom panel). For further explanation please refer to the main text.
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4.3 Mathematical procedure for automated node and edge matching

to "border node II" (248564675) does not yield a match due to significant
discrepancies in path attributes. Specifically, while the MATSim path takes
a shortcut through nodes 1722013566 and 287260406 (upper panel), the
corresponding SUMO path (middle panel) must traverse the major cluster
junction in the right section of the image before looping back to 248564675,
resulting in a low score. By the end of PART D, 99% of all MATSim links are
successfully matched.

Part E – Residual handling In the final stage of the matching procedure, any
remaining unmatched MATSim links are assigned a value of NaN, indicating
the absence of a corresponding counterpart in SUMO. This completes the
matching process.

4.3.4 Goodness of fit

Finally, we evaluate the quality of the matching outcomes. For the Berlin area, as
detailed in Table 4.2, we successfully matched over 82,000 MATSim nodes and
192,000 links. Figure 4.9 presents a flowchart depicting the edge-based scores
(𝑍edge) achieved across different matching stages (on the left axis) throughout
the process, with corresponding scores shown on the right axis.

The majority of link matches, approximately 90%, were achieved in both
Part C and Part D, with most scoring above 0.9 in 𝑍edge. Only about 4.3% of
matches received scores below 0.8. Additionally, 5.7% of MATSim edges were
matched with NaN, indicating that, as illustrated in the top and middle panels
of Figure 4.8, certain SUMO counterparts effectively do not exist. Overall, the
high fidelity of the matching results offers a solid foundation for our forthcoming
tool-coupling efforts, particularly the traffic assignment procedure discussed
in Chapter 5 and the MATSim-SUMO consistency assessments detailed in
Chapter 6.
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4 Automated matching of meso and microscopic network elements

Figure 4.9: Flowchart depicting the scoring outcomes for all matched MATSim links. The chart
categorizes these scores (on the right axis) according to the respective matching
technique, labeled from Part A to E, displayed on the left axis. Note that Part B, while
included in the overall process, did not contribute to edge matching, and therefore no
data is available for this section.
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5 Automated travel demand transfer
across dynamic meso-micro
network boundaries

This chapter marks the refinement of our initial, albeit rudimentary, effort to
transfer mesoscopic travel demand data into a microscopic traffic simulation, as
discussed in Section 3.3.2. In contrast to this preliminary approach, we now
place a strong emphasis on the development of effective heuristics and data
processing techniques to advance our travel demand transfer procedure from a
previously manual, labor-intensive approach to a highly automated and reliable
toolchain module with manageable computational demands.

To achieve this, we identify suitable fleet representatives from the pool of
MATSim DRT vehicles (Sec. 5.1) to reduce the computational costs associated
with microscopic ego-vehicle tracking. Furthermore, we introduce a method
that efficiently confines SUMO’s network boundaries to the selected trajectories
of interest, thereby minimizing the scope of microscopic modeling (Sec. 5.2).
Lastly, we present an automated approach for synthesizing microscopic travel
demand from MATSim sample runs (Sec. 5.3) and populate relevant network
areas. By the end of this chapter, we will have the capability to automatically
generate customized SUMO networks and their associated vehicle populations
from existing MATSim simulations.

5.1 Identifying suitable fleet representatives

Starting from an existing MATSim DRT simulation, the principal aim of this
section is to identify vehicles from the entire pool of DRT vehicles that are
representative of fleet usage, hereafter referred to as fleet representatives. Firstly,
these selected representatives help defining microscopic network boundaries
of interest, as detailed in Sec. 5.2. Secondly, these chosen representatives
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5 Automated travel demand transfer across dynamic meso-micro network boundaries

exclusively undergo the computationally resource-intensive process of micro-
scopic tracking1 in subsequent SUMO simulation. Depending on the specific
use case requirements, we present methodologies for extracting either a single
DRT vehicle or a sub-fleet of DRT vehicles. Importantly, our selection process
ensures that the chosen vehicles are representative for the original vehicle fleet
as a whole.

Our emphasis lies on the examination of three pivotal vehicle attributes: daily
mileage, operation time, and the number of served trips. These attributes
are thoroughly evaluated to determine a vehicle’s suitability to serve as a
representative within the fleet context. While MATSim provides access to
numerous additional attributes such as average or maximum velocity, occupant
counts, or waiting times between clients, these attributes are deliberately
excluded from our analysis for the sake of simplicity.

5.1.1 Selecting representative ego-vehicles

In the context of autonomous electric vehicle (AEV) development, identifying
a representative driving cycle is a crucial step in the process of technical
requirement engineering. A representative driving cycle serves as a benchmark
that summarizes the typical behavior of the entire AEV fleet, allowing OEMs
and automotive suppliers to design, validate and optimize their vehicles and
systems effectively. Consequently, this driving cycle becomes a foundational
tool for AEV engineers, as it ensures that the AEVs are designed to meet the
real-world demands of their intended use cases.

When identifying the representative among thousands of DRT vehicles, various
methods can be considered, each with its own implications. The choice between
these methods depends on the specific objectives and context for which the
driving cycle will be used. In total, we implement four different methods,
providing flexibility in choosing the most suitable approach.

1 Denotes the recording of spatio-temporal whereabouts of individual agents throughout a SUMO
simulation.
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5.1 Identifying suitable fleet representatives

(i) Mean vehicle. This approach involves the selection of a vehicle that best
represents the average characteristics of the fleet. While this method provides
a well-balanced representation, it may not adequately account for extreme or
outlier scenarios. Hence, we advise applying this method only if the presence of
extreme cases is of lesser concern. Technically, the "mean vehicle" serves as an
abstract representation, which summarizes the aggregated fleet characteristics
without necessarily corresponding to an actual vehicle within the dataset.
However, to approximate a mean vehicle, we rely on the method introduced in
Section 2.4.2 with the arithmetic mean serving as suitable ensemble estimate 𝜉 𝑗
(with 𝑗 of type mileage, operation time, number of rides). According to Eq. 2.5,
the mean vehicle is then defined as the entity 𝑖 whose attribute values 𝜉𝑖, 𝑗 exhibit
the smallest cumulative Euclidean distance (L2-norm) to the corresponding
attribute centroids (mean values) across all vehicles. To ensure that attributes
with varying scales do not disproportionately influence the averaging results,
we also perform feature normalization as demonstrated in Eq. 2.6.

At this point, we would also like to underscore our earlier findings discussed in
Section 2.6.4, which highlight the need for caution when extrapolating results
from sampled MATSim scenarios to full-scale 100% scenarios. Fleet-related
KPIs cannot simply be scaled by multiplying with the inverse of the sample size
𝑥 ∈ (0, 1]. As discussed by [109] and further elaborated in Section 2.6.5, the
average vehicle mileage in 10% MATSim sample runs should be adjusted by a
factor of 1.9, while average operation times remain largely unchanged. These
distortions must be carefully considered when selecting representative "mean"
fleet vehicles. However, the impact of such artifacts on the KPIs of specific
percentile vehicles remains unexplored and warrants further investigation.

(ii) Median vehicle. The median, in contrast to the mean, offers a certain
degree of resilience against the influence of outliers, making this metric a
particularly apt choice for the derivation of a robust representative vehicle. The
"median vehicle" corresponds to an actual vehicle within the dataset, capturing
the prototypical behavior of all DRT vehicles in the fleet. Let 𝑉𝑖 represent
the 𝑖th vehicle in the fleet with its belonging attributes 𝜉𝑖, 𝑗 . Borrowed from
Equation 2.6, the normalized Euclidean distance (𝑑𝑖,𝑛) from a specific vehicle
𝑉𝑖 to another fleet vehicle 𝑉𝑛 in the simulation can be calculated as
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𝑑𝑖,𝑛 =

√√√√∑︁
𝑗∈𝐽

(
𝜉𝑖, 𝑗 − 𝜉𝑛, 𝑗

𝑀 𝑗

)2

, (5.1)

where 𝜉𝑛, 𝑗 corresponds to the attribute set of the 𝑛th fleet vehicle, and

𝑀 𝑗 = max
𝑖,𝑛∈𝑁

|𝜉𝑖, 𝑗 − 𝜉𝑛, 𝑗 | (5.2)

ensures the normalization of the different distance contributions across the
entire fleet. After calculating the normalized Euclidean distances for each
vehicle 𝑉𝑖 in the dataset 𝑁 , the median vehicle (𝑉𝑚) is the one for which the
sum of distances to all other vehicles 𝑛 ∈ 𝑁 is minimized:

𝑉𝑚 = arg min
𝑖

∑︁
𝑛∈𝑁

𝑑𝑖,𝑛 (5.3)

In this formula, arg min𝑖 denotes the index of the vehicle that minimizes the
sum of distances (

∑
𝑛 𝑑𝑖,𝑛). In essence, 𝑉𝑚 maintains the closest proximity to

all other vehicles within the dataset, representing the "median" behavior of the
fleet.

(iii) 97.5th-percentile vehicle for worst-case scenario. This approach
entails identifying the vehicle whose attributes closely approach the upper
limit of the (mean-centered) 95-percent confidence interval, as demonstrated
in Figure 5.1, within a dataset characterized by normally distributed data with
a single attribute. This method is recommended for requirement engineering
scenarios where extreme cases carry substantial significance, ensuring that
the selected vehicle can handle worst-case scenarios with a high degree of
confidence. It is a conservative approach that focuses on risk mitigation.

To identify a vehicle that covers 97.5% of all driving situations within a multi-
variant environment, it is necessary to conduct a statistical analysis that accounts
for attribute variability across the dataset. However, instead of calculating the
mean and standard deviation for each attribute across all vehicles in the dataset,
we propose an approach similar to that used for determining the median vehicle.
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Figure 5.1: Exemplary visualization of a normally distributed dataset (bottom) with its cumulative
distribution (top). The values within one standard deviation 𝜎 of the mean account for
about 68% of the set; while within two and three standard deviations the values account
for about 95% and 99.7% respectively. For our requirement engineering purpose,
where extreme cases carry significant weight, we choose to identify the vehicle whose
attributes closely approach the upper limit of the (mean-centered) 95-percent confidence
interval.
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For illustrative purposes, consider a DRT fleet comprising 𝑁 = 1000 cars. If
we designate the median vehicle (𝑉𝑚) as the one for which the sum of distances∑
𝑛∈𝑁 𝑑𝑖,𝑛 to all other vehicles 𝑛within the dataset 𝑁 is minimized (see Eq. 5.3),

we define the 97.5th-percentile vehicle (𝑉97.5) to be located at the 975th position
when sorted by 𝑑𝑖 in ascending order.

To focus on the right-tail of the distribution, which represents worst-case
scenarios of high mileage, long operation time, and a large number of served
trips, we need to introduce negative contributions for vehicles in the left tail.
Therefore, we incorporate the signum function sgn(𝜉𝑖, 𝑗 − 𝜉𝑛, 𝑗 ) to distinguish
whether a given attribute contributes positively (right-tail) or negatively (left-
tail) to the distance. The normalized Euclidean distance is thus calculated
as:

𝑑𝑖 =

√√√∑︁
𝑗∈𝐽

sgn(𝜉𝑖, 𝑗 − 𝜉𝑛, 𝑗 )
(
𝜉𝑖, 𝑗 − 𝜉𝑛, 𝑗

𝑀 𝑗

)2
(5.4)

where 𝑀 𝑗 is defined in Equation 5.2, and sgn(𝜉𝑖, 𝑗 − 𝜉𝑛, 𝑗 ) is the signum function
of the difference between the attributes of vehicles 𝑖 and 𝑛. For fleet sizes
𝑁 ≠ 1000, we identify the vehicle of interest based on its relative position
within the sample size 𝑁 .

(iv) Data clustering. We opt for a data clustering technique as the fourth
method to identify representative vehicles. This approach is particularly well-
suited for managing large and heterogeneous datasets by forming cohesive
clusters, each characterized by distinct usage patterns. These clusters help
summarize the diverse operational profiles within our dataset. By selecting the
vehicle closest to the cluster centroid, we ensure that the representative vehicle
accurately reflects the typical behavior of that group.

As an example, we employ the k-means clustering method to categorize DRT
vehicles into three distinct clusters based on their usage: lightly used vehicles,
moderately used vehicles, and heavily used vehicles. These categories are
determined by attributes such as the number of served trips, daily mileage, and
operational time, as illustrated in Figure 5.2.
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Figure 5.2: K-means clustering was applied to a dataset consisting of 14,127 DRT fleet vehicles,
resulting in the formation of three distinct clusters based on various attribute combina-
tions. The bluish cluster represents heavily used vehicles, comprising approximately
45% of the entire fleet. The yellow cluster signifies moderately-used duty vehicles
(approximately 38%) characterized by moderate mileage, operational time, and the
number of served trips. Meanwhile, the reddish cluster corresponds to lightly-used
DRT vehicles, accounting for approximately 17% of the total fleet.

Next, we compute the centroid for each cluster, representing the average values
of these attributes for the vehicles within that group. For each cluster, we
identify the vehicle whose attributes are closest to the cluster’s centroid in
terms of normalized Euclidean distance (see Equation 2.6). This vehicle is
then considered the representative for that specific usage group. Generally, the
methodologies described in paragraphs (i) through (iii) could also be applied to
the identified clusters.

5.1.2 Selection of a representative sub-fleet from a DRT
fleet

Large-scale traffic simulations, which aim to replicate the daily mobility patterns
of millions of agents, pose substantial computational challenges. Certain
simulation output configurations, such as spatio-temporal vehicle tracking or
detailed network state logging, significantly increase computation time and
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memory requirements. To enhance the efficiency of our MATSim-SUMO
toolchain, we are exploring solutions to only track a selected subset of fleet
vehicles while preserving information about the entire fleet.

The most resource-efficient approach involves tracking a single vehicle, one that
best represents the desired driving pattern. However, vehicle component design
depends on various factors, including worst-case load profiles, cost-effectiveness,
and safety, comfort, or environmental considerations. Consequently, tracking
a single vehicle is not ideal, as it necessitates repetitive microscopic traffic
simulations when sizing multiple vehicle components or loads of multiple cars
are of concern.

Instead, we propose a versatile approach where we perform the computationally
intensive traffic simulation only once but with the possibility to switch between
several tracked vehicles during post-processing. Notably, we omit tracking fleet
vehicles that either exhibit redundant mobility patterns or do not contribute new
information to the overall fleet behavior.

The central question guiding our research is determining the optimal number
and selection of MATSim fleet vehicles to be tracked in SUMO, ensuring that
they remain statistically significant in terms of average fleet KPIs. This approach
allows us to strike a balance between computing demand and the accuracy
of our simulation results, ultimately improving the utility and practicality of
large-scale traffic simulations.

To address this question, we conducted an analysis using a 10% sample run
of MATSim, involving a total of 14,127 simulated fleet vehicles2. Table 5.1
provides a summary of all critical model inputs for this DRT scenario. Based
upon this simulation, we explore the statistical significance of tracking a specific
subset of vehicles in relation to average fleet KPIs.

Reducing a large dataset while preserving the distribution of its attributes is a
well-known challenge in statistics and data analysis. Our approach employs
a multi-variant form of stratified sampling [56], which involves segmenting
the dataset into strata based on key attributes (such as daily mileage, operation

2 It is crucial to emphasize that the fleet vehicle count in this analysis has not been adjusted to
represent a 100% sample size. The question whether the derived subfleet accurately represents
the entirety of a 100% sample remains subject for future investigation, but is beyond the scope
of our current research.
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Table 5.1: Model inputs of the 10% DRT scenario.

base scenario MATSim Open Berlin Scenario [234]
service area full city
pooling capacity 1
price (EUR/km) 0.18
base price (EUR) 0
min price (EUR) 1
constant daily car costs (EUR) -10.6
car costs (EUR/km) -0.2
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Figure 5.3: The left-side panels provide a visual representation of the scaled attribute distributions,
where the bluish area represents the initial DRT fleet sample, and the reddish area
represents the corresponding subset generated through multivariate stratified sampling.
On the right, the logarithmically-scaled cumulative probability of the unselected strata
is depicted throughout the sampling process. Sampling concluded when the cumulative
probability of unsampled strata fell below 5% (red dashed line), ensuring that the
selected sub-sample retains at least 95% of the original dataset’s variability. Through
this process, we effectively reduced the initial sample size from 14,127 DRT vehicles
to 1,618 cars, while preserving a high degree of conformity between the two datasets.
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time, and number of served trips) and then drawing samples from each stratum
in proportion to its representation in the original dataset. Here, each stratum
carries a specific probability of being selected, reflecting its contribution to
the total dataset. The cumulative probability across all strata is one, ensuring
that the entire population is fully represented in the sampling process. By
nesting these attribute strata within each other, along with their associated
probabilities, we account for interactions between attributes, thereby achieving a
more accurate representation of the population in our sample. The sub-sampling
process – marked by the iterative selection of samples from the strata – is
considered complete once the cumulative probabilities of the unselected strata3

in the original dataset fall below 5%. This ensures that the selected sub-sample
retains at least 95% of the total variability present in the original dataset.

The high level of confidence achieved by this systematic stratified sampling
approach is illustrated in Figure 5.3. In our case study, a final sub-sample
size of 1,618 vehicles is considered sufficient to represent the entire DRT fleet,
which initially comprised 17,127 vehicles. This sub-sample represents only
11% of the total fleet size. Furthermore, we have qualitatively observed that
as the distribution of attributes approaches normality, the relative size of the
representative subset decreases.

5.2 Implementation of dynamic meso-micro
network boundaries

Given the resource-intensive nature of large-scale microscopic traffic simula-
tions, our primary objective is to focus on detailed simulations of specific areas
or selected trajectories, rather than re-simulating the entire mesoscopic network
area. To achieve this, we developed three different approaches to tailor the
boundaries of the SUMO network, as outlined in Figure 5.4. In the ensuing
subsections, we will provide a concise overview of all three network extraction
techniques, followed by a discussion of their respective advantages and areas of
application.

3 Strata that were not sampled.
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Figure 5.4: Overview of use-case specific network extraction techniques

5.2.1 Gate identification method

In this trajectory-based approach, we denote a gate as a conceptual node
positioned at the outer boundary of the microscopic test case area. Gates
basically delineate the nodes at which the junction between mesoscopic and
microscopic network representation occurs.

The principle behind gate identification is as follows: Initially, we assign an
order to each node and link within the MATSim digraph. Nodes and links
of order 1 represent the trajectory of the selected DRT vehicle in MATSim.
Nodes and links of order 2 are those directly adjacent to the order 1 elements.
Similarly, nodes and links of order 3 are connected to elements of order 2, and
this process continues for higher orders.

Through a breadth-first search traversal of the MATSim digraph, we identify
suitable gates based on four key criteria: (i) A gate must be a node with an order
of at least 3. (ii) A gate should be situated at a minimum distance of 100 meters
from nodes of order 1. (iii) A gate node must have a corresponding SUMO
counterpart with high fidelity (𝑍 > 0.8; see Sec. 4.3.3). During this process,
we systematically evaluate various gate hierarchies, as illustrated in Figure 5.5.
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Figure 5.5: An illustrative representation of the gate identification methodology applied to the
trajectory of a selected DRT fleet vehicle within the Berlin metropolitan area. Com-
mencing with the primary trajectory of our ego-vehicle (depicted by the red path in
the upper left panel), successive exploration of neighboring nodes is undertaken, with
increasing levels of depth (order), until all four specified criteria are satisfied.

The fourth gate criterion (iv) is more intricate. In certain cases, a gate may
become "ingrown," meaning it is surrounded by nodes and links of higher
orders. For instance, consider a node 𝐺 that initially satisfies the criteria (i) to
(iii) for being a gate. However, in the immediate vicinity of 𝐺, adjacent nodes
do not yet fulfill the criteria for gate status, necessitating further exploration
of higher-order nodes. As a result, the initially designated gate 𝐺 becomes
ingrown and loses its eligibility for gate status, as it no longer serves as a
boundary to the current test case area but instead forms an isolated feature
within the microscopic network.
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Based on the MATSim gate nodes, we define a geographic boundary using
MATLAB’s boundary function4, where the shrink factor controls the degree of
tightness in the gate enclosure, as illustrated in panels G2 and G3 of Figure 5.6.
Conceptually, the gates can be visualized as nails hammered into a wooden
surface. A shrink factor of zero represents a boundary analogous to an elastic
band stretched around the outermost nails, enclosing only the peripheral points.
In contrast, a shrink factor of one pulls the boundary inward, similar to the
contraction observed when vacuum-sealing an object by extracting air, where the
elastic band conforms tightly around inner nodes. For our purposes, we choose
a shrink factor of one to enclose all gates while minimizing the inconvenience
of importing excessive, microscopic street segments.

4 "Boundary Documentation," MATLAB, https://de.mathworks.com/help/matlab/ref
/boundary.html. Accessed: Sep. 15, 2022.

Figure 5.6: Comparative illustration of trajectory-based network generation approaches: gate
identification method (top panels) vs. contour technique (bottom panels). Both
methodologies start with the trajectory of the selected DRT vehicle (depicted in the
left-side panels) and, through a series of distinct procedural stages, result in tailored
SUMO networks (as exhibited in the right-side panels).
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Once the boundary is defined, we convert it into a shapefile, which is then used
to geographically delimit the SUMO road network during the OSM network
import, as demonstrated in panel G4 of Figure 5.5. A key limitation of this
approach, however, is its inability to create ’holes’ within the network. For
example, in Figure 5.5, our vehicle of interest repeatedly crosses its own path
throughout the day, enclosing extensive urban areas. As a result, we are required
to model these areas in their entirety within SUMO, significantly increasing the
complexity of network cleaning, population, and simulation tasks.

5.2.2 Contour technique

The contour technique offers a more practical approach for defining SUMO
network boundaries based on the trajectory of an ego-vehicle, as illustrated
in the lower panels of Figure 5.6. Initially, we enclose all MATSim nodes
and links associated with the vehicle’s trajectory within a rectangular area
(panel C1), which is then rasterized into pixels. For optimal resolution, we
recommend each pixel to cover approximately 200-300 meters in real-world
dimensions. If a pixel contains a node or is intersected by a link5 that belongs
to the ego-vehicle’s trajectory, it is flagged, as indicated by the lighter color in
panel C1 of Figure 5.6.

Next, we generate a contour plot (panel C2), which leads to the creation of a
multilayered shapefile containing the polygonal courses (panel C3) of both the
outer boundary and any inner boundaries (’holes’), arranged in a sorted order.
The shapefile is then used once more during the SUMO network import process
to define the microscopic network, including any internal ’holes’ (panel C4).

One of the main advantages of this method is its flexibility, which allows for
fine-tuning of the contour width and adjustment of the maximum distance from
the trajectory. However, a significant limitation is that SUMO’s boundary nodes
may not always have a corresponding MATSim counterpart (see Sec. 4.3.3).
Consequently, as detailed in Section 5.3, ambient traffic vehicles may be
introduced into the SUMO network later in their routes, specifically at the
first node with a viable counterpart. To mitigate potential impacts on our

5 achieved by representing each link with a dense set of equidistant auxiliary points
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ego-vehicle, we recommend setting the contour width (or, equivalently, the
pixel resolution) to a sufficiently large value.

5.2.3 Area-based network generation

This approach involves the generation of SUMO networks either based on rect-
angular areas delineated by longitude and latitude coordinates or, alternatively,
by employing pre-existing shape files, e.g. the shape file defining the DRT
service area in MATSim. Other user-specified shape files are also qualified to
serve as input.

5.2.4 Discussion

Initially, our primary objective was to keep the microscopic network as compact
as possible in order to minimize network cleaning efforts. Accordingly, we
focused on techniques designed to transfer a single DRT vehicle of particular
interest – typically the most representative vehicle for a given use case – along
with all the ambient traffic it encounters, into the microscopic network.

Using the ego-vehicle’s trajectory in MATSim, we developed two trajectory-
based methods to generate the corresponding road network in SUMO. In both
approaches, the SUMO network was constructed to encapsulate only the specific
vehicle trajectories and the road segments closely aligned with these trajectories.
This strategy aimed to reduce the risk of erroneous junctions and traffic light
configurations. However, the gate identification method, while comprehensive
and effective for yielding appropriate MATSim-SUMO gate nodes, proved to
be highly resource-intensive and impractical for routine use. As a result, we
replaced this technique with the contour-based approach, which became our
default method for trajectory-based network generation.

As our toolchain evolved, our objectives expanded beyond modeling a single
ego-vehicle in SUMO. Consequently, we transitioned to area-based network
modeling techniques, focused on transferring entire DRT fleets – or representa-
tive sub-fleets – from MATSim to SUMO. From an engineering perspective,
modeling a set of DRT fleet vehicles along with their collective driving patterns
yields a more comprehensive and versatile dataset, providing extensive insights

153



5 Automated travel demand transfer across dynamic meso-micro network boundaries

through a single microscopic simulation. Accordingly, we adopted the approach
illustrated in the right branch of Figure 5.4. As discussed in Chapters 6 and
7, simulating traffic in larger (non-trajectory-based) areas generally enhances
simulation fluidity. To address the challenges associated with extensive network
cleaning, we are designing the upcoming MATSim-SUMO toolchain and,
more critically, the microscopic traffic simulation in SUMO to be resilient to
imperfections in the network.

5.3 Synthesis of microscopic travel demand
from MATSim sample runs

This section focuses on synthesizing complete microscopic travel demand from
mesoscopic transport simulations, where only a subset of agents is represented.
The method presented here refines the approach outlined in Section 3.3.2,
which lacked the necessary sophistication to automatically generate road-
bound microscopic travel demand from large-scale MATSim simulations. A
comparison of the two travel demand transfer methods is provided in Table 5.2.

Table 5.2: Key differences between our initial travel demand transfer procedure (middle column)
and the revised approach (right column).

initial procedure new procedure
(Sec. 3.3.2 ) (Sec. 5.3)

automation capability manual fully automated

microscopic network scope
solitary complexity-stripped

complex urban areas
street segments

meso-micro boundaries
manually selected dynamically selected

through visual inspection based on MATSim output
translation of network elements manual automated matching routine

spatial injection of agents
entrance and exit entrance and exit on all

on boundary edges only network edges possible

travel demand disaggregation
cloning of agents with departure times adjusted by

a temporal offset sampled from a Gaussian distribution

microscopic traffic assignment
via trips; routes are pre-defined routes

determined by DUAROUTER or adhoc rerouting
network cleaning manually ignored
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During the initial phase of our investigation (see Sec. 3.3), we focused on
simplified test cases to assess the feasibility of transferring travel demand
between mesoscopic and microscopic network models. This phase involved
several key simplifications in our methodology. First, by concentrating on
isolated street segments, we overlooked the complexities inherent in simulating
larger urban network areas, including traffic flow bottlenecks stemming from
complex junctions or network imperfections. Second, we restricted the entrances
and exits of agents in the test case to designated boundary links6, deliberately
excluding such events on other street segments within the test case. We
considered this a valid simplification, given that all three test cases outlined in
Section 3.3.1 contained relatively few activity zones (such as residential, work,
or leisure locations) that could have attracted agents in the MATSim simulation.
Third, we initiated SUMO simulation based on vehicle trips only, without
specifying complete vehicle routes. Instead, we utilized the DUAROUTER7 tool
to determine suitable routes prior to the actual traffic simulation. In general,
these routes do not necessarily align with the corresponding MATSim routes;
however, due to the limited scope of the test cases, the potential for significant
route divergence was minimal.

In addition to these major simplifications, our previous travel demand transfer
procedure involved substantial manual intervention, particularly in identifying
suitable boundary links in the MATSim environment and translating them into
corresponding SUMO counterparts. Additionally, significant manual effort was
required to adapt the SUMO network to the desired test case shape. We used
the SUMO network editor, Netedit8 , to correct network anomalies caused
by import heuristics and to refine lane connections within junctions and traffic
signal control strategies. In hindsight, this network optimization process proved
to be highly resource-intensive and time-consuming.

While this simplified approach to synthesizing microscopic travel demand
yielded satisfactory results during our preliminary study in Section 3.3, its
feasibility for larger test cases is limited. Its major drawback is the inability

6 Boundary links delineate the microscopic test case area, representing the final line of street
segments before adjacent roads were trimmed or clipped.

7“Duarouter Documentation,” SUMO, https://sumo.dlr.de/docs/duarouter.html. Ac-
cessed: Mar. 13, 2019.

8“Netedit Documentation,” SUMO, https://sumo.dlr.de/docs/Netedit/index.html.
Accessed: Mar. 13, 2019.
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to automatically adapt to new and more complex test cases. Additionally,
the resource-intensive nature of network cleansing becomes unmanageable
in the context of extensive, area-covering DRT fleet simulations. Although
our network matching routine (see Section 4.3.3) and the implementation of
dynamic meso-micro network boundaries (see Section 5.2) streamline certain
processes, additional improvements to the travel demand transfer procedure are
necessary and will be detailed in the following paragraphs. A solution to the
network cleansing challenge will be addressed in Chapter 6.

Reconstruction of spatio-temporal vehicle routes Instead of tracking
vehicle movements solely on boundary links, we analyze the MATSim event
file (events.xml) for all "vehicle-enters/leaves-traffic" and "link-enter/leave"
events to reconstruct the spatio-temporal trajectories of all vehicles. The
event file logs all significant actions undertaken by agents during mobsim (see
Section 2.1.1), as illustrated in Figure 5.7.

Figure 5.7: Schematic representation of the sequential actions an agent undertakes in MATSim
when selecting the car travel mode. All simulation actions, including those where agents
initiate activities or transition between links, are recorded as MATSim events. Each
event is characterized by multiple attributes, typically including the event timestamp,
the ID of the agent or vehicle involved, and the link ID where the event occurred. For
DRT fleets, additional dispatch-related events, such as the start and end of a dvrp task,
are also captured. This illustration is extracted from the MATSim User Guide [98].
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Truncation of vehicle trajectories to microscopic network boundaries
We then eliminate all vehicle events that occur outside the defined boundaries
of our SUMO network. This filtering step is essential for addressing scenarios
where MATSim vehicles merely cross the smaller SUMO network. To facilitate
the integration of these vehicle trajectories into the SUMO simulation, further
conditioning is necessary. Vehicles that pass through the defined microscopic
area multiple times are treated as separate entities within SUMO, even if these
movements originate from a single vehicle trip in MATSim. This truncation
procedure is schematically illustrated in Figure 5.8. Moreover, it is necessary to
adjust the trip departure times in SUMO to align with the timestamps at which
vehicles crossed the meso-micro boundary.

MATSim network

customized
SUMO network

MATSim network

customized
SUMO network

Figure 5.8: Visualization of the trip truncation procedure: MATSim simulations, represented
by the bluish rectangles in both panels, often cover extensive areas, whereas SUMO
simulations are focused on smaller network regions (indicated by the orange contoured
area). When MATSim vehicle trajectories intersect but do not remain within the SUMO
network boundaries (as shown by the bluish arrows in the left panel), these trajectories
undergo alteration, resulting in the truncation of certain route segments or entire trips
(depicted by the orange arrows in the right panel).

Traffic assignment based on vehicle routes Vehicle routes are incor-
porated into the SUMO simulation using the via9 attribute. This approach

9 Trip definition with incomplete routes (SUMO Documentation): https://sumo.dlr.de/
docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html. Accessed:
Apr. 25, 2023.
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facilitates the management of incomplete SUMO edge paths, which can arise
from the intentional exclusion of street segments with a matching score below
our threshold (𝑍 > 0.8; see Chapter 4.3.3). Initiating SUMO simulations
with complete but potentially mismatched edge paths could lead to simulation
failures. Currently, we do not implement any rerouting mechanisms;10 both
ego-vehicles and ambient traffic adhere strictly to their initially assigned routes.

Final modules for initiating SUMO simulation Figure 5.9 summarizes the
key steps necessary to built a customized SUMO network (represented by the
bluish boxes) and to derive the corresponding microscopic vehicle population
(depicted by the reddish boxes) from an existing MATSim simulation. So
far, we have successfully automated the generation of two of the three critical
SUMO input files (highlighted in yellow boxes), namely the network and routes
file. An essential – yet missing – component for initiating SUMO simulations
is the configuration file. The parameters within this file play a pivotal role in
the meso-micro calibration process, which is discussed in detail in Chapter 7.
Therefore, the final parameter settings will be determined in that chapter.

Prior to this, however, we must address the compatibility between MATSim and
SUMO regarding traffic dynamics and network capacity, and develop strategies
to align both frameworks effectively within the context of our vehicle-centered
use case. This issue constitutes a significant portion of this thesis and will be
explored in depth in Chapter 6.

10 This constraint will be relaxed as a result of the developments presented in Chapter 6.
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Figure 5.9: Foundational processes for creating a tailored SUMO network (depicted in bluish boxes)
and its corresponding microscopic vehicle population (illustrated in reddish boxes)
by leveraging existing MATSim simulations. At the end of this process, two of the
three key SUMO input files (highlighted in yellow boxes) are automatically generated,
paving the way for the initiation of the microscopic SUMO simulation. Of paramount
importance is the configuration file, the parameters of which hold a central role in our
forthcoming calibration procedure, as elaborated in Chapter 7.

159





6 Striving for synchronization –
towards consistent MATSim and
SUMO simulations

Shifting our attention from the foundational chapters, our focus now turns to the
practical integration of mesoscopic transport planning and microscopic traffic
simulation. In this context, MATSim and SUMO serve as the primary tools for
this integration.

This chapter commences with a comprehensive literature review on the subject
of hybrid and multi-level traffic simulation in Section 6.1, aiming to gain
valuable insights into how to effectively harmonize simulation frameworks of
varying aggregation levels and modeling regimes. Subsequently, Section 6.2
delves into a thorough analytical and numerical examination of traffic dynamics
in both MATSim and SUMO, with the intent of establishing consistency in this
crucial aspect.

As network capacity depends on both traffic dynamics and infrastructural
elements, we conduct a systematic numerical analysis in Section 6.3 to assess
the maximum achievable flow rates for various junction types for both MATSim
and SUMO simulations. We discuss the implications of out findings for our
tool-coupling efforts in Section 6.4.

The findings presented in this Chapter have already been documented in
our prior publication [207]. This paper was developed in parallel with our
calibration procedure outlined in Chapter 7. As a result of this concurrent
development, certain components of the calibration methodology (pre-published
in [208]) were already applied to the content of this chapter. These concurrent
advancements are marked and discussed as we proceed.
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6.1 Advancements in hybrid and multi-level
simulation techniques

The deduction of SAEV drive cycles requires the fusion of two opposing
objectives, namely large-scale DRT fleet simulation and accurate modeling
of driving dynamics. While the former aspect is often addressed through
mesoscopic agent-based transport simulation, the latter belongs to the domain
of microscopic traffic modeling [207]. For SAEV drive cycle deduction we
therefore need to combine both domains.

Multi-level traffic simulation has been object of research for many years [88].
The evident constraints of exclusive macro-, meso-, and micro-simulation
approaches have prompted the emergence of a wide variety of hybrid methods
that differ in terms of aggregation level, methodology, and scope of appli-
cation. By modeling areas of interest in high detail while adopting coarser
representations for surrounding regions, multi-level approaches are well-suited
to capture network-wide effects of local phenomena [42, 94], optimize city-wide
traffic management systems [44], and enhance simulation performance [228].
Typically, research in this domain either encompasses the evaluation of novel
multi-level simulation techniques [228, 37] or the description of protocols that
enable the coexistence of models [37, 108].

Distinctions are made between macro-micro and meso-micro approaches.
Macro-micro models combine flow- and vehicle-based traffic models [94,
228, 37, 108]. They often incorporate transition zones [94, 37] where both
regimes co-exist, facilitating the aggregation and disaggregation processes at
network borders. Disaggregation is particularly challenging because it involves
reconstructing information from lower-resolution models [228]. Furthermore,
the process of (dis-)aggregation comes at the price of computational overhead.
To address this issue, the usage of multi-resolution entities has been suggested
to consolidate properties from various resolutions into a single object [228].
Further studies have explored hybrid models combining micro- and macroscopic
representations of the Lighthill-Witham-Richards (LWR) model [37, 129, 182].

Meso-micro approaches, on the other hand, have also received attention [42, 203,
44, 54, 88], emphasizing the need for consistency across various facets, such as
traffic dynamics, network representation, vehicle routing, traffic performance,
and information exchange to enable co-simulation [44]. Dynamic modeling
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of micro-meso boundaries has been explored through a holonic approach,
where individual vehicles can operate autonomously or in grouped formations
to optimize computational efficiency [203]. In the realm of microscopic
simulation, concepts like ghost vehicles (used to prevent unwanted accelerations
in border regions) and virtual links (facilitating route consistency) are commonly
employed [37, 88, 42].

Despite the advantages of co-simulation approaches, they remain challenging
to implement and are often abandoned due to their complexity [203]. In
comparison, the potential of sequential tool-coupling approaches for specific
use-cases in large-scale applications is frequently overlooked.

In contrast to existing literature, our tool-coupling endeavor is constrained by
an established corporate tool landscape, which imposes specific limitations and
requirements on the integration process. For instance, this landscape includes
MATSim for evaluating new mobility concepts and services, and SUMO for
vehicle-centric analyses. Consequently, we cannot simply choose compatible
micro- and mesoscopic traffic flow models as the foundation for our work, as
done in [37]. Instead, we must integrate and harmonize these two tools to
enable the derivation of SAEV drive cycles. To the best of our knowledge, a
robust MATSim-SUMO coupling for large-scale 24-hour simulations has yet to
be demonstrated. Although the High Level Architecture approach outlined in
[88] evaluates the runtime performance of a MATSim-SUMO coupling, it does
not comprehensively address consistency issues.

In the ensuing analysis, we undertake an examination of the congruence between
MATSim and SUMO, focusing primarily on traffic dynamics, and to a lesser
extent, network capacity. The overarching objective is to ascertain a viable
meso-micro coupling approach specifically tailored to our specific use-case.
This also includes the identification of a feasible solution path in the event of
non-compatible frameworks.

To accomplish this objective, we systematically investigate the traffic dynamics
of both MATSim and SUMO across a series of three experiments of increasing
complexity: (i) analytically on a homogeneous road segment in steady-state , (ii)
numerically on a homogeneous road segment under non-stationary conditions
for a synthetic test case, and (iii) numerically for a highly non-linear real-world
test case in Berlin of medium size.
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The simulation results from both frameworks are analyzed with respect to
macroscopic flow-density-speed relations. It is important to note that the
outcomes of the idealized experiments (i) and (ii) are largely determined by the
methods employed to model traffic dynamics. In contrast, the findings from
the realistic test case (iii) are additionally influenced by differences in network
representation between MATSim and SUMO. In pursuit of a comprehensive
understanding, we also delve into network resistances1 within the Berlin test
case. This involves determining the maximum flow rates at corresponding
junctions in both MATSim and SUMO, and evaluating how these rates are
affected by the junctions’ right-of-way rules.

6.2 Analytical and numerical analysis of traffic
dynamics in MATSim and SUMO

6.2.1 Analytical analysis of the steady-state equilibrium on
homogeneous road segments

In steady-state conditions, also known as the stationary case, all macroscopic
traffic variables – such as flow 𝑞, density 𝜌, and average speed 𝑣 – remain constant
over time. On a homogeneous road segment without additional on- or off-ramps
or geometric irregularities, both vehicle flow and inter-vehicle spacing are
stable. In this scenario, SUMO operates without stochastic variations, assuming
that all vehicle-driver units have identical properties. Moreover, no interactions
between vehicles occur, as acceleration is set to zero, capturing pure free-flow
conditions. It is crucial that both MATSim and SUMO adhere to these boundary
conditions. Without these prerequisites, neither framework can be expected to
produce consistent results in terms of traffic dynamics.

However, neither MATSim’s spatial queue model nor SUMO’s car-following
model directly incorporate macroscopic traffic quantities due to their micro-

1 We deliberately use the term "resistance" here by analogy to electrical circuits, where resistance
quantifies how much a component opposes the flow of electric current. Similarly, in traffic
modeling, a narrow road segment can restrict the continuous flow of vehicles. A higher network
resistance reflects greater difficulty for vehicles to navigate through the network, much like
increased electrical resistance impedes current flow in a circuit.
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scopic nature. Microscopic models focus on the interactions between individual
vehicles and drivers, capturing how they respond to nearby vehicles and road
infrastructure. The cumulative effect of these interactions shapes the overall
macroscopic traffic flow. Macroscopic values can be viewed as a limiting
case (Grenzfall) of ensemble averages that only emerge in microscopic sim-
ulations as the size of the system tends toward infinity. Therefore, deriving
macroscopic quantities like average flow or density from these microscopic
models on a single-link level is predominantly a theoretical exercise aimed at
ensuring consistency between different modeling approaches under idealized
conditions. Such macroscopic measures are only meaningful under specific
boundary conditions, especially in steady-state scenarios where microscopic
quantities like individual vehicle speed and inter-vehicle spacing align directly
with macroscopic variables. In the following, we establish additional bound-
ary conditions to clarify the relationship between microscopic dynamics and
macroscopic quantities on a homogeneous road segment in steady-state.

Incorporation of road length in stationary conditions In stationary con-
ditions, the flow entering a road segment (𝑞in) must be equal to the flow exiting
the road segment (𝑞out):

𝑞in = 𝑞out = 𝑞. (6.1)

In MATSim, the number of vehicles 𝑁 on a link is defined as [78]:

𝑁 (𝑡) = 𝑈𝑄(𝑡) = 𝑈𝑄(𝑡 − 𝛿) + 𝛿
[
𝑞in (𝑡 − 𝛿) − 𝑞out (𝑡 − 𝛿)

]︸                            ︷︷                            ︸
𝛿𝑞 = 0 ⇔ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦

, (6.2)

which, under the condition given by Eq. 6.1, results in a constant number of
vehicles 𝑁 = 𝑈𝑄. Incorporating this into the fundamental definition of density,
which represents the number of vehicles per unit length of the road (𝐿), results
in the following equation:

𝜌 =
𝑁

𝐿
=
𝑈𝑄

𝐿
. (6.3)

Moreover, the fundamental relationship between macroscopic flow, density,
and speed is given by:

𝑞 = 𝜌 · 𝑣. (6.4)
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This relationship typically holds for large or infinite road segments, where
changes in vehicle positions do not significantly alter flow and density char-
acteristics. However, for finite and especially short road segments, we need
to incorporate the link length 𝐿 into stationary conditions to establish an
equilibrium between flow 𝑞, density 𝜌, and speed 𝑣 that respects the spatial
constraints of the link at each discrete simulation time step in both MATSim
and SUMO.

To ensure that the inflow and outflow are spaced such that the link never becomes
empty, we require that the free-speed link travel time, given by:

𝑇free =
𝐿

𝑣
, (6.5)

corresponds to an integer multiple of the time headway2 between consecutive
vehicles, defined as:

Δ𝑡 =
1
𝑞
. (6.6)

This leads to the boundary condition 𝑇free = 𝑘 · Δ𝑡 (where 𝑘 ∈ N), which both
MATSim and SUMO must satisfy under stationary conditions:

𝐿

𝑣
=
𝑘

𝑞
. (6.7)

Depending on the chosen average speed and flow rate, various steady-state
configurations can be established using this boundary condition, each ensuring
spatial consistency along the road segment.

Linking SUMO’s car-following behavior to macroscopic traffic parame-
ters Converting SUMO’s microscopic car-following model into macroscopic
quantities requires a slightly different but similar approach. Instead of a spe-
cific time headway (see Eq. 6.6) between consecutive vehicles, we require a
well-defined gap function 𝑔(𝑡) to ensure that the Krauss model provided in
Equation 3.11 satisfies stationary conditions. To achieve this, we employ once
again the fundamental definition of density. Specifically, we express the density

2 Time interval during which two consecutive vehicles cross a specific location with their respective
front bumpers.
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as the reciprocal of the sum of the average gap 𝑠 and the vehicle length 𝑙𝛼,
resulting in the following expression:

𝑠 =
1
𝜌
− 𝑙𝛼 . (6.8)

As previously mentioned, in steady-state, all individual vehicle speeds 𝑣𝛼 are
equivalent to the microscopic equilibrium speed 𝑣𝑒 and, by extension, to the
macroscopic speed 𝑣. When reformulating the Krauss model (see Eq. 3.11)
by (i) replacing its gap function 𝑔(𝑡) with the static gap 𝑠 from Equation 6.8,
(ii) substituting all velocity-related terms with the macroscopic steady-state
velocity 𝑣, and (iii) eliminating all time dependencies, we obtain:

𝑔 (𝑡 )=𝑠︷     ︸︸     ︷(
1
𝜌
− 𝑙𝛼

)
−𝑣𝜏

𝑣
𝑏
+ 𝜏 = 0. (6.9)

From this, we derive:

𝑣 =
1
𝜏

(
1
𝜌
− 𝑙𝛼

)
. (6.10)

Combining this result with the fundamental relationship in Equation 6.4, we
derive:

𝜌 =
1

𝑣𝜏 + 𝑙𝛼
, 𝑞 =

1
𝜏
(1 − 𝑙𝛼𝜌), (6.11)

illustrating how SUMO’s microscopic quantities translate into macroscopic
terms under steady-state conditions. Additionally, Equation 6.10 shows that
the reciprocal of the reaction time, 1/𝜏, governs the relationship between
equilibrium speed 𝑣e and gap distance 𝑠. Therefore, SUMO achieves steady-
state equilibrium only within a defined velocity-gap ratio. Under these conditions
and the established boundary parameters, SUMO’s car-following model aligns
with MATSim’s queue model in steady-state scenarios.
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6.2.2 Numerical analysis of transient states on a
homogeneous road segment

As discussed in the previous section, MATSim and SUMO show consistent
traffic dynamics under steady-state conditions on a homogeneous road segment.
However, such conditions are of limited practical relevance in real-world
applications. Therefore, we now turn our attention to the non-stationary
(transient) case through numerical simulations. In this scenario, macroscopic
state variables vary over time, and both simulation frameworks account for
non-linear effects such as vehicle interactions and heterogeneous vehicle-driver
units.

Our investigation begins with a simplified roundabout scenario (see Figure 6.1),
using the default settings for both MATSim and SUMO. The roundabout
consists of four edges arranged in a diamond shape, each with an access and
exit ramp at the cardinal points. All road segments are 1000 meters long, single-
lane, and have a speed limit of 50 km/h to simulate urban driving conditions.
The simulation starts by introducing 1200 agents (300 per on-ramp), evenly
distributed along the far end of the network in both MATSim and SUMO. Once
inserted, the agents must complete three-quarters of the roundabout before
exiting. This setup gradually leads to congestion, particularly on the target road
(highlighted in orange in Figure 6.1). To illustrate the transient behavior in both
frameworks, we capture macroscopic flow, density, and speed at various time
points along the inner roundabout edge.

The results are depicted in Figures 6.2 and 6.3. Each column of panels
presents the outcomes for different parameter settings within the SUMO and
MATSim simulation environments. The rows, on the other hand, illustrate the
relationships between traffic flow and density, speed and density, and speed and
flow, respectively.

The leftmost panels in Figure 6.2, labeled A1 to A3, display the simulation results
from SUMO and align reasonably well with empirical real-world observations.
To clarify the temporal evolution, successive data points are connected by gray
lines. Panel A1 illustrates a linear increase in traffic flow as density rises,
representing the free-flow regime. Once the system reaches its ultimate capacity
– approximately 1400 vehicles per hour, at a critical speed of around 25 km/h
– traffic flow starts to decline, signaling the onset of congestion. A hysteresis
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Figure 6.1: Schematic representation of the roundabout scenario design. Starting from nodes 1, 3, 5,
and 7, a total of 1200 agents (300 per on-ramp) are evenly distributed across the network.
Each agent then completes three-quarters of the roundabout circuit before being allowed
to exit. This leads to increasing congestion along the target road (highlighted in orange).
At the junctions where feeder roads meet the inner roundabout edges (nodes 2, 4, 6, and
8), MATSim assigns equal priority to all directions. In contrast, SUMO uses zipper
merge configurations at opposing junctions (nodes 2 and 6) to facilitate vehicle entry,
while prioritizing inner roundabout edges at nodes 4 and 8 to prevent gridlock.

effect becomes apparent as traffic stabilizes after congestion: before the traffic
breakdown, the flow peaks at 1400 vehicles per hour at a density of around
55 vehicles per kilometer, but after the breakdown, traffic flow remains below
1000 vehicles per hour at similar densities.

In the middle panel A2, a decrease in space-averaged velocity with increasing
traffic density is observed, which aligns with expectations. At the start of the
simulation, drivers are largely unaffected by the presence of other vehicles,
allowing them to travel at their maximum speed. However, the average free-
speed velocity on the road segment remains around 40 km/h, which is below
the legal speed limit of 50 km/h due to the need for vehicles to decelerate
before making a 90-degree turn onto the next road. The yellowish outlier in the
low-density region, visible in panels A2 to A3, is attributed to the roundabout
configuration. Towards the end of the simulation, as the observed road segment
nears emptiness, platoons of vehicles from low-priority access roads arrive in
bulk, leading to artificial traffic jams at the end of the link.

Understanding the traffic dynamics in MATSim is a more complex task, requiring
the investigation of various simulation scenarios to pinpoint and explain the
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Figure 6.2: Macroscopic flow-density-speed relationships for a homogeneous road segment under
transient conditions in the roundabout test case (Part I). Columns show different
simulation scenarios for SUMO and MATSim, while rows represent flow-density,
speed-density, and speed-flow relationships. SUMO results (gray dots) are included in
all MATSim panels for comparison. See main text for details.
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Figure 6.3: Macroscopic flow-density-speed relationships for a homogeneous road segment under
transient conditions in the roundabout test case (Part II). Columns show different
scenarios for MATSim, while rows represent flow-density, speed-density, and speed-
flow relationships. SUMO results (gray dots) are included for comparison. MATSim
sample runs (scenario D) have been re-scaled to a 100% sample size and plotted on a
logarithmic scale. See main text for details.
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sources of certain artifacts. Scenario B is crafted to highlight the influence of
different data aggregation techniques, with significant variations in macroscopic
quantities depending on the chosen methodology.

Initially, we aimed to calculate the time-mean (local) traffic flow, along with the
space-mean (instantaneous) density and velocity within a 1-minute aggregation
interval. However, the results, represented by the yellow line (MAT1) in
panels B1 to B3, proved of limited value. Specifically, the traffic density was
significantly skewed by the discrete nature of the queue model and the activation
of the stucktime parameter (see Section 2.5.2) during congested conditions.
This parameter overrides the storage capacity constraint of downstream links
when the leading vehicle in the queue remains stationary for an extended period
(typically 30 seconds). As indicated by the yellow data in panel B2, it seemed
that a 1-kilometer road segment could hold up to 250 vehicles. However,
technically speaking, only 133 cars – each with a length of 7.5 meters – could
physically fit on such a link if packed bumper-to-bumper (refer to orientation
line 2 in panel B2 of Figure 6.2). More realistically, accounting for an additional
vehicle gap of 2.5 meters, a 1-kilometer link would accommodate only about
100 vehicles (see orientation line 1).

To mitigate spatial distortions, the reddish line (MAT2) employed a smoothing
moving average with a window size of 5 minutes. However, this adjustment
did not entirely eliminate the pronounced discretization effects. In contrast,
the bluish line (MAT3) applied the fundamental hydrodynamic relationship
𝜌 = 𝑄/𝑉 , where the flow was computed based on the space-mean velocity and
smoothed density at one-second intervals. Although not entirely without limita-
tions, this approach provided the most interpretable data and was subsequently
adopted as the preferred aggregation technique for all remaining panels.

In scenario B, the analysis of traffic dynamics reveals key differences between
MATSim and SUMO:

1. Ultimate Capacity: SUMO shows a higher ultimate capacity, around
1400 cars per hour, compared to MATSim’s 1050 cars per hour. This
difference arises because SUMO calculates link capacities as simulation
outputs, while MATSim uses predefined capacities (set by OSM import
heuristics), limited by the flow capacity parameter (1000 cars per hour in
this case). A MATSim capacity closer to 1500 cars per hour might better
represent the road type.
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2. Free-Flow Velocity: MATSim achieves a higher free-flow velocity of
50 km/h, compared to SUMO’s 40 km/h. MATSim agents can reach
the legal speed limit even on sharp curves, while SUMO accounts for
necessary deceleration before turns.

3. Recovery from Traffic Breakdown: MATSim shows slower recovery
from traffic breakdown compared to SUMO. This may be attributed to
the roundabout configuration: as the MATSim simulation concludes and
the road segment nears emptiness, platoons of vehicles from low-priority
access roads arrive in bulk, creating artificial traffic jams at the end of
the link. This is then followed by a sudden halt in vehicle inflow, leaving
minimal time for recovery. In contrast, SUMO’s gradual vehicle outflow
allows for smoother traffic relaxation.

Scenario C illustrates the impact of varying network properties. In its default
configuration (referred to as MATOSM in panels C1 to C3), MATSim’s
simplified node model fails to account for the additional temporal delays
associated with accurate intersection representation and traffic signal operations.
Consequently, agents in the simulation often travel at speeds that exceed practical
limits, adhering strictly to legal speed limits and link capacities provided by
network import heuristics. To address this limitation, a global correction
known as VSPAdjustments3 was introduced. This adjustment (referred to as
MATVSP) involves reducing speed limits by 50% for primary and lower roads
and decreasing road capacities by 33% and 20% for primary and secondary
roads, respectively. The effects of these modifications are evident in the
simulation results, as shown in panels C1 to C3.

In the context of our roundabout test case, MATVSP traffic dynamics exhibit
more pronounced deviations from SUMO’s behavior, particularly with traffic
flow and vehicle speeds being overly pessimistic. These discrepancies may
stem from the specific characteristics of the roundabout scenario. However,

3 The VSPAdjustments in MATSim (see Section 4.2.2) were introduced by the MATSim
community to align simulated travel times with real-world observations. MATSim simplifies
vehicle behavior by assuming constant speeds, leading agents to travel at the maximum speed
allowed by the speed limit under free-flow conditions. This simplification, while computationally
efficient, does not capture the reality of urban driving, where drivers must navigate right-of-way
rules and other traffic conditions. The VSPAdjustments address this by implementing reduced
speed limits for urban roads and adjusting road capacities, thereby enhancing the realism of
MATSim’s traffic simulations.
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it is uncertain whether these differences will persist in more complex and
realistic urban environments, which feature a broader range of road types,
varied right-of-way rules, and diverse infrastructural elements. This issue will
be further explored in the upcoming real-world test case in Section 6.2.3.

Scenario D explores the impact of MATSim’s sample runs on macroscopic
traffic dynamics. To enable meaningful comparisons, traffic flow and density
have been rescaled to represent 100% samples. Generally, simulations with
lower sample proportions, such as MAT1/10/50%, yield results that closely
resemble those from SUMO, up to a traffic density of approximately 100 cars
per kilometer. Beyond this density threshold, MATSim’s traffic dynamics,
as shown in panels D1 to D3, increasingly diverge from realistic patterns as
sample proportions decrease. Notably, the pronounced "nose-like" shapes at
the right end of each curve in D1 are largely due to the stucktime parameter.
This parameter distorts both traffic flow and density, with its effects becoming
more severe at lower sample rates. For example, at a 1% sample rate, the traffic
densities become unrealistically high, reaching approximately 2500 cars per
kilometer, as shown in D2. For 100% sample simulations, these artifacts are
minimal. However, as previously noted, MATSim cannot achieve the same
ultimate flow rates as SUMO.

Additionally, it is crucial to acknowledge that under congested traffic conditions,
the stucktime mechanism significantly impacts traffic flow. In situations of
complete gridlock, vehicles with a weight4 of 100 are advanced to the next
link every 30 seconds. This behavior results in an ultimate capacity of 12,000
vehicles per hour for a 1% sample run. This issue is partly visible in panel D3,
where the violet curve in the upper right corner shows a flow of approximately
3,500 vehicles per hour. Panels D1 and D3 have been truncated to exclude
even higher flow rates for clarity. The synthetic roundabout test case reveals
significant congestion within the MATSim framework. The impact of the
stucktime parameter on MATSim’s flow in more complex and realistic scenarios
warrants further investigation and will be addressed in Section 6.2.3.

In summary, MATSim and SUMO traffic dynamics are comparable under
free-flow and moderately congested conditions when MATSim uses 100%

4 In a 1% sample run in MATSim, each vehicle represents 100 vehicles, leading to an effective net
space occupancy of 750 meters.
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sample runs. However, achieving this similarity requires adjusting MATSim’s
link capacities to align with those in SUMO. One approach to achieve this
adjustment, for instance, is detailed in [180]. Moreover, employing a 100%
sample in MATSim is impractical due to the loss of computational efficiency
and the substantial effort needed to model such traffic demands. Conversely, in
heavily congested conditions, MATSim and SUMO show significant differences.
Here, the stucktime parameter in MATSim dominates traffic flow, leading to
unrealistically high traffic densities on downstream links, especially with lower
sample proportions.

6.2.3 Numerical analysis of non-stationary states in an
urban real-world test case

In our real-world test case, we begin with the 10% MATSim Open Berlin
Scenario [234] as the basis for our analysis. A medium-sized inner-city area
is isolated from this scenario, as shown in Figure 6.4, and the corresponding
road-based travel demand is transferred to a SUMO model, utilizing a network
imported from OSM data. For simplicity, we chose not to include SAEV fleets
in our current analysis, as our investigation focuses specifically on network-wide
traffic dynamics. Comprehensive simulations involving SAEV operations have
been conducted, among others, through collaborative efforts in the publicly-
funded research project PAVE – Potentiale Automatisierter Verkehrssysteme5

[120].

The Open Berlin Scenario used in this study underwent a calibration process
comprising two main steps. First, calibration was based on traffic counts
by adjusting activity locations with the CaDyTS framework, as detailed in
[77]. Second, mode choice calibration involved refining departure times,
vehicle routes, and mode-specific utility constants through a manual calibration
procedure. This process included several hundred iterations to achieve a
quasi-stable user equilibrium, similar to a Nash equilibrium [165, 164, 61].
To improve travel time realism, VSPAdjustments were applied to account for
additional delays from factors such as traffic lights, lane changes, and right-of-

5 PAVE – Potentiale Automatisierter Verkehrssysteme https://pave-your-way.de [120].
Accessed: Sep. 15, 2022.
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Figure 6.4: The left panel shows the configuration of our Berlin test case, with the red line indicating
a sample trajectory of an selected ego-vehicle. This trajectory defines the network
boundary, marked by the blue outer contour. The right panel presents MATLAB
digraph representations of the networks in MATSim and SUMO, adapted from [208].
In total, the MATSim network comprises 2318 links and 1204 nodes, while the SUMO
network includes 1538 edges and 699 nodes.

way rules not explicitly modeled in MATSim. A more detailed description of
the calibration process is provided in [234].

The SUMO model underwent a different calibration procedure, as detailed in
Section 7 and pre-published in [208]. This calibration focused on adjusting
factors affecting travel demand, routing decisions, and congestion to align with
the MATSim model, with a particular emphasis on travel times. Our objective
was to ensure that SAEV trips from the MATSim simulation are temporally
consistent with the SUMO simulation, where fleet vehicles are expected to
reach their designated customers and charging stations on schedule.

We like to stress, that we did not apply identical vehicle routing strategies in both
MATSim and SUMO, as initially claimed in Section 5.3. This approach led to
significant gridlock issues in the more congestion-prone SUMO simulation, as
will be demonstrated in Chapter 7. Instead, we permitted ad-hoc re-routing to
achieve a state approximating user equilibrium in SUMO. After calibration, any
discrepancies in individual trip travel times and distances between MATSim
and SUMO were found to be negligible for our specific use case.

In the subsequent analysis, we focus exclusively on the network-wide (global)
density-flow-speed relationships, as illustrated in Figure 6.5. Compared to the
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Figure 6.5: The panels, arranged from left to right, display the network-wide relationships between
flow and density, speed and density, and speed and flow over a complete day in the
Berlin test case. Each data point represents a 15-minute interval. MATSim density is
calculated using time-mean flow and space-mean velocity to mitigate visual distortions
caused by the stucktime artifacts.

simplified roundabout test case, the traffic dynamics in the real-world scenario
reveal more pronounced disparities.

The most significant difference is observed in macroscopic traffic flow, as shown
in the left panel of Figure 6.5. Despite accounting for the capacity-reducing
effects of the VSPAdjustments, MATSim’s maximum observed traffic flow
exceeds the corresponding value in SUMO by a factor of three. MATSim
remains within the free-flow regime throughout the day, while SUMO transitions
to a congested regime at a traffic density of approximately 30 vehicles per
kilometer. Specifically, around 15% of the SUMO agents are removed from
the simulation due to heavy congestion on major roads, which limits available
space for vehicle insertion. This discrepancy suggests that MATSim’s network
elements have higher flow capacities and greater resilience to congestion – a
phenomenon examined in more detail in Section 6.3. Additionally, MATSim’s
traffic densities appear more realistic when observed at the network-wide level
compared to a link-wise representation, as the stucktime artifacts are smoothed
across space.

However, it is important to note that MATSim’s storage capacity constraint is
frequently violated, as illustrated in Figure 6.6. Each time a vehicle enters a
link in the Berlin test case, we record the link length and the number of queued
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Figure 6.6: Density-related short-link artifacts encountered in MATSim simulation, illustrated
by the 10% Berlin test case (rescaled to 100%). The figure shows storage capacity
violations as a function of link length, with each data point representing a link-entering
event. In total, over 1.285 million link-entering events were recorded. For each
event, the number of queued vehicles upon link entry is compared to the link’s actual
storage capacity. A dot-dashed line distinguishes between realistic queue lengths
(yellowish-green) and dubious ones (orange-reddish) where queue lengths exceed the
link’s physical length. A dashed line indicates an excess of 50 vehicles. In a 10%
sample run, only links longer than 75 meters can reasonably accommodate vehicles
(one vehicle of weight ten occupying a net space of 10 × 7.5 m). The artifacts become
more pronounced with lower sample rates. The most critical event, 𝑃1, shows 120
excess cars (a 900 m vehicle queue bumper-to-bumper) on a 35-meter link.

vehicles. In the figure, each data point represents a specific link-entering event,
with color indicating the discrepancy between the actual number of vehicles on
the link and its theoretical storage capacity. Data points highlighted in red or
orange indicate vehicle excess, while those in yellow or green reflect available
capacities. A dashed-dotted line represents a fully occupied link, and a dashed
line marks an excess of 50 vehicles. Particularly noteworthy is event 𝑃1, where
120 excess cars – equivalent to a 900 m queue bumper-to-bumper – accumulate
on a single link just 35 meters long. Therefore, the stucktime parameter is a key
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factor in MATSim’s inability to accurately model spatial spillback effects on
upstream links. On shorter links, this parameter acts as a synthetic vehicle sink,
intensifying the observed discrepancies in MATSim and SUMO.

The speed-density relationship shown in the middle panel of Figure 6.5 supports
the findings from the roundabout test case. Specifically, the VSPAdjustments
in MATSim lead to significantly lower speeds in low-density areas compared
to SUMO. However, MATSim’s space-averaged speeds decline only slightly
as density increases, whereas SUMO shows a sharp decrease. Beyond a
density of approximately 33 cars per kilometer, MATSim agents generally travel
faster than their SUMO counterparts. This discrepancy occurs because, under
high congestion (likely due to signalized intersections), time delays become
excessively high in the microscopic traffic simulation. Despite these differences,
travel times over the course of the day in SUMO are consistent with those in
MATSim, as both frameworks have been calibrated to align in this respect (see
Chapter 7).

However, similar to the density-related artifacts (see Figure 6.6), travel times
(and by extension, velocities) are also distorted in MATSim at the link-wise
level, as shown in Figure 6.7. This plot displays link travel times in relation
to link length and link occupancy (number of queued vehicles). Generally,
it is observed that shorter links with longer vehicle queues experience more
pronounced restrictions due to MATSim’s flow capacity constraint6, leading to
a less favorable ratio of actual travel time to free-flow travel time.

Consider a link with a nominal flow capacity of 900 vehicles per hour. The
minimum time headway between successive vehicles at the link exit is 4 seconds,
40 seconds, and 400 seconds for 100%, 10%, and 1% sample runs, respectively.
Consequently, in MATSim, potential time losses accumulate predominantly
on shorter links, particularly at lower sampling rates. The shorter the link, the
more pronounced the impact of the imposed waiting times due to flow capacity
constraints relative to the link’s free-flow travel time. An extreme example is
the event (𝑃2), where a vehicle enters a 3.5-meter-long link and experiences a
link travel time approximately 112 times longer than its free-flow passing time.

6 To recall, the flow capacity constraint operates analogously to a queueing system, permitting
vehicles to exit the link (one at a time) at intervals of 3600

𝑓 𝑓
seconds only, where 𝑓 𝑓 denotes the

link’s flow capacity in vehicles per hour; see Section 2.5.1.
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Figure 6.7: Flow-related short-link artifacts encountered in the MATSim simulation, exemplified
by our 10% Berlin test case (rescaled to 100%): The graph illustrates link travel times,
normalized relative to their free-flow travel times, as a function of both link length and
occupancy (number of queued vehicles). Notably, normalized travel times increase
as link length decreases. This effect is caused by the flow capacity constraint, which
only allows vehicles to exit a link when the capacity has not yet been fully utilized.
Shorter links are more prone to congestion due to frequent violations of the storage
capacity constraint, resulting in significant time delays as MATSim attempts to process
all queued vehicles. An extreme example is the event (𝑃2), where a vehicle entering a
3.5 m link experiences a travel time 112 times longer than its free-flow passing time.

In contrast, longer links generally maintain free-flow conditions, as vehicle
queues do not propagate effectively upstream due to the density-related artifacts
caused by the stucktime mechanism, as previously discussed.
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6.3 Comparative analysis of junction flow rates
in Berlin – a numerical examination

6.3.1 Comparison of theoretical and observed junction
inflows in MATSim and SUMO

As demonstrated in Section 6.2.3, MATSim consistently exhibits significantly
higher network-wide traffic flows compared to SUMO. To investigate whether
these discrepancies arise from the absence of appropriate network resistances
in MATSim, we examine key contributing factors. Notably, MATSim neglects
important flow-reducing elements such as right-of-way rules, lane-change
maneuvers, deceleration due to network geometry, left turns in the presence
of multi-lane oncoming traffic, and the impact of low-power vehicles within
First-In-First-Out (FIFO) queues. While the general link capacity reduction
of 20–33%, implemented via the VSPAdjustments, addresses some of these
issues, it may not be sufficient to compensate for all the omitted flow bottlenecks.

For a quantitative assessment, we focus on junction flow rates, as deviations are
anticipated to be more pronounced at this level compared to individual links.
We assume that SUMO’s junction flow rates primarily determine the overall
network flow, with right-of-way rules and traffic signals serving as limiting
factors. In total, we examine 680 distinct junctions within the Berlin test
case, as depicted in Figure 6.4, and conduct a comparative evaluation of their
inflow7 rates in both MATSim and SUMO. The junctions vary considerably in
geometric complexity, ranging from simple four-armed intersections to intricate,
asymmetrical configurations with multiple lanes. Additionally, the nodes are
subject to individual right-of-way rules, which contribute to the diversity and
comprehensiveness of our analysis.

Figure 6.8 provides a visual representation of the outcomes from this examina-
tion. In the figure, each blue dot represents an individual junction and denotes
the maximum observed inflow rate recorded across all 15-minute intervals of
the day in both SUMO and MATSim. It is important to note that temporal

7 The choice to focus on inflow rates rather than outflow rates is a personal preference, as both
metrics are quantitatively identical aside from the temporal delay.
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<1.26> 
<3.36> 
<4.51> 

Figure 6.8: Numerical observations of the maximum junction inflow rates in SUMO, compared
with those obtained from MATSim simulation, depicted as blue dots. Additionally,
theoretical junction flow rates (extracted from the network file) are presented as yellow
and red dots, representing potential scenarios with MATOSM and MATVSP network
properties, respectively. Each dot on the graph corresponds to an individual junction
within the Berlin test case. Diamond symbols represent the mean values of the respective
datasets, providing a summary of the central tendencies. The values enclosed within
angle brackets ("< >") denote the ratio of the mean MATSim flow rates to those
observed in SUMO. The graph is further supplemented with dashed-dotted, dashed,
and solid lines, which delineate the points at which the flow ratios between MATSim
and SUMO equal 1, 2, and 10, respectively. These lines serve as reference indicators
for the comparison of network performance between the two simulation frameworks.

alignment of the maximum flow rates between SUMO and MATSim is not a
required condition for the data points.

On average, the junction throughputs in MATSim exceed those in SUMO by a
factor of 1.26, as indicated by the bluish diamond symbol, which is positioned
on the lower right side of the 1:1 auxiliary line. Junctions located on this line
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exhibit identical flow rates in both MATSim and SUMO. Data points located to
the left of the line indicate higher capacities in SUMO, while data points to the
right of the line signify higher capacities in MATSim.

Furthermore, the yellowish and reddish datasets offer insights into MATSim’s
theoretical junction flow capacities with MATOSM and MATVSP network
properties, respectively. These values are not derived from simulations but
are instead obtained from the flow capacity attribute within the network file.
Specifically, only the capacities of the links contributing to the inflow at a
junction are aggregated.

It becomes apparent that the observed junction flow rates in MATSim do not
fully utilize their maximum potential, which aligns with the overall free-flow
driving conditions observed within the mesoscopic framework. Theoretically,
MATSim’s junction flow rates, depending on the network import settings
(MATOSM or MATVSP), exceed SUMO’s capabilities by a factor of 3.4 or 4.5
on average. Interestingly, the MATVSP run demonstrates the highest junction
capacities, despite the initial intent of VSPAdjustments being to slightly
reduce mesoscopic traffic flow to compensate for the absence of right-of-way
rules and traffic signals (which are not accounted for by MATSim). Notably,
the link capacities for the MATVSP scenario initially appear to decrease by
33% and 20% for primary and secondary roads, respectively. However, this
reduction is offset by an exception where capacities are subsequently doubled for
links shorter than 100 meters. Consequently, this results in a capacity increase
of 33% for short primary roads and a remarkable 60% for short secondary
roads compared to MATOSM settings. Given the prevalence of short links in
the Berlin test case, it is plausible that the VSPAdjustments contribute to the
higher junction flow rates observed.

However, it is important to note that visual inspections during SUMO simulations
indicate that not all SUMO edges reached their maximum capacity either,
despite the network experiencing significant congestion during daytime hours.
Therefore, accurately deriving the maximum flow rates in SUMO from this
analysis is challenging, as low junction capacities often result from upstream
bottlenecks and are not directly related to the junction’s intrinsic flow rate.
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6.3.2 Analysis of simulated junction inflows by junction
type

In this section, we delve deeper into the examination of maximum flow rates
for various junction types. While network-wide traffic dynamics indicate that
MATSim generally has higher junction capacities, the presence of blue data
points in the upper left corner of the 1:1 auxiliary line in Figure 6.8 suggests that
there are still many junctions where SUMO’s flow rates exceed those observed
in MATSim. This raises the question of whether certain junction types are
more favorable to either MATSim or SUMO.

To address this question, we have enhanced our analysis by incorporating
additional information about the right-of-way rules associated with each node.
The updated scatter plot in Figure 6.9 a) now reflects these details. Each data
point represents an individual junction, with the color denoting the specific
right-of-way rules governing that junction. A preliminary examination reveals
that junctions controlled by traffic lights, indicated by yellow dots, appear to
have higher capacities in MATSim. For other junction types, the balance shifts
toward MATSim for major, multi-lane junctions (of high capacity), while minor
junctions are more evenly distributed between the two simulations.

These initial observations are supported by the histograms presented in panels
b) to e) of Figure 6.9. Panel b) illustrates the distribution of all 684 junction
inflow rates, irrespective of their right-of-way rules. It shows that SUMO has a
larger number of junctions with flow rates below 1500 cars/h, while MATSim
features more nodes with higher capacities. On average, MATSim’s flow rates
exceed those of SUMO by approximately 240 cars/h.

Panels c) to e) display kernel-smoothed distributions (KSD) for each specific
junction type. For minor junctions governed by right-before-left rules, SUMO’s
flow rates tend to be higher, likely due to MATSim’s reduced free-flow velocity
and capacities resulting from the MATVSP network settings. A different pattern
emerges for more heavily trafficked priority and traffic light-controlled junctions.
In these cases, SUMO vehicles frequently experience delays, whether from
yielding to high-priority edges or waiting at traffic lights. Conversely, MATSim
appears to have fewer constraints on velocity and capacity in these scenarios
and seems to perform better under denser traffic conditions.
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dead end

priority

right before left

traffic light

<528> 
<598> 

<1175> 
<885> 

<2127> 
<1585> 

<1136> 
<899> 

Figure 6.9: Panel a) presents a comparison of the maximum observed daily junction flow rates in the
Berlin test case between MATSim and SUMO, categorized by different junction types
as indicated by the color coding. Panel b) provides an overview of the flow distribution
across junctions, regardless of specific right-of-way rules. Panels c) to e) display
kernel-smoothed flow distributions for right-before-left, priority, and traffic-signaled
junctions, respectively. The mean values, enclosed within angle brackets ("< >"), are
visualized by dash-dotted lines.
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Based on these findings, we assume that right-before-left junctions in SUMO are
likely to experience higher vehicular traffic throughout the day compared to their
MATSim counterparts. This expectation arises from two factors: (i) SUMO
agents have the flexibility to re-route and bypass potential artificial network
bottlenecks, which are often present in imperfect (uncleansed) networks, and
(ii) SUMO is required to handle the demand generated by MATSim, and
directing more traffic through these minor junctions may help SUMO manage
this demand more effectively, thereby relaxing congestion at other hotspots.

6.4 Implications for further toolchain design

Our analysis has shown that traffic dynamics in MATSim and SUMO are
consistent within a narrow range, corresponding to steady-state equilibrium
conditions on homogeneous road segments. However, a more nuanced picture
emerges when examining the idealized transient case, such as the roundabout
scenario. In this case, traffic dynamics in MATSim align closely with SUMO
for 100% sample runs under free-flow or moderately congested conditions. Yet,
under heavily congested conditions, MATSim’s traffic dynamics diverge signif-
icantly from SUMO. In these situations, the remaining traffic flow is primarily
influenced by MATSim’s stucktime parameter, which leads to unrealistically
high densities on downstream links.

We further investigated the impact of various MATSim parameter adjustments,
including the introduction of VSPAdjustments for network properties and
different sample shares. The results provided a mixed assessment. While the
MATVSP network properties were ineffective in harmonizing traffic dynamics
within the roundabout test case, they did help reduce discrepancies, particularly
in terms of average velocity, in the more realistic Berlin test case. For low
sample shares, the stucktime mechanism led to significant shortcomings in
MATSim’s traffic dynamics, affecting both the idealized roundabout scenario
and the larger Berlin case.

In essence, network-wide traffic flow in MATSim tends to be excessively high,
and link-level densities are often unrealistically large. The inflated traffic flow
is due to MATSim’s limited network resistances, stemming from the lack of
right-of-way and traffic signal modeling. The excessive densities result directly
from the stucktime parameter, which frequently violates the storage capacity
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constraint, particularly on shorter links. Consequently, this limitation hampers
MATSim’s ability to accurately model spatio-temporal congestion patterns.

Furthermore, MATSim’s driving conditions display an unrealistic level of
stability in the free-flow regime, particularly for 24-hour simulations of real-
world urban scenarios, where much more congestion would be expected during
peak hours. This issue has also been highlighted by [9]. The authors argue that
MATSim agents tend to become increasingly efficient during the iterative process
of optimizing their daily activity schedules, striving to reach a user-equilibrium
state. In large-scale scenarios, this co-evolutionary traffic assignment process
can span several hundred iterations, during which agents gain global knowledge
and become adept at avoiding congestion – an advantage that real-world drivers
typically lack. As a result, severe congestion is effectively eliminated as the
iterations progress.

From these findings, several implications can be drawn for our specific use case
of deducing SAEV drive cycles:

(i) Co-simulation of MATSim and SUMO is not a feasible option due to
inconsistencies in traffic dynamics and network representation. SUMO would
struggle to handle the demand generated by MATSim, as MATSim’s mesoscopic
road and junction capacities are overly high, and its link-level traffic dynamics are
too unrealistic to be meaningfully translated into microscopic traffic simulation.

(ii) Rather than attempting to align network capacities or make MATSim
more microscopic in terms of traffic dynamics, it is more pragmatic to accept
these non-conformities and structure our final tool-coupling approach around
these boundary conditions. Efforts to achieve greater conformity would be
resource-intensive and could undermine the framework’s inherent strengths in
computational performance and scalability.8

8 Although we devised several optimization measures for the MATSim simulation, their imple-
mentation was ultimately discarded. Applying corrective measures would require deviating from
the calibrated domain of the Open Berlin Scenario, and the lack of necessary data precludes
any attempt at re-calibration. Thus, adhering to MATSim’s default settings is essential. For
completeness, we briefly outline the enhancements considered. First, we explored introducing
a more realistic stucktime period to mitigate simulation artifacts. Additionally, we considered
methodologies for tracking sample-share vehicles of varying weights across multiple edges
(allowing a single vehicle to occupy multiple edges simultaneously), with the goal of reducing
short-link artifacts and supporting spatio-temporal spillback effects on upstream links in MAT-
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(iii) As a direct consequence, we should explore additional degrees of freedom
tailored to our vehicle-centered use case, even if this restricts the overall
applicability of our toolchain. A more flexible sequential tool-coupling approach
could be considered, where computationally intensive tasks are automatically
assigned to mesoscopic modules (e.g., multi-modal, large-scale fleet analysis),
while only relevant, simplified map sections are re-simulated at the microscopic
level (e.g., SAEV trajectories). The success of this approach hinges on the
condition that our ego-vehicles experience delays similar to those in the travel-
time-calibrated MATSim model. Ensuring consistency in traffic performance
across models is therefore essential.

(iv) Achieving this requires moving away from strict routing conformity
between MATSim and SUMO. Different routing strategies are necessary to
counterbalance inconsistencies in traffic dynamics and network representation
in order to achieve similar traffic performance. This flexibility would also allow
SUMO agents to bypass artificial bottlenecks that may arise from automated
network generation. The success of a large-scale, multi-level simulation depends
on the model’s robustness in handling such imperfections; otherwise, the
coupling approach would remain constrained by the limitations of microscopic
simulation, where large-scale applicability is hindered by deficient network
data quality, necessitating extensive network cleansing efforts.

(v) The primary goal is to ensure consistency in traffic performance, even if
it requires relaxing traffic conditions in the more congestion-prone SUMO
simulation by simulating less than a full 100% population.9 In this context,
raw vehicle counts are of secondary importance; the key requirement is that the
average link speeds match across different hours of the day in both MATSim
and SUMO. Consequently, the primary purpose of ambient traffic in SUMO is
to introduce delays for our SAEV ego-vehicles that are comparable to those in
the travel-time calibrated MATSim model.

Although this chapter did not model SAEV fleet characteristics, our proposed
sequential tool-coupling approach can easily be extended to a fleet context. A

Sim. Lastly, we evaluated the approach proposed by [180] to adjust MATSim’s link capacities to
better align with those observed in SUMO, which more accurately reflect real-world conditions.

9 As will be shown in Chapter 7, simply applying re-routing strategies cannot resolve this issue.
With imperfect networks, it is necessary to reduce the sample size for meaningful SUMO
simulation.
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significant advantage of our approach is its foundation on MATSim’s ability
to simulate demand-responsive transport systems, as outlined in Section 2.1.2.
This includes various SAEV-related aspects, such as fleet dispatching and
rebalancing strategies [140], as well as considerations related to EV range
and charging constraints [49, 134]. By mapping MATSim’s travel demand to
SUMO, SUMO inherently inherits all fleet-related operational characteristics.
We can then track the trajectories of fleet vehicles in SUMO to obtain more
realistic velocity profiles. Additionally, the behavior of autonomous vehicles
can be parameterized using SUMO’s car-following model, as proposed in
Section 3.2.2, and our calibration procedure detailed in Chapter 7 remains
sensitive to different driving styles.

In the following chapter, we will outline the calibration methodology used
to synchronize SUMO-generated travel times with those observed in MAT-
Sim simulations, ensuring that DRT vehicles transferred across meso-micro
boundaries exhibit similar spatio-temporal trajectories. It is important to note
that travel times within the MATSim Open Berlin Scenario have already been
adjusted to align with real-world observations (see Section 6.2.3). Technically,
this MATSim calibration applies strictly to the base scenario (see Section 2.2.1)
without further modifications. With the introduction of the Demand-Responsive
Transport (DRT) travel mode, we enter an uncalibrated domain where recal-
ibration is not feasible due to the lack of real-world data. However, visual
inspections have shown that, particularly during daytime hours, the travel times
of individual vehicles in MATSim DRT scenarios closely align with the travel
time estimates provided by Google Maps10 (see Figure 7.14). In the absence
of better alternatives, we must acknowledge these uncertainties and accept the
resulting errors in subsequent SUMO simulations.

10 Google Maps, https://www.google.com/maps. Accessed: Sep. 29, 2024.
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7 Calibrating spatio-temporal
network states in SUMO with
MATSim observations

In the previous section, we observed significant discrepancies in traffic dynamics
and overall network capacity between MATSim and SUMO, highlighting the
need for alternative methods to achieve comparable spatio-temporal network
states in both frameworks. Our calibration approach is guided by the following
principles: (i) MATSim’s global travel times have already been calibrated to real-
world data. (ii) As a result, we assume that the travel times of mesoscopically
simulated DRT vehicles in MATSim are reasonably accurate. (iii) Our objective
is to ensure that these vehicles experience similar delays in the subsequent
SUMO simulation. (iv) The key challenge is developing effective strategies to
replicate these conditions in SUMO, given its imperfect (uncleansed) network.

In Section 7.1, we present a concise overview of various calibration techniques
within traffic science, highlighting how target values differ depending on the
objectives of the traffic simulation. In Section 7.2, we introduce the core
concept of our two-stage calibration approach and describe the test case used to
evaluate this method. In the first stage of our calibration process, Section 7.3
explores several strategies to enhance SUMO’s global network capacity without
the need for manual network adjustments. A comprehensive parameter study is
conducted to assess the robustness and sensitivity of these strategies. Building
on insights from this study, we formulate a global optimization problem in
Section 7.4, aiming to align average edge speeds throughout the day between
microscopic and mesoscopic simulations. This optimization problem is solved
numerically using a genetic algorithm, and the results are discussed. The
contents of these sections have been previously published in [208].

In Section 7.5, we address the remaining discrepancies in traffic performance
between MATSim and SUMO, particularly during nighttime. In line with our
commitment to report both successful and unsuccessful outcomes, we discuss
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the futility of the second phase of our calibration approach in Section 7.6,
followed by an alternative solution in Section 7.7 to further align global travel
times in MATSim and SUMO. By the conclusion of this chapter, we have
developed a functional toolchain to automatically derive microscopic SAEV
driving cycles from large-scale transport models in MATSim. The complete
toolchain, along with its key components, is detailed in Section 7.9.

7.1 State of the art calibration techniques for
traffic simulation

Calibrated traffic simulation models are essential tools for supporting local
authorities in traffic management and infrastructure-related decision-making.
In recent years, the benefits of traffic simulation have attracted a wider range of
users beyond traditional traffic planners and engineers, driving the adaptation
of simulation tools for new applications. Notably, the automotive industry has
embraced microscopic traffic simulation as a cost-effective method for deriving
driving patterns in emerging mobility concepts, enabling virtual requirement
engineering and prototyping.

In parallel with this evolution, the calibration requirements for traffic simulation
models have expanded. Traditionally, calibration focused on macroscopic
parameters such as traffic flow, density, and average speeds. However, emerging
(vehicle-centric) use cases now require a more detailed calibration process that
incorporates realistic driving behaviors, time-varying congestion, and precise
travel time estimations. While traffic simulation was once primarily the domain
of traffic engineers, it is now being utilized by a broader range of users, including
companies without expertise in traffic or transport engineering. As a result,
there is growing demand for highly automated, data-driven, and AI-enhanced
methods for model construction and calibration.

Recent advancements in data collection methodologies, particularly the utiliza-
tion of floating car data and mobile phone data, have emerged as transformative
tools in the domain of traffic modeling. These innovations hold the potential
to significantly reduce, or eventually eliminate, the reliance on labor-intensive,
survey-based travel demand modeling and extensive manual network refinement.
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This shift represents a significant leap in traffic simulation, meeting the growing
complexity and demands of a broader range of stakeholders.

The calibration of traffic models is crucial for improving the predictive accuracy
of traffic simulation tools, as emphasized in [58]. This process is especially
important when these models are employed to support local authorities in traffic
management decision-making.

SUMO’s default calibration procedure is based on SUMO-Cadyts, as discussed
in [79]. This method involves an iterative adjustment of route choices and
departure times for individual trips to align with measured flow values, typically
sourced from detector data. However, several limitations must be acknowledged
in this procedure: (i) Like all calibration techniques, the reliability of SUMO-
Cadyts is inherently tied to the quality of the underlying data, which is often
incomplete. (ii) Within the SUMO simulation, agents generally exhibit less
flexibility in responding to congestion compared to real-world drivers. As a
result, short teleportation intervals are sometimes utilized as a workaround
to mitigate severe gridlocks. Excessively congested networks can lead to an
underestimation of measured flows in rush hour simulations, as vehicles may
be unable to complete their trips. (iii) Cadyts requires the availability of route
choice alternatives; if the simulated demand is too low, it may be difficult to
identify alternative routes, resulting in less meaningful calibration outcomes.

A wealth of studies address the calibration of microscopic traffic simulation
models, typically involving the adjustment of parameters for car-following
and lane-change models to align with desired target values. However, it is
important to note that the calibration techniques employed vary significantly,
and standardization poses considerable challenges, as outlined in [113]. Several
factors contribute to this lack of standardization: (i) Calibration techniques
must accommodate a wide range of diverse simulation tools, each with its
unique characteristics and requirements. (ii) The target values for calibration
are heavily dependent on the specific use case, complicating the establishment
of a one-size-fits-all approach. (iii) Some studies advocate for the use of multi-
objective or dynamic calibration methods, which consider multiple criteria
or adapt to changing conditions, such as time-dependent variations in traffic
behavior.

Among the commonly employed calibration techniques, sensitivity analysis and
trial-and-error methods, as shown in [175], are frequently utilized, although
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they may not always yield optimal results. Alternative approaches include the
use of multi-start algorithms, such as in [53], and the application of neural
networks, as explored in [105]. Furthermore, genetic algorithms have been
applied to identify optimized model parameters, as demonstrated in [51, 115,
148].

The calibration procedure is often divided into distinct phases. For example,
in [103], the process starts by comparing simulated and observed global
parameters, such as maximum acceleration and other vehicle characteristics,
before moving on to calibrating local parameters, like observed speeds. In
contrast, [68] begins with the calibration of network-wide capacity to accurately
replicate field conditions, followed by refining link-specific capacities to better
match capacity measurements at bottlenecks.

Calibrating models based on speed, density, and flow relationships, as shown
in [51, 148, 75], provides the advantage of covering a broad spectrum of
traffic conditions, from free-flow to congestion. However, despite this potential
benefit, the use of fundamental traffic flow relationships in microscopic traffic
calibration remains relatively limited [51].

In recent years, there has been growing interest in dynamic microscopic
calibration, as it has become clear that static parameters are insufficient to
capture the variability in traffic conditions, the diversity of driving behaviors,
and the spatio-temporal evolution of network states. Dynamic calibration
methods often rely on Kalman filters [174].

Beyond dynamic calibration, the literature also explores multi-objective ap-
proaches. A notable study in this area [55] examines computer science and
mathematical optimization, offering insights into the performance and efficiency
of 17 state-of-the-art multi-objective algorithms for traffic simulation calibration.
These algorithms are applied to three test cases of varying complexity.

It is important to note that most calibration studies in the literature focus on
small-scale freeway networks, particularly during rush-hour conditions. In
contrast, there is a noticeable lack of large-scale studies, especially in urban
areas with numerous signalized intersections operating over a full 24-hour cycle.
Calibrating such extensive networks poses significant challenges due to the need
for diverse data sources, which are often unavailable or lack the required spatial
and temporal precision [11]. As a result, large-scale models frequently rely
on calibration using traffic flows derived solely from detector data. Obtaining
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network-wide aerial imagery to estimate queue lengths or deploying extensive
probe vehicles for travel time data collection would be both cost-prohibitive
and time-consuming.

As discussed in [11], the calibration of a medium-scale network in New Jersey
was successfully achieved by incorporating traffic volumes, travel times, and
queue lengths. However, the authors emphasize that this success came with
significant resource demands. These were required for (i) network construction,
(ii) integrating essential control signs and turning priorities, and (iii) collecting
and processing the data needed for calibration and validation. Given these
extensive requirements, scaling this procedure to metropolitan networks is
impractical. This point is further supported by [113], which highlights the
prohibitive costs of data acquisition for calibrating large networks.

Calibrating traffic models based on travel times is not a new concept, but it often
overlooks the spatio-temporal evolution over a full 24-hour cycle. Travel time
calibration is commonly applied in motorway models due to the availability
of various detection methods, such as Bluetooth detectors, automatic plate
recognition systems, and floating vehicle data [113].

In traditional traffic planning, congestion and queue-length-based calibration
played a relatively minor role, focusing primarily on preventing peak-hour
congestion. However, in automotive requirements engineering, especially for
scenarios involving component-stressing maneuvers like stop-and-go patterns,
accurately representing realistic congestion is crucial. As a result, a faithful
representation of congestion patterns throughout the day becomes essential.

In [206], an approach is introduced for calibrating and validating key charac-
teristics of traffic instabilities using velocity time series data from aggregated
stationary detector data. This method serves a dual purpose: validating traf-
fic flow models in their ability to simulate the spatio-temporal evolution of
congestion, and predicting actual traffic breakdowns.

Some studies explore the characteristics of stop-and-go patterns, such as
wavelength and propagation velocity, as shown in [6, 30, 130, 191]. However,
only in [206, 231, 232] is the growth rate of these oscillations quantified. While
the approach in [206] validates traffic flow models in terms of their ability to
accurately simulate congestion dynamics, it does not involve calibrating entire
networks or individual roads to specific congestion levels.
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Despite the extensive body of prior research on microscopic traffic model
calibration, its applicability to our specific use case is limited. Our scenario
necessitates dynamic calibration of individual vehicle travel times within large-
scale, imperfect networks. To address this challenge, we propose an innovative
approach for calibrating spatio-temporal network states in microscopic traffic
simulation at a global level (see Section 7.4), and later at a local level (see
Section 7.6).

This approach, inspired by automotive considerations, departs from traditional
calibration methods that focus primarily on traffic counts. Instead, it emphasizes
the spatio-temporal alignment of network states. Achieving accurate travel
time matching is critical to ensure that our SAEV ego-vehicles, guided by
mesoscopic traffic planning, can efficiently serve their assigned customers on
time within the microscopic traffic simulation. The ambient traffic in SUMO
serves solely to introduce delays to our ego vehicles as they follow predefined
routes, replicating the travel-time patterns established in the calibrated MATSim
model. Therefore, the alignment of edge-based vehicle counts is less crucial.

7.2 Methodological approach

We propose a two-stage calibration technique aimed at achieving spatio-temporal
alignment between MATSim and SUMO network states. In the first stage, we
globally adjust the time-dependent relative mean speeds of all active edges in
SUMO, as illustrated on the left side of Figure 7.1. This involves the static
adjustment of demand-, routing-, and congestion-related factors in SUMO to
align travel delays with those observed in the MATSim simulation. To automate
this process, we utilize a genetic algorithm (GA) that modifies configuration
parameters for SUMO and DUAROUTER, without altering the settings of the
car-following or lane-change models.

Following the global optimization, the study advances to the second stage, which
focuses on local optimization. In this phase, the emphasis shifts to refining
SUMO’s network states in close proximity to our ego-vehicles. Utilizing the
globally adjusted network states from the first stage, we develop methodologies
for strategically introducing and removing ambient traffic vehicles, ensuring
controlled adjustments to achieve similar spatio-temporal trajectories in both
frameworks. The primary KPI for this assessment is the conformity of
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Figure 7.1: Overview of our two-stage calibration procedure. The figure illustrates our approach,
which consists of global and local stages aimed at synchronizing spatio-temporal
network states in both MATSim and SUMO. In the first stage, global calibration
is conducted by fitting relative mean speeds across all active edges throughout the
day. In the second stage, local alignment is achieved by adjusting the spatio-temporal
trajectories of ego-vehicles in close proximity, involving controlled additions and
removals of ambient vehicles.

accumulated distances over time for all ego-vehicles in MATSim and SUMO
within 15-minute intervals (see the right side of Figure 7.1). Further details on
the local optimization process are provided in Section 7.6.

To evaluate our approach, we use the medium-sized test case introduced in the
previous chapter (see Figure 6.4), which focuses on the daily trajectory of a
selected ego-vehicle. In a revised version of this illustration (refer to Figure 7.2),
we have included additional information about the individual trips made by
the ego-vehicle over a 24-hour period. This data is essential for assessing the
quality of the calibration routine in Section 7.4.3.
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Figure 7.2: Revised illustration of our Berlin test case, highlighting the daily trajectory of the
selected ego-vehicle (shown by red routes in the main panel). Additional details
regarding the individual trips of the ego-vehicle are provided in the smaller panels,
including trip start times and lengths.

7.3 Exploration of parameter space

In this section, we aim to deepen our understanding of how various parameters
within the SUMO framework affect network states, including edge-wise travel
times and congestion ratios. Our goal is to identify the most impactful factors
and evaluate their reliability in stochastic terms. Additionally, we investigate
how optimal parameter choices can maximize flow rates within the SUMO
network. We have categorized four distinct groups of measures, as illustrated
in Figure 7.3, and will focus on a detailed analysis of three of them.

a) Strategies for alleviating local traffic hotspots. The most rel-
evant SUMO parameters for alleviating congestion at hotspots are
time-to-teleport and max-depart-delay. The former defines the maxi-
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Figure 7.3: Main categories outlining various measures to enhance network capacity in SUMO.
The following Sections 7.3.1 to 7.3.4 will identify the most impactful and reliable
strategies.

mum duration a leading vehicle can remain trapped in front of an intersection
before being teleported to the next available edge on its route1. The latter
parameter specifies the time interval within which a vehicle ready for insertion
must reattempt to enter a fully occupied edge before being permanently excluded
from the simulation.

The max-depart-delay functionality, in particular, is valuable for our specific
use case, as it helps mitigate issues associated with agent cloning (the replication
of MATSim agents in sample runs to achieve a 100% demand representation
in SUMO). Even though we assign normally distributed time offsets to the
departure times of these clones, SUMO often struggles to accommodate these
new vehicles due to the temporal clustering of multiple insertion-ready vehicles
on the same starting edge. Attempts to spatially distribute insertion-ready
vehicles more evenly were also unsuccessful. First, particularly in trajectory-

1 During teleportation, the vehicle’s travel time remains representative, as it virtually moves
at average edge speed. Similar to MATSim, this process does not capture detailed driving
dynamics.
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7 Calibrating spatio-temporal network states in SUMO with MATSim observations

clipped SUMO networks (e.g. , Figure 5.6, panel C4), there were few alternative
insertion points available. Second, this often resulted in congestion on minor
roads, as vehicles had to take significantly longer detours to rejoin their originally
designated routes. With such measures proving futile, the departure-delay
parameter effectively limits the undesirable side effect of spatio-temporal vehicle
clustering during insertion.

b) Strategies for modifying travel demand. In addition to addressing
artificial network bottlenecks, SUMO faces significant challenges in accom-
modating travel demand generated by MATSim. While MATSim’s simplified
queue model is effective for typical transport planning applications, its limited
representation of traffic dynamics (cf. Section 6.2.3) poses difficulties when
integrated with microscopic traffic simulations. To mitigate these deficiencies,
we explore three potential measures.

First, we analyze the impact of varying MATSim population samples (1% and
10%)2. Larger MATSim samples reduce the need for clones, leading to fewer
agents with identical routes in SUMO and alleviating potential network load
imbalances. Additionally, larger samples improve spatial congestion modeling
by being less susceptible to the short-link artifacts mentioned in Section 6.2.3.

Second, we investigate MATSim’s VSPAdjustments, which are automatically
applied during OSM network import to account for reduced inner-city flows and
lower speeds caused by signalized intersections. These adjustments significantly
change link capacities (see Figure 7.4) and speed limits within the network.

Third, we consider transferring only a specific share of MATSim agents to the
SUMO simulation to balance network load. Although this approach may seem
unconventional, it is well-suited to our needs, as we aim to achieve comparable
traffic conditions and travel times, prioritizing equivalence in these aspects over
identical traffic counts.

c) Strategies anchored in routing for efficient traffic management. The
third aspect of our analysis focuses on employing various routing strategies
in SUMO to optimize network workload distribution. Due to differences in
network representation between MATSim and SUMO, as well as additional

2 While larger population samples (> 10%) are preferable, constraints in travel demand data and
computational resources limit this approach.
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7.3 Exploration of parameter space

Figure 7.4: Capacity-based outcomes resulting from reversing (!) the default VSPAdjustments
in the network file of the Open Berlin Scenario [234], visualized using the tool VIA
(https://www.simunto.com/via/, accessed: Sep. 29, 2024). This visualization
shows that road capacities in the original Berlin network (without VSPAdjustments)
were increased (in green) for primary and secondary roads, but were significantly
lower (in red) for short links measuring less than 100 meters. Consequently, we assert
that VSPAdjustments may actually exacerbate the short-link artifacts discussed in
Section 6.2.3 in real-world test cases.

artificial bottlenecks arising from data quality limitations during OSM import,
edge-wise network capacities vary. Consequently, MATSim’s dynamic user
equilibrium does not match SUMO’s user assignment equilibrium.

To address this, we explore several strategies: First, we aim to establish a new
user equilibrium in SUMO by allowing vehicles to select routes different from
those in MATSim, although this option is disabled for ego-vehicles. Second,
we implement in-time rerouting in SUMO and analyze its effects on network
capacity, varying both the rerouting-probability (which changes the
likelihood of a vehicle using a rerouting device) and the rerouting-period
(which sets the time intervals for route reevaluation). Finally, we investigate the
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impact of suppressing U-turns at vehicles’ starting and ending edges by using
the remove-loops parameter, aiming to reduce network disturbances.

d) Strategies for refining the SUMO network. Meticulous microscopic
network refinement is the most effective method for mitigating artificial network
bottlenecks in SUMO. However, as discussed in Section 3.3.5, manual network
refinement is not practical for large-scale scenarios such as ours, and improving
import heuristics proves to be more complex than initially anticipated. Based on
our experience, optimizing network heuristics for specific junction geometries
can enhance traffic flow locally, but it frequently leads to performance setbacks
in other areas of the network. Additionally, attempts to increase flow rates in
SUMO – such as incorporating MATSim’s junction flow rates to heuristically
enhance SUMO’s turning capacities – proved intricate and yielded limited
results.

Ideas for creating artificial network elements to bypass major hotspots – such as
automatically inserting road segments that do not exist in real life – were also
rejected due to (i) the extensive effort required to develop and implement such
heuristics and (ii) the unintended consequences of these intrusive measures
(e.g., ego-vehicles using these routes). Consequently, we exclude measures
related to network refinement in SUMO (see Figure 7.3, column D) and focus
instead on the more feasible strategies outlined in paragraphs a) to c).

Overall, we conduct 1,316 SUMO simulations of the Berlin test case to assess
the effects of these strategies on the network’s performance and their robustness
to stochastic variability. Table 7.1 provides a comprehensive overview of all
simulations, categorized into nine scenarios with 69 distinct lever values across
these scenarios.

7.3.1 Assessing SUMO’s maximum travel demand capacity
through dynamic user assignment (DUA) sensitivity
analysis

Given the significant disparities in network capacity between MATSim and
SUMO, expecting similar traffic assignments from these two simulation frame-
works is unrealistic. Enforcing MATSim’s vehicle routes within SUMO
would inevitably lead to severe congestion issues. Therefore, our approach
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Table 7.1: Summary of conducted simulations. Scenarios A* and C* focus on the impact of
individual levers, whereas Scenarios B* evaluate the synergistic effects of combined
levers. Default parameter settings individual (i) scenarios: 50% demand share, 300 s
time-to-teleport, no depart-delay, no rerouting and with route loops. Settings
combined (c) scenarios (derived from the optimal solutions of individual levers): 60 s
time-to-teleport, 60 s max-depart-delay, ignore-junction-blocker, 80%
rerouting-probability, 60 s rerouting-period and remove-loops. Except for
scenario B3, all SUMO simulations are based on a 1% MATSim sample run. For
detailed explanations of specific options, please refer to the glossary provided in the
front matter.

individual/ no. of detailed seed simu- see
Scenario combined levers lever settings (††) trials lations Sec.

C1 DUA demand sensitivity (†) i 10 [10:10:100%] 50 326 7.3.1
C2 rerouting-period i 5 [60:60:300s] 30 150 7.3.3
C3 rerouting-probability i 10 [5,10:10:90%] 30 300 7.3.3
C4 remove-loops i 2 [on/off] 30 60 7.3.3
A1 time-to-teleport i 5 [60:60:300s] 30 150 7.3.3
A2 max-depart-delay i 7 [60,300,600,900:900:4500s] 30 210 7.3.3
B1 SUMO demand share c 10 [10:10:100%] 4 40 7.3.4
B2 VSPAdjustments undone c 10 [10:10:100%] 4 40 7.3.4
B3 MATSim 10% sample run c 10 [10:10:100%] 4 40 7.3.4

total number
∑

69
∑

1316
(†) Intentionally, the dynamic user assignment (DUA) scenario C1 included a total of 500 simulations

(10 distinct levers with 50 seed trials each). However, due to SUMO’s difficulties in accommodating
the demand generated by MATSim, the simulations for the 70% demand share had to be terminated
prematurely at DUA iteration 27, instead of the intended 50. Simulations for demand shares exceeding
70% were deemed infeasible.

(††) Lever settings are provided in MATLAB notation [𝑥1 : 𝑖 : 𝑥𝑘], creating a regularly-spaced vector 𝑥
using 𝑖 as the increment between elements.

begins by iteratively establishing a new user equilibrium in SUMO using the
duaIterate.py3 script. This script aims to determine optimal routes for
all vehicles, ensuring that alternative paths do not result in increased travel
costs. The process consists of two main iterative steps: (i) using DUAROUTER to
identify low-cost routes through shortest path computation and (ii) conducting
SUMO simulations to evaluate the actual travel times on these routes. The
recalculated edge costs are then applied in the subsequent iteration. A total

3 "Assignment Tools," Sumo, https://sumo.dlr.de/docs/Tools/Assign.html. Accessed:
Sep. 24, 2024.
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7 Calibrating spatio-temporal network states in SUMO with MATSim observations

of 50 dynamic user assignment (DUA) iterations are performed utilizing the
Gawron route-choice algorithm [85].

Figure 7.5 presents the results of the DUA iterations for various travel demand
shares transferred from MATSim to SUMO. This transfer is accomplished by
creating an increasing number of copies of the original MATSim agents. The
evaluation criterion used is the relative mean speed4, averaged over a 24-hour
period across all active network edges, as illustrated in the main panel.

The results reveal that stable user equilibria are achieved only for travel demand
shares below 40%. Demand shares exceeding this threshold do not produce
stable outcomes, as demonstrated by the observations in iteration 49 for the
yellowish 40% demand and in iterations 33-34 for the orange 50% demand. To
enhance convergence, it may be beneficial to explore strategies such as allowing
only a fraction of vehicles (approximately 10 − 20%) to reroute after each
DUA iteration, potentially using parameters like keep-route-probability.
Additionally, applying smoothing techniques to edge weights across iterations,
such as employing the weight-memory parameter, could help reduce frequent
route changes. However, these specific adjustments were not examined in this
study.

As expected, iteration 0, which is based on travel times in an initially empty
network, consistently yields the lowest relative mean speed for a given demand,
with values ranging between 0.2 and 0.3 for demand shares up to 50%.

Each data point in the main panel of Figure 7.5 can be further dissected into a
temporally resolved representation, illustrating the relative mean speed across
all active edges throughout the day. Exemplary instances of these temporally
resolved representations are provided in the subpanels of Figure 7.5, showcasing
distinct network state scenarios.

Subpanel d illustrates the ideal scenario, characterized by smooth traffic
flow that consistently maintains relative mean speeds near 0.75 during day.
During the morning hours, only a few streets are occupied, resulting in a wide
distribution of relative mean speeds. Some roads experience free-flow driving
conditions approaching a value of 1, while others exhibit moderate speed ratios

4 In this context, relative mean speed refers to the ratio of the actual mean speed to the speed limit
of the road segment.
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Figure 7.5: The main panel displays the average relative mean speeds in SUMO, calculated over
24 hours across all active edges, for 50 DUA iterations and varying travel demand
shares (10% to 70%) in scenario C1. Notably, the simulation for the 70% demand share
was halted after the 26th iteration, as further improvements were considered unlikely.
The subpanels, labeled from a to e, illustrate the relative mean speed along all active
edges throughout the day for specific simulations, showcasing diverse network states
that range from free-flow conditions (as observed in d) to slightly congested scenarios
(depicted in a and e) and heavily congested driving conditions (shown in b and c). The
employed color scheme reflects the frequency of specific combinations of daytime and
relative mean speed, transitioning from blue to yellow.

in the range of 0.5 to 0.6. This variability may arise from two main factors:
vehicles could be delayed by actuated traffic signals during the night, or such
delays may result from the cloning process, where a relatively large number of
vehicles initiate their journeys on the same edge within a short time frame. In
contrast, the simulations depicted in subpanels a and e demonstrate less stable
traffic conditions, with noticeable congestion during the morning and evening
rush hours. These network performances align more closely with real-world
observations. Subpanels b and c, on the other hand, showcase scenarios where
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the network experiences heavy, and at times unrealistically severe, congestion.
These situations are marked by significant traffic breakdowns, with congestion
persisting well into the early hours of the next morning (and dissipating only
thanks to the teleport option), as agents are not allowed to reroute during these
periods.

7.3.2 Evaluation methodology for scenario analysis

SUMO exhibits stability in handling up to 40% of the travel demand trans-
ferred from MATSim. Building on this baseline, we systematically inves-
tigate the impact of specific parameters aimed at improving SUMO’s traf-
fic flow. This is carried out through five distinct scenarios, denoted as
𝑠 ∈ 𝑆 = {A1,A2,C2,C3,C4}, as detailed in Table 7.1. In each scenario,
a key parameter is varied across a set of values 𝑀𝑠. For instance, in scenario
C2, the parameter of interest is the rerouting-period, with multiple lever
values (𝑚 ∈ 𝑀𝐶2 with 𝑀𝐶2 = {60, 120, 180, 240, 300}) under investigation.

To thoroughly evaluate the robustness of each scenario (𝑠) and lever (𝑚),
we run simulations with 30 different random seeds (𝑟) for each lever. This
approach takes into account the natural variability in simulation results, which
is influenced by factors like car-following and lane-changing models, as well as
individual vehicle behaviors (e.g., whether a vehicle reroutes or exceeds speed
limits).

To assess the performance and robustness of each scenario lever (𝑚), we define
a scoring metric, 𝜃𝑚, where higher values correspond to improved traffic
performance, indicating enhanced traffic states in SUMO. This scoring metric
is defined as:

𝜃𝑚 = 𝛽𝑚velo + 𝛽
𝑚
conv + 𝛽𝑚spread + 𝛽

𝑚
tele + 𝛽

𝑚
noin, 0 ≤ 𝜃𝑚 ≤ 5. (7.1)

Here, each 𝛽𝑚ind represents a sub-score corresponding to one of five different
performance indicators, each carrying equal weight. The first term, 𝛽𝑚velo,
rewards levers that lead to smoother traffic flows, reflected by higher relative
mean speeds on active edges. The next two terms, 𝛽𝑚conv and 𝛽𝑚spread, provide
rewards for levers that exhibit faster convergence of simulation results across
different seed trials and lower output variability, respectively. The final two
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terms, 𝛽𝑚tele and 𝛽𝑚noin, reward simulations with fewer teleported and discarded
vehicles.

Let the barred variables 𝑥𝑚 represent the lever-specific arithmetic mean over all
seed trials (𝑟), and hatted variables 𝑥 denote the maximum value of a specific
indicator across all lever- and seed-simulations (𝑚 and 𝑟):

𝑥𝑚 =
1
𝑅

∑︁
𝑟∈𝑅

𝑥𝑚𝑟 , 𝑥ind = max
𝑚,𝑟

(
𝑥
𝑚,𝑟

ind
)
, (7.2)

where 𝑅 is the total number of seed trials. The velocity-based score 𝛽𝑚velo is
then defined as:

𝛽𝑚velo =
1

𝛼̂velo

∑︁
𝑡∈𝑇

∑︁
𝑒∈𝐸

𝑣̄
𝑚,𝑒
act
𝑣𝑒des

, (7.3)

Here, Equation 7.3 evaluates each simulation based on the relative speed,
averaged over 24 hours across all active edges (𝑒 ∈ 𝐸)5. The data for this
calculation is extracted from SUMO’s summary-output-file, which records
the average ratio of the actual speed (𝑣̄𝑚,𝑒act ) to the desired speed (𝑣𝑒des) for each
15-minute interval over a day (𝑡 ∈ {1, . . . , 𝑇}). In this case, the desired speed
corresponds to the legal speed limit.

The four remaining sub-scores, 𝛽𝑚ind, can be expressed as follows:

𝛽𝑚ind = 1 −
𝛼𝑚ind
𝛼̂ind

, (7.4)

where the specific expressions for 𝛼𝑚ind are given by:

𝛼𝑚conv =
∑︁
𝑝∈𝑃

𝑅−1∑︁
𝑟=19

��𝐹𝑟+1 (𝑝) − 𝐹𝑟 (𝑝)
��, 𝑃 = {2.5, 25, 50, 75, 97.5} (7.5)

𝛼𝑚spread = max
1≤𝑟≤30

(
𝛼
𝑚,𝑟

velo

)
− min

1≤𝑟≤30

(
𝛼
𝑚,𝑟

velo

)
(7.6)

5 Note that the set of active edges (𝐸) varies over time. For simplicity, we omit the explicit time
dependency in the notation.
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𝛼𝑚tele = 𝑛̄
𝑚
tele (7.7)

𝛼𝑚noin = 𝑛̄𝑚noin. (7.8)

Equation 7.5 assesses the convergence of simulation results with an increasing
number of of seed trials. To capture this, percentile functions 𝐹𝑟 (𝑝), for
𝑝 ∈ 𝑃 = {2.5, 25, 50, 75, 97.5}, are calculated based on the daily relative
mean speeds for each seed trial 1 up to 𝑟. The convergence is quantified by
summing the absolute differences between consecutive percentile functions,
|𝐹𝑟+1 (𝑝) −𝐹𝑟 (𝑝) |, for the last 10 seed trials (19 ≤ 𝑟 ≤ 29) across all percentiles
𝑝. A robust lever is expected to produce more stable percentile functions 𝐹𝑟 (𝑝)
as the number of seed trials increases.

Equation 7.6, used in conjunction with Equation 7.4, rewards levers that
demonstrate minimal variability in daily relative mean speeds across all seed
trials. The spread is quantified as the difference between the maximum and
minimum observed values of 𝛼𝑚,𝑟velo across all seed-simulations (𝑟) for a given
lever (𝑚).

As previously mentioned, Equations 7.7 and 7.8, combined with Equation 7.4,
reward simulation runs that result in fewer teleported or discarded vehicles. The
terms 𝑛̄𝑚tele and 𝑛̄𝑚noin represent the average number of teleported and non-inserted
vehicles for each lever-specific simulation, respectively.

To allow direct comparison, all indicators are normalized by their scenario-
specific maximum values, denoted as 𝛼̂ind. This normalization ensures that the
impact of each lever (𝑚) is directly comparable across scenarios. The lever with
the highest score, 𝜃𝑚, is chosen for further analysis in the combined scenarios
(referred to as B* in Table 7.1) to assess the upper limit of SUMO’s network
capacity.
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7.3.3 Impact of individual measures on traffic flow
performance

This section discusses the impact of the individual measures analyzed in
scenarios A* and C* (see Table 7.1), with findings illustrated in Figure 7.6 and
Table 7.2. Figure 7.6 presents the robustness of each lever 𝑚 and its effects on
three KPIs: (i) relative mean speed (upper panel), (ii) the number of teleported
vehicles (middle panel), and (iii) the number of not-inserted vehicles (lower
panel), using boxplots. The boxes represent the range of simulated KPI values
across 30 distinct random number seeds.6 In contrast, Table 7.2 utilizes the
scoring function (Eq. 7.1) to rank all levers based on their effectiveness and
seed robustness, thereby facilitating a clearer comparison among the levers.

Upon initial observation, Figure 7.6 indicates that many simulation results
are notably sensitive to variations in random seed. Only scenario A1, with a
time-to-teleport setting of 60 seconds, demonstrates stable results across
all three KPIs despite changes in random seeds. In contrast, other scenarios
display fluctuations of up to 0.4 in relative mean speed. Smaller fluctuations
are evident in scenarios C2 (300 seconds), C3 (5%), and C4 (70%), though it
is important to recognize that these may be influenced by the relatively small
sample size.

In fact, we did not expect this level of instability in the stochastic parameters.
Relying on such unstable settings during our calibration procedure is not feasible.
Furthermore, the DUA simulations indicate that the 50% travel demand share,
used as input for all simulations in this section, serves as a tipping point for our
test case, where results can change rapidly due to the occurrence of a single
event (e.g., a stalled vehicle).

A distinctive characteristic of our test case is the limited availability of routing
alternatives, particularly in the left and middle sections of our network (see
Figure 7.2). Consequently, we assume that overall network performance is
primarily influenced by a few isolated bottlenecks, which are highly sensitive

6 We acknowledge that the limited number of seed trials (30) may not yield statistically robust
conclusions regarding random seed sensitivity. However, despite noticeable fluctuations in some
seed-accumulated KPIs (see the red outlier in the upper panel of Figure 7.6), the monotonic
trends in median values across each scenario suggest qualitative reliability. Given computational
constraints, a substantial increase in seed trials was deemed impractical.
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Table 7.2: Tabulated results of the sensitivity analyses. The ranking of each lever (𝑚) is based on the
total score 𝜃𝑚, comprising five different indicator terms 𝛽𝑚ind as defined in equations 7.2
to 7.8. Levers with the highest scores in each scenario (highlighted in gray) serve as
input data for the scenario B* simulations in Section 7.3.4.

scenario A1 A2 C4
lever 𝑚 60 120 180 240 300 60 300 600 900 1800 2700 3600 4500 on
𝛽𝑚velo 1.00 0.95 0.73 0.55 0.51 0.90 0.79 0.67 0.65 0.60 0.63 0.59 0.57 0.50
𝛽𝑚conv 0.99 0.81 0.00 0.95 0.97 0.59 0.04 0.60 0.92 0.92 0.42 0.92 0.93 0.96
𝛽𝑚spread 0.99 0.79 0.23 0.93 0.92 0.34 0.20 0.78 0.88 0.00 0.49 0.89 0.91 0.94
𝛽𝑚tele 0.94 0.95 0.60 0.15 0.00 0.93 0.81 0.67 0.63 0.51 0.52 0.41 0.33 0.06
𝛽𝑚noin 1.00 1.00 1.00 1.00 1.00 0.70 0.47 0.19 0.16 0.06 0.18 0.04 0.00 1.00
score 𝜃𝑚 4.91 4.50 2.56 3.58 3.40 3.46 2.32 2.91 3.23 2.09 2.24 2.84 2.75 3.46
rank 1 2 26 14 18 17 27 23 22 29 28 24 25 16

scenario C2 C3
lever 𝑚 60 120 180 240 300 10 20 30 40 50 60 70 80 90
𝛽𝑚velo 0.55 0.57 0.55 0.54 0.49 0.53 0.59 0.59 0.58 0.59 0.60 0.63 0.69 0.74
𝛽𝑚conv 0.90 0.91 0.94 0.97 0.95 0.94 0.45 0.88 0.87 0.77 0.78 0.68 0.79 0.49
𝛽𝑚spread 0.90 0.93 0.93 0.94 0.92 0.90 0.86 0.93 0.81 0.73 0.75 0.67 0.73 0.15
𝛽𝑚tele 0.49 0.47 0.43 0.39 0.01 0.15 0.45 0.55 0.60 0.65 0.75 0.85 0.93 0.94
𝛽𝑚noin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
score 𝜃𝑚 3.84 3.87 3.85 3.84 3.36 3.52 3.35 3.94 3.86 3.74 3.88 3.83 4.14 3.32
rank 4 11 7 9 10 15 20 5 8 13 6 12 3 21

to stochastic factors. We expect that seed robustness likely improves with
larger networks and higher travel demand shares. Additionally, in Section 7.3.4,
we observe indications that random seed stability increases in simulations
involving combined levers (scenarios B* in Table 7.1). Notably, simulations
with relatively low relative mean speeds of approximately 0.35 to 0.45 generally
exhibit the lowest output fluctuations across all seed runs, suggesting that
congested traffic states tend to be more stable regarding seed-related impacts.

It is not surprising that lower relative mean speeds of a lever correspond to
a higher number of vehicles requiring teleportation during the simulation.
Interestingly, however, the number of vehicles that remain uninserted does not
increase with shorter accepted max-depart-delay times. This seemingly
counterintuitive finding suggests that by quickly alleviating local traffic hotspots,
many severe gridlocks can be prevented from manifesting in the first place,
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7 Calibrating spatio-temporal network states in SUMO with MATSim observations

ultimately leading to fewer teleported and uninserted vehicles over time. A
similar effect is observed for short teleport times of 60 seconds: critical vehicles
are removed more rapidly without triggering secondary queuing effects. The
rationale behind our penalization of teleported and uninserted vehicles is
their potential impact on our ego-vehicles, which undermines our ability to
microscopically track their trajectories. Thus, we should prioritize shorter
time-to-teleport and max-depart-delay periods.

Additionally, it is noteworthy that the remove-loops scenario C4 and the
rerouting-period scenario C2 have the least impact on the network’s relative
mean speed. Scenario C4 benchmarks against the 300 s time-to-teleport
lever from scenario A1. As evidenced in Table 7.2, eliminating u-turns at the
start and end edges of a trajectory does improve network performance, albeit to
a limited extent.

Another important point is the double penalization of all levers in the
max-depart-delay scenario A2. This scenario is unique in that vehicles are
expelled from the simulation if they cannot be inserted within the specified time
frame, resulting in an additional penalty for all levers, on top of the standard
penalty for teleported vehicles. As discussed in Section 7.3,however, this
mechanism is essential for mitigating cloning artifacts arising from the transfer
of travel demand from MATSim to SUMO.

7.3.4 Evaluating the cumulative impact of multiple
measures on network performance

For the combined-measure scenarios denoted as B* (see Table 7.1), we employ
the top-performing lever settings highlighted in gray in Table 7.2. In these
simulations, we move beyond the fixed 50% travel demand, instead testing ten
different travel demand levels, ranging from 10% to 100% in 10% increments.
This methodology allows us to determine how many agents the SUMO network
can handle efficiently under these optimal conditions.

Figure 7.7 presents the results of these simulations, each conducted with four
different random seeds. The top panel illustrates the network’s relative mean
speed as demand increases. Each line represents the mean across seeds for
one of the three scenarios: B1 MATSim 1% with VSP-adjusted network, B2
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Figure 7.7: Comprehensive analysis of combined scenarios: Network relative mean speed (a),
number of teleported vehicles (b), and number of not-inserted vehicles (c) as a function
of loaded trips. Each data point corresponds to a specific demand share, as indicated.
The solid lines represent the mean values across four random seeds, while the shaded
regions illustrate the variability across seeds.
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MATSim 1% without VSPAdjustments, and B3 MATSim 10% with VSP-
adjusted network (see Table 7.1). The shaded regions indicate the variability
across seeds. The bottom left panel shows the ratio of teleported to loaded
vehicles, while the bottom right panel depicts the ratio of discarded (not-inserted)
to loaded vehicles.

While in Section 7.3.1 we struggled to accommodate a 50% travel demand
in SUMO (see Figure 7.5), the optimized parameters have now significantly
improved overall network capacity. The daily relative mean speed on all
active edges has more than doubled across all three scenarios: previously, the
relative mean speed for a 50% demand was approximately 0.35. Now, with the
optimized settings, the relative mean speed ranges between 0.7 and 0.73 at the
same demand level. Even at 100% demand, the relative mean speed remains
between 0.42 and 0.5, indicating a far less congested network compared to the
50% demand simulations from Section 7.3.1.

As shown in the top panel of Figure 7.7, the results reveal that SUMO
simulations based on a MATSim run without VSPAdjustments (scenario B2)
consistently underperform compared to its VSP-adjusted counterpart (scenario
B1). This discrepancy arises because, on average, the VSP-adjusted network
capacities in urban areas are effectively higher, even though the adjustments
were originally intended to introduce additional driving delays. As explained
in Section 6.3.1 and illustrated in Figure 7.4, attempts to reduce capacities on
primary and secondary roads through VSPAdjustments are counteracted – and
even surpassed – by simultaneous capacity increases on short links (< 100 m).

Moreover, in addition to the lower relative mean speeds on active edges
in scenario B2, the number of loaded trips7 is slightly lower compared to
the corresponding demand shares in scenario B1. The reduction in loaded
trips observed for the VSP-undone scenario B2 can be primarily attributed to
secondary effects stemming from the reduced network capacity. In B2, the
diminished attractiveness of the road network, caused by longer travel times and
increased congestion, leads to fewer agents selecting road traffic as their mode
choice in MATSim. This, in turn, reduces the total number of trips generated by
MATSim (and subsequently in SUMO). MATSim’s co-evolutionary algorithm,

7 Loaded trips include both successfully inserted trips and those discarded due to congestion at
entry links.

214



7.4 Genetic algorithm for calibrating global network states

which iterates over numerous cycles (typically around 500 in this case), aims to
generate a dynamic traffic assignment in a quasi-equilibrium state.

As expected, SUMO simulations using a travel demand generated from a
10% sample run of MATSim, represented by scenario B3, show a significantly
improved network state compared to the baseline scenario B1. This improvement
is due to the larger sample size in MATSim, which produces a wider variety of
trip types and a more diverse distribution of start and end links. Additionally,
during the MATSim-to-SUMO demand transfer, agent cloning is reduced by
a factor of 10, significantly minimizing the number of agents trying to access
the simulation via the same link within a short time window. However, we
avoid scaling the travel demand to 100% in SUMO, as the relative mean speed
drops sharply beyond a 90% demand share, and the number of teleported
and not-inserted vehicles rises dramatically, as shown in the bottom panels of
Figure 7.7.

For all subsequent simulations required for the calibration of meso-micro
traffic states, we make two critical decisions. First, we select the 80% travel
demand scenario based on the 10% MATSim simulation with VSP-adjusted
network. Second, we discontinue varying the remove-loops setting (C4)
and the rerouting-period value (C2), as these parameters have minimal
impact on traffic conditions. Instead, we set them to ’on’ and 60 seconds,
respectively. By making these decisions, we reduce the remaining parameter
space for our calibration procedure, which helps accelerate convergence and
decrease computation time.

7.4 Genetic algorithm for calibrating global
network states

7.4.1 Design of the framework

In the previous section, we gained valuable insights into the behavior of the
SUMO network and its response to various parameter settings. Building on this
foundation, we formulate a global optimization problem and employ a genetic
algorithm (GA) to solve it numerically. Genetic algorithms are a subset of
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Figure 7.8: Framework design of the genetic algorithm.

evolutionary algorithms used for addressing both constrained and unconstrained
optimization problems through mechanisms akin to natural selection.

As illustrated in Figure 7.8, we leverage the GA functionalities available in
MATLAB8 to facilitate the parallel execution of SUMO simulations while
tackling the optimization problem. The process begins with an initial population
of potential solutions, where each individual in the population has a distinct
set of genomes corresponding to various SUMO parameters relevant to our
use case. Detailed information about the parameter space is provided in the
following section.

Next, we evaluate the fitness of each candidate solution using a fitness function.
This function involves executing SUMO simulations with the designated
parameter sets, analyzing the relative mean speed on all active edges throughout
the day, and comparing these results to reference data. After this evaluation, a
new generation of offspring is created by applying evolutionary principles such
as mutation, crossover, and selection to the genomes of the parent individuals.
This iterative process aims to evolve the genomes within the initial population
toward more optimal solution candidates.

8 For more information, please refer to "GA Documentation," MATLAB, https://de.mathwor
ks.com/help/gads/ga.html?searchHighlight=ga&s_tid=srchtitle. Accessed: Sep.
25, 2024.
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7.4 Genetic algorithm for calibrating global network states

MATLAB provides a wide range of evolutionary strategies that can be cus-
tomized to meet specific requirements through user-defined algorithms. For
our purposes, we have chosen the following options for the genetic algorithm:9

options = optimoptions(’ga’,...
’PopulationSize’, 60, ...
’MaxGenerations’, 150, ...
’CreationFcn’,@gacreationuniform,...
’SelectionFcn’,@selectionstochunif,...
’CrossoverFcn’,@crossoverscattered,...
’CrossoverFraction’,0.8,...
’MutationFcn’,@mutationgaussian,...
’EliteCount’, ’0.05*PopulationSize’, ...
’FitnessScalingFcn’, @fitscalingrank, ...
’MaxStallGenerations’, 5,...
’FunctionTolerance’, 1e-06, ...
’UseVectorized’, false, ...
’UseParallel’, true, ...);

To enhance the speed of the simulation, the fitness evaluation process is executed
in parallel using 60 worker threads on a Lenovo P620 Workstation, equipped
with an AMD Ryzen Threadripper PRO 3995WX processor. This parallelization
enables the simultaneous execution of 60 SUMO simulations, allowing for the
rapid assessment of the fitness of an entire generation.

7.4.2 Formulating the global optimization problem

The evaluation of each population’s fitness relies on an objective function
with the aim of minimizing the quarter-hourly differences in relative mean
speed between MATSim and SUMO. This global optimization problem can be
mathematically defined as follows:

min 𝜖 (𝑥), 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3. (7.9)

9 For further details, please refer to "GA Options," MATLAB, https://de.mathworks.com/h
elp/gads/genetic-algorithm-options.html#f9147. Accessed Sep. 25, 2024.
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Here, 𝜖 (𝑥) represents the objective function, and 𝑥 comprises the set of
independent genomes subject to mutation during the iterative GA procedure
to generate new offspring populations. Specifically, 𝑥1 represents the time the
foremost vehicle has to wait before being teleported to the next available edge
on its path, 𝑥2 denotes the maximum waiting time for vehicle insertion before
being skipped, and 𝑥3 describes the probability of a vehicle having a rerouting
device in SUMO. To constrain the GA’s solution space, the genomes are limited
to the following discrete value sets:

𝑥1 ∈ {30, 35, 40, ...300} (7.10)
𝑥2 ∈ {30, 60, 90, ...1800} (7.11)

𝑥3 ∈ {0.6, 0.65, 0.7, ...0.9}. (7.12)

The defined solution space operates without any additional linear, non-linear,
or inequality constraints. For our specific use case, we formulate the objective
function 𝜖 (𝑥) as the normalized sum of square-penalized errors, estimating the
differences between observed values 𝑦(𝑥) in MATSim and the simulated values
𝑦̃(𝑥) in SUMO throughout a day. This objective function is expressed as:

𝜖 (𝑥) =

𝑇∑︁
𝑡=1

[
𝑦(𝑥, 𝑡) − 𝑦̃(𝑥, 𝑡)

]2

𝑇
. (7.13)

Here, 𝑇 corresponds to the total number of 96 binning intervals 𝑡, each with a
duration of d𝑡 = 15 min. Within each binning interval, the relative mean speed
on all active edges 𝑒 is utilized as the evaluation criterion:

𝑦(𝑥, 𝑡) =
𝐸 (𝑡)∑︁
𝑒=1

𝑣act,𝑥,𝑒

𝑣lim,𝑥,𝑒
. (7.14)

In this context, 𝐸 (𝑡) signifies the time-dependent total number of active edges
that vehicles traverse during the time interval 𝑡. The ratio 𝑣act

𝑣lim
represents the

actual time- and space-mean velocity 𝑣act of each active edge in relation to
its corresponding speed limit 𝑣lim. Notably, it is essential to recognize that
due to MATSim’s VSPAdjustments (refer to Section 7.3), the speed limits
in MATSim networks are scaled down by a factor of two for links with legal
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speed limits less than 51 km/h. Consequently, when evaluating the fitness of
populations, these adjustments must be reversed to ensure that the velocity ratio
𝑣act
𝑣lim

aligns with SUMO simulations.

7.4.3 Discussion of the best-fit solution

The GA procedure effectively terminated at generation 12 when the average
relative change of the best score remained below 10−6 (FunctionTolerance)
for five consecutive generations (MaxStallGenerations). In total, 720
individual populations were simulated, with an average SUMO simulation
duration of approximately 2.5 hours. As the best solution to our global
optimization problem, the following parameter set was identified: 𝑥opt =

(65s, 1500s, 0.7), representing the time-to-teleport, max-depart-delay,
and rerouting-probability, respectively.

A graphical representation of the best-fit solution is presented in Figure 7.9.
The left panel offers an overview of the various error values, 𝜖 (𝑥), across all 720

ε

Figure 7.9: Graphical representation of the best-fit solution obtained through our Genetic Algorithm
(GA). The left panel depicts the variations in error values 𝜖 (𝑥 ) for 720 distinct popula-
tions across the parameters 𝑥1 and 𝑥2 as an example. The magenta diamond highlights
the best-fit solution, indicating that the time-to-teleport parameter significantly
influences the outcomes, except for simulation runs with small max-depart-delay.
In the right panel, the temporal evolution of the relative mean speed on all active edges
for SUMO’s best-fit solution is compared to the MATSim reference (red line). The
color code represents the frequency distribution of specific combinations of daytime
and relative mean speed, transitioning from blue to yellow.
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populations concerning parameters 𝑥1 and 𝑥2. The best-fit solution is marked
with a magenta diamond. Generally, the time-to-teleport parameter, 𝑥1,
has the most direct impact on population scores, followed closely by the
rerouting-probability, 𝑥3. The negative impacts associated with high
values of the max-depart-delay parameter,𝑥2, such as an increased number
of teleported and not-inserted vehicles, can be mitigated by implementing lower
time-to-teleport values. As a result, the max-depart-delay parameter
does not play a critical role in the overall performance of the system.

The right panel of Figure 7.9 illustrates the relative mean speed of SUMO’s
best-fit solution over the course of a full day. The reddish MATSim line serves as
a reference. Two noteworthy observations arise: (i) SUMO reasonably matches
MATSim throughout the day, especially during peak hours, but it yields relative
mean speeds that are too high during the night-time (off-peak). (ii) Intuitively,
one could argue that the MATSim benchmark line during nighttime periods
does not align with real-world observations. Due to the VSPAdjustments,
which halve all speed limits when the legal speed limit is below 51 km/h, the
MATSim relative mean speed on all active edges is constrained to a maximum
of 0.5 in this context, a constraint that may seem overly pessimistic.

Interestingly, MATSim’s travel times for individual vehicles closely align
with those observed in Google Maps, regardless of the trip’s starting time
(cf. Figure 7.14). This similarity suggests a good agreement in relative mean
speeds as well. Consequently, we can are inclined to infer that SUMO tends
to underestimate travel times during nighttime, resulting in relatively high
mean speeds. One potential reason for this discrepancy could be the actuated
traffic light control, which results in an excessive amount of green lights during
nighttime simulations. In real-world scenarios, traffic lights are often switched
off during these hours for economic reasons, causing vehicles to approach
intersections more cautiously.

Based on these findings, we anticipate that our SUMO ego-vehicles will exhibit
travel times similar to those of corresponding MATSim reference vehicles during
daytime hours. However, during off-peak periods, we expect considerably
shorter travel times. To validate this hypothesis, we analyze the trip travel times
of our selected ego-vehicle, as introduced in Figure 7.2, across all populations.
For the purpose of distinguishing off-peak and peak-time trips, we use the first
trip at 6:00 am and the third trip at 18:38 pm as reference points.
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Figure 7.10: Convergence of error values with higher GA populations and their impact on trip travel
time in free-flow and congested traffic conditions. Left panel: Error values for all GA
populations sorted in descending order. Middle and right panels: Duration of the
ego-vehicles’ trip 1 (middle) and trip 3 (right) for all populations, sorted in the same
order as in the left panel. Notably, for trip 3, the travel times exhibit a comparable
trend to the error value 𝜖 (𝑥 ) and converge towards the MATSim travel time.

Initially, we arrange and plot the error values of all populations in descending
order, with the rightmost point representing the best-fit solution (as illustrated
in the left panel of Figure 7.10). We subsequently apply the same sorting to
the duration of trip 1 and trip 3 for all populations as displayed in the middle
and right panel respectively. As expected, travel times for trip 1 demonstrate
minimal sensitivity to variations among different populations. This is attributed
to the network’s consistent free-flow driving conditions during off-peak hours.
Moreover, the travel time observed in MATSim is approximately twice as long as
that simulated in SUMO. Conversely, peak-time trip 3 reveals a different pattern.
Here, travel times across different populations converge in a manner similar
to the error value 𝜖 (𝑥) and stabilize in close proximity to the MATSim travel
time. The remaining variations in travel times can primarily be attributed to two
factors: (i) the ego-vehicle may encounter slightly different route lengths in the
respective MATSim and SUMO simulations, and (ii) variations in individual
SpeedFactors can lead to notable differences in driving style, causing the
driver to either frequently exceed speed limits or drive more slowly than average.

Given the promising results of the global optimization during peak hours, we
remain optimistic that any remaining minor spatial traffic inconsistencies during
these periods can be resolved through subsequent local optimization efforts
outlined in Section 7.6. This is especially relevant when ego-vehicles are
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restricted from further re-routing. However, during off-peak hours, the global
optimization reveals potential for enhancement. The next section will focus on
addressing these challenges.

7.5 Navigating off-peak hour challenges:
strategies and solutions put in perspective

To address the optimistic travel times observed in SUMO during night hours, we
introduce additional delays for ego-vehicles by modifying traffic signal control.
Presently, gap-based actuated traffic lights are employed throughout the day,
adjusting dynamically to prevailing traffic conditions. To prevent a continuous
green-wave effect during the night, we deactivate these traffic lights from 22:30
to 7:00, prompting vehicles to approach intersections with increased caution.
When traffic lights are deactivated, intersections operate under a priority model,
where vehicles on major roads have right-of-way, and those on minor roads must
yield. To customize traffic light programs for individual intersections in SUMO,
we utilize the Wochenschaltautomatik (WAUT) descriptions, which enable the
loading of different signal programs for the same traffic light based on defined
time intervals10. This adjustment aims to introduce additional delays to SUMO
vehicles during night hours, ensuring better alignment with MATSim’s traffic
states.

The results, illustrated in Figure 7.11, are somewhat surprising. Contrary to
our hypothesis, turning off traffic lights (red line) leads to even shorter travel
times compared to those under actuated traffic light control (blue graph). This
challenges the expectation that actuated traffic lights establish continuous green
waves for sparsely distributed ego-vehicles at night. Instead, it appears that
temporal cool-downs11 of the actuated control induced some vehicles to wait at
red lights. Conversely, when traffic lights were switched off, major roads rarely

10 For further details on the weekly switch automatism, refer to "Traffic Light Documenta-
tion," SUMO, https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html. Ac-
cessed Sep. 26, 2024.

11 Unlike default traffic lights with fixed phase layouts, actuated traffic light control features green
phases of varying lengths (typically 5-50 seconds) that dynamically adapt to traffic demand.
However, once a direction is granted a green phase, a configurable cooldown period may be
enforced before it can receive another green light.
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Figure 7.11: Adapted traffic light control at night to address off-peak hour challenges. Surprisingly,
deactivating traffic lights from 22:30 pm to 7 am (highlighted in red) did not result in
additional delays during nighttime hours compared to actuated traffic light control
(depicted in blue). Contrarily, the relative mean speed on all active edges in SUMO
even increased when traffic lights were disabled.

experienced additional delays due to constant priority granting. In consideration
of these outcomes, our preference leans toward retaining the implementation of
actuated traffic light control.

Our next attempt involves the localized induction of additional delays to ego-
vehicles during nighttime by introducing supplementary traffic. However, we
took a moment to reconsider the viability of this approach. MATSim, despite
being calibrated on travel times, exhibits two noteworthy characteristics: (i) it
sustains stable driving conditions on the free-flow regime, and (ii) its relative
mean speeds on active edges consistently hover between 0.4 − 0.5 irrespective
of the time of day. Both aspects stand in contrast to naive expectations. Thus,
instead of compelling SUMO to exhibit unrealistic traffic behavior (adapted
from MATSim), we chose to seek validation from an external source, namely
Google Navigation, to obtain realistic travel times in Berlin during nighttime.
This methodology is employed to assess the degree of deviation in travel times
simulated by SUMO from reality.

The upper panel of Figure 7.14 demonstrates that randomly selected MATSim
trips (indicated by blue dots) align closely with travel times estimated by Google
Navigation (represented by reddish rectangles). During the daytime, MATSim
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travel times fall within the midrange of Google estimates, whereas during
nighttime, they tend to approach the upper bound. In contrast, SUMO clones
(red dots) consistently remain in the lower bound of Google estimates under
non-congested conditions with our current parameterization. In cases of severe
congestion, SUMO exhibits significantly higher travel times, as evidenced by
the outliers for cars 13, 16, 17, and 18, which lie outside the bounds of the figure
due to their extreme values. However, it is safe to conclude that SUMO travel
times generally remain within an acceptable range of realism during nighttime
conditions, which raises the question of whether any adjustments to SUMO are
necessary for this time period.

Additionally, we would like to convey the following considerations: Google
Navigation derives travel time estimates from real-time data, taking into account
factors such as current traffic conditions. While these estimates strive for
realism, they are subject to changes caused by unforeseen events, such as
accidents or sudden increases in traffic. It is acknowledged that Google may
incorporate a margin of error in their estimates, potentially overestimating
driving times, especially for longer distances. This is attributed to the strategy
of erring on the side of caution, as it is generally considered favorable to
arrive early rather than late. Such reasoning reinforces SUMO’s inclination
toward optimistic travel times, prompting us to maintain them as simulated.
The immediate consequence of the discrepancy between MATSim and SUMO
traffic states during nighttime is that SUMO DRT vehicles are unlikely to face
the risk of tardiness for their designated customers. This outcome is deemed
acceptable.

7.6 About the futility of local calibration

After completing our global calibration, we turn our attention to the local
calibration procedure. The goal is to refine the spatio-temporal alignment of
individual DRT trajectories in both MATSim and SUMO. Despite previous
network-wide calibration, individual ego-vehicles still encounter varying delays
between both frameworks on their routes. On a more local scale, the presence
or absence of vehicles in specific areas leads to fluctuations in traffic conditions,
influencing ego-vehicle travel times in the short term. While these localized
variations tend to average out over longer trips due to the global calibration,
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they present challenges for shorter DRT trips. When individual travel times
do not align well between MATSim and SUMO, DRT vehicles may lose their
idling times between consecutive trips, disrupting the entire DRT dispatching
process. Consequently, DRT vehicles could arrive late for their next designated
customer or, in the case of EVs, miss out on charging opportunities.

Unfortunately, our attempt to locally calibrate individual DRT trajectories
proved unsuccessful and reached a dead-end due to various reasons. However,
acknowledging the importance of sharing unsuccessful research approaches,
we present our attempted local calibration method nonetheless.

Our methodology was rooted in the following principle: Leveraging the globally
calibrated MATSim and SUMO simulations, we overlay MATSim’s spatio-
temporal traffic conditions – characterized by the links’ relative mean speeds
distributed across space and time – onto the conditions generated by SUMO.
This process generates a map that pinpoints areas in the SUMO network where
additional vehicles are needed to introduce delays or, conversely, where ambient
traffic should be reduced to alleviate congestion. This approach requires a
subsequent SUMO simulation run with disabled re-routing functionalities to
fix vehicle routes to SUMO’s globally calibrated state.

We begin by calculating and plotting the relative mean speed for each link in
MATSim at 15-minute intervals, as illustrated in the top panel of Figure 7.12
for 4pm. In this figure, greenish colors indicate relative mean speeds around
0.512, while transitions to yellow and red indicate worsening congestion levels,
with red representing near-complete traffic breakdown. By observing these
temporal snapshots in sequence, we can track the emergence, propagation, and
dissipation of vehicle queues over time.

Next, we translate these spatially distributed relative mean speeds in into
auxiliary surfaces13 – one for each 15-minute interval and major cardinal
direction (N, E, S, W) – and apply a smoothing technique to redistribute

12 It is noteworthy that a relative mean speed of 1 in MATSim corresponds to approximately 0.5 in
SUMO due to the halving of speed limits in urban areas specifically for MATSim VSP-adjusted
runs (limited to links with speed limits below 51 km/h). This normalization ensures a uniform
basis for comparison.

13 To increase the sampling density of the auxiliary surfaces, each link is represented by a sequence
of ten equidistant points indicating the average relative mean speed during the respective time
interval.
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Figure 7.12: Illustrations of the local calibration approach. The top panel shows the distribution
of relative mean speeds on a link-by-link basis within MATSim simulation at 4 pm.
Each link is represented by approximately 10 evenly spaced scatter points. Areas with
congestion (highlighted in reddish tones) are emphasized (brought to the foreground)
for clarity. In contrast, the bottom panel identifies regions in SUMO simulation
where southbound traffic must be intensified to introduce additional delays for our
ego-vehicles. Highly congested areas (dark reddish, short links) in MATSim are
spatially and temporally smoothed to create more moderate traffic congestion.
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localized delays to adjacent roads with similar orientations. For instance,
when evaluating traffic conditions for southbound roads at a specific time
of day, we specifically consider the relative mean speeds for road segments
with orientation angles falling within the range of 135◦ < 𝜃 ≤ 225◦. This
direction-wise mapping is essential for capturing the directional nature of
congestion patterns, such as city-bound congestion during morning rush hours
and outbound traffic jams in the afternoon.

Overlaying these auxiliary surfaces from MATSim with their corresponding
SUMO counterparts enables us to identify specific areas within the microscopic
network that require traffic flow adjustments, such as the insertion or removal
of vehicles, as illustrated in the bottom panel of Figure 7.12. Correction
factors derived from the combined data are then applied to adjust SUMO’s
ambient travel demand on the affected edges, effectively guiding the adjustment
process.14

As previously noted, the effectiveness of this approach is compromised for
several reasons: (i) MATSim struggles to accurately replicate spatio-temporal
congestion patterns, with bottlenecks predominantly forming on short links
rather than at infrastructural choke points. (ii) Agents in MATSim demonstrate
a notable ability to bypass obstacles, leading to only minor congestion levels.
(iii) Prolonged vehicle queues caused by infrastructural bottlenecks did not
develop over time; instead, static or erratic local congestion hotspots emerged.
Consequently, imposing such arbitrary congestion patterns on SUMO is un-
warranted, given that SUMO typically represents spatio-temporal congestion
dynamics more realistically than MATSim.

Unfortunately, this unsuccessful attempt to calibrate trip-based travel times
requires us to reevaluate our global calibration procedure. Originally, the
global calibration was intended as a foundational step to establish an optimal
starting point for the more detailed local calibration process. However, as the
local calibration is now deemed unfeasible, we must redefine the objective
of our global calibration procedure. Instead of focusing on aligning network
traffic states in MATSim and SUMO, we will shift our attention to aligning
ego-vehicle travel times. Unfortunately, we question the feasibility of achieving
this trip-based alignment through static adjustments of global parameters, which

14 Please note that this concept has not been implemented or realized.
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was a key rationale for adopting a two-staged calibration approach in the first
place. Nevertheless, with this shift in focus, our next steps will involve three
primary actions. First, we will analyze travel times in both MATSim and
SUMO on a trip-based level. Second, we will explore the correlation between
the previous target value of the genetic algorithm – which represented relative
mean speeds on active edges – and the revised target value reflecting trip-based
travel times. Finally, we will reevaluate all SUMO simulations produced by the
Genetic Algorithm in Section 7.4, considering our updated target value.

7.7 Alternative GA objective function: trip travel
time comparison

To assess the consistency of trip-based travel times between MATSim and
SUMO, we assign each SUMO clone its corresponding MATSim vehicle
and compare their travel times using a log-log representation, as shown in
Figure 7.13. Our analysis focuses on trips occurring between 9 a.m. and 9 p.m.
to exclude uncalibrated off-peak hours.

Even after global calibration, significant differences remain between SUMO
and MATSim travel times. On average, SUMO vehicles complete trips ap-
proximately 41% faster than their MATSim counterparts. However, this
mean is skewed by upper-left outliers, with some SUMO cars experienc-
ing travel time delays of up to 1800% compared to MATSim. These ex-
treme values arise mainly from vehicles without rerouting capabilities be-
coming stuck in infrastructural bottlenecks.15 Sample percentiles (𝑝 =

{0.05, 0.25, 0.50, 0.75, 0.95}) provide more meaningful metrics: 𝐹 (𝑝) =

{252.5%, 42.5%,−12.5%,−37.5%,−57.5%}, highlighting the substantial vari-
ability in relative travel time deviations. Positive percentages indicate that
SUMO vehicles are delayed, whereas negative percentages signify that SUMO
vehicles are ahead of schedule relative to their MATSim counterparts.

15 We observe that SUMO vehicles without rerouting often fail to reach destinations on time due
to congestion. Revising our initial design choice, where DRT ego-vehicles preserved their
original MATSim routes, we now recommend enabling rerouting for these vehicles. After all,
our selection of DRT vehicles is based on aggregated KPIs rather than individual route choices.
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Figure 7.13: Trip-based log-log comparison of travel times (9 am to 9 pm): Heavily in-
fluenced by upper-left outliers, on average, SUMO vehicles experience a 41%
slower travel time than MATSim counterparts. Sample percentiles (𝑝 =

{0.05, 0.25, 0.50, 0.75, 0.95}) reveal relative travel time deviations of 𝐹 (𝑝) =

{252.5%, 42.5%, −12.5%, −37.5%, −57.5%}. Positive percentages indicate delays
for SUMO vehicles, while negative percentages signify they are ahead compared to
MATSim. In conformity with the median value, denser sample agglomerations appear
below the red equal-value line. Vertical concentrations indicate consistent MATSim
trips, while their corresponding clones in SUMO encounter varying traffic conditions.

Contrary to expectations, denser sample clusters do not align closely with the
red reference line (representing equal travel times in MATSim and SUMO)
but appear below it, indicating that most SUMO vehicles tend to be faster.
Consistent with this observation, the median value is approximately −12.5%,
using MATSim as the baseline for comparison.

In light of these suboptimal findings, we want to emphasize that our goal is to
align DRT travel times, not the trips undertaken by ambient traffic. We will
focus on a more ego-vehicle-centered analysis later in this section. It is also
important to note that the medium size of our test case, coupled with its limited
geographic latitude spread, leads to an overrepresentation of short trips that
briefly traverse our network. As a result, these short trips tend to exhibit large
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relative deviations, despite the absolute differences being comparatively small
and statistically insignificant.

Furthermore, short trips are influenced by another systematic error: In MATSim,
vehicles face delays on each link determined by the link’s outflow capacity.
Conversely, SUMO vehicles tend to accelerate near the network border as they
encounter fewer traffic-induced impediments. This behavior is reflected in
the lower left side of Figure 7.13, where SUMO vehicles often display faster
travel times. These effects – such as the prevalence of short trips and reduced
network resistance near SUMO border regions – are expected to diminish in
larger scenarios. During toolchain development, however, a smaller test case
was necessary to manage simulation times effectively.

This leads us to question why the majority of SUMO vehicles consistently
outperform their corresponding MATSim counterparts, despite the implemen-
tation of global calibration. We can attribute the observed temporal offset
to several factors. Firstly, the target value selected for our initial GA run,
which emphasizes the relative mean speed on active edges, may not effectively
align travel times at the individual vehicle level. While it shows a tendency to
synchronize travel times with improved scores, the correlation strength between
these quantities might be inadequate.

Secondly, we realize that the metric chosen by the GA for accumulating error
deviations within our objective function may have been suboptimal in retrospect.
By minimizing least square errors (see Eq. 7.13), particularly pronounced during
off-peak hours, the algorithm might have focused on alleviating these larger
discrepancies, potentially at the expense of optimizing smaller adjustments,
such as travel time offsets during peak hours.

Thirdly, after careful consideration, we question the direct comparability
between the relative mean speed on active edges in MATSim and SUMO
simulations. We generally assume that MATSim has fewer active edges due
to its predominantly non-saturated traffic conditions, which provide ample
capacity for additional vehicles. Consequently, unlike our rerouting strategy
in SUMO, ego-vehicles in MATSim do not need to seek bypasses or explore
less-frequented roads in the same direction. Additionally, with only one-eighth
of the vehicle population compared to SUMO, MATSim occupies fewer – and
thus less diverse – street segments. Furthermore, each active street segment
in MATSim and SUMO contributes equally to the final objective function,
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treating less-frequented minor street segments with nearly free-flow speeds the
same as heavily trafficked multi-lane highways. This approach diminishes the
impact of congested, high-capacity arterial roads in SUMO.

In retrospect, relying on relative mean speed as a target value for comparison
assumed that the macroscopic traffic dynamics in both frameworks are similar.
However, the findings in Chapter 6, which unfortunately unfolded in parallel
with the results of this chapter, challenge this assumption and reveal the inherent
flaw in our approach. What initially seemed like an appropriate target value for
global calibration now proves unsuitable for aligning travel times.

To address these limitations, we propose an alternative approach. We reassess
all SUMO simulations derived from our initial GA run based on our updated
target value, which now reflects ego-vehicle travel time. Since we did not
conduct a complete DRT fleet simulation within the test case, we specifically
focus on the travel times of 20 randomly selected ego-vehicles whose trip
lengths exceed 7 km. In a complete DRT fleet simulation, we would utilize the
travel times of all fleet representatives, as outlined in Section 5.1. Additionally,
we change our approach from minimizing the least-square error to a linear
summation of error deviations. This adjustment aims to provide the GA with a
better incentive to align not only the significant travel time discrepancies during
the night but also the smaller, yet more critical, deviations during the day.

Surprisingly, the relationship between the previous and newly updated target
values remains remarkably strong across all 720 SUMO simulation trials.
To evaluate the correlation between both scoring metrics, we calculated the
Pearson correlation coefficient (𝑅), which ranges from −1 to 1. A value of
𝑅 = 1 indicates a perfect positive linear relationship, 𝑅 = −1 signifies a
perfect negative linear relationship, and 𝑅 = 0 denotes no linear relationship
between the variables. In our case, we observed a high positive correlation
(𝑅 = 0.95), suggesting that an increase in the old score likely corresponds
to an increase in the new score. Notably, we identified a new global op-
timum16 at 𝑥opt, new = (40 s, 720 s, 0.9), representing time-to-teleport,
departure-delay, and rerouting-probability, respectively. This dis-
covery significantly improved the fit in ego-vehicle travel times, as illustrated
in Figure 7.14.

16 To recap, the global optimum identified in Section 7.4.3 was 𝑥opt, old = (65 s, 1500 s, 0.7) .
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MATSim
SUMO clone
Google estimate

Figure 7.14: Comparison of travel times for selected ego-vehicles in MATSim and SUMO, with the
top panel focusing on relative mean speed and the bottom panel utilizing trip-based
travel times as calibration criterion. Blue dots represent MATSim, and red dots indicate
corresponding SUMO clones with adjusted departure times. Daytime-dependent
travel time estimates from Google Navigation are included for reference as shaded
region. Note: Car no. 6 is an actual DRT vehicle in MATSim, not fully covered in our
test case boundary. Although DRT vehicles were not prominent in calibration, we
intentionally avoided cloning them in SUMO to prevent potential discarding due to
crowded starting edges, resulting in only one SUMO counterpart instead of eight.

In this figure, both panels compare ego-vehicle travel times in relation to the
respective GA best-fit solution. The top panel emphasizes the relative mean
speed on active edges as the calibration criterion, while the bottom panel utilizes
trip-based ego-vehicle travel times. Blue dots represent MATSim travel times,
and red dots indicate the travel times of corresponding SUMO clones, which
have slightly shifted departure times. To provide an unbiased reference, we
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included daytime-dependent travel time estimates from Google Navigation17,
with their lower and upper bounds highlighted by the reddish area.

With the GA’s new target value (bottom panel), most SUMO clones generally
exhibit increased speeds. However, they do not risk becoming excessively late,
as indicated by the outlier points in the top panel that required clipping for better
readability. A tipping point appears: in SUMO runs with increased median
travel times, the red SUMO dots approach the blue MATSim benchmark from
below. Once they reach a certain threshold, however, they tend to flip strongly to
the opposite side, surpassing MATSim values and resulting in SUMO vehicles
becoming significantly slower than both MATSim and Google estimates. This
scenario incurs a considerable penalty from the GA’s objective function. Overall,
with the new GA evaluation criterion, SUMO stays within a reasonable travel
time range provided by Google Navigation, yielding particularly satisfying
fitting results during late afternoon and evening hours. As discussed earlier
in Section 7.5, SUMO vehicles tend to be too fast during off-peak hours, a
behavior that is tolerated within the constraints of our toolchain.

With our calibration procedure generally yielding satisfactory results, we have
now identified all relevant parameters necessary to automatically set up the
SUMO configuration file (.sumocfg). This completes the final module in
Figure 5.9, which previously prevented the execution of a SUMO simulation
based on the network area and the population data provided by MATSim.
A simplified example of a SUMO configuration file, along with detailed
explanations on how to initiate a SUMO simulation, is provided in Appendix A.2.
For completeness, we also included relevant SUMO command line options in
Appendix A.1.

However, having reached this milestone, we still face challenges related to
specific SUMO peculiarities, especially in large-scale DRT fleet simulations.
These challenges pertain specifically to the management of tardy, teleported,
or unintentionally discarded DRT ego-vehicles. Each scenario significantly
interferes with our overarching goal of deducing realistic second-by-second
driving, speed, and status profiles. Solutions to address these issues are
discussed in the following section.

17 Google Maps, https://www.google.com/maps/. Accessed: Sep. 29, 2024.
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7.8 Management strategies for tardy, teleported,
and discarded DRT vehicles

Despite our trip-based travel time calibration routine, we cannot guarantee that
the SUMO vehicles of interest will avoid teleportation during their routes or,
more concerning, that they will not fail to enter the microscopic simulation
altogether due to fully occupied departure edges. As illustrated in Figure 7.7,
approximately 7.5% of the vehicles in our test case experience teleportation
at least once. Simultaneously, an almost equal proportion of vehicles are
discarded, with a 80% population sample in SUMO deduced from a MATSim
10% sample run. This trend worsens with higher microscopic population
sizes and deteriorating traffic conditions, leading to an increased occurrence of
teleported and discarded vehicles.

Currently, teleportation behavior can only be configured globally, with no
provision for excluding specific ego-vehicles from this functionality.18 Given
the indispensable role of teleportation in maintaining minimal traffic flow even
under heavily congested conditions, disabling teleportation altogether is not a
viable option. A similar issue arises with discarded vehicles; when vehicles
fail to enter the simulation, they are permanently removed after a prolonged
period of reattempted insertion. While extending the departure delay can
help reduce the number of discarded vehicles, excessively long delays are
counterproductive to our objective of deducing accurate driving cycles. A
vehicle inserted 30 minutes behind schedule faces significant challenges in
catching up, especially on busy days. In light of these considerations, we
must acknowledge and navigate these inconveniences as inherent aspects of our
simulation framework.

Handling of teleported vehicles. During the teleportation process, a vehicle
temporarily exits the network and then travels its route at the average speed of
the edge from which it was initially removed or the edge it is currently passing
through. This treatment results in a deduced velocity profile characterized by a
period of constant speed. To address this issue, we propose a post-processing

18 Refer to https://www.eclipse.org/lists/sumo-user/msg10321.html. Accessed: Sep.
29, 2024.
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routine that systematically examines all simulated velocity profiles for such
unrealistic driving patterns, similar to the data cleansing procedure employed in
our real-world measurement campaign (refer to Section 3.1.1). We replace the
identified segments with cubic spline interpolations derived from neighboring
data points. While more advanced methodologies exist for rectifying erroneous
data, they fall outside the scope of this dissertation and are considered topics for
future research. We flag interpolated driving cycles appropriately and compute
the temporal ratio of altered to total driving cycles to highlight potential
anomalies for drive cycle applicants.

Handling of discarded vehicles. We generally recommend simulating not
just a single DRT vehicle in SUMO microscopically, but rather a representative
sub-sample of the DRT fleet, as detailed in Section 5.1. This approach ensures
that if the vehicle of interest is discarded, you can quickly switch to another
DRT vehicle with similar KPIs. If you simulate only one DRT vehicle and
it gets discarded, we suggest initiating another SUMO run with a different
random seed. This randomization may help prevent the ego-vehicle from being
discarded in the first place.

Handling of tardy vehicles. While DRT vehicles ahead of schedule pose
minimal threats to our ability to deduce reasonable drive cycles – merely resulting
in prolonged waiting times – those significantly delayed create situations where
a DRT vehicle’s next trip begins before the current trip has concluded. Although
we could effectively manage these delays using SUMO’s taxi extension19 by
dynamically adjusting the next trip’s departure time, we have chosen a simpler
approach.

Since two vehicles with the same identifier (ID) cannot coexist simultaneously
within the simulation, we update the vehicle ID with a suffix indicating the
current trip number each time a new trip starts. As a result, if trip one
is still ongoing and trip two begins, a technically new vehicle is inserted
into the simulation, independent of its "other" self still en route. In a post-

19 The taxi extension has been available since version 1.5.0 (released in 2020), but it remains under
active development: https://sumo.dlr.de/docs/Simulation/Taxi.html. Accessed:
Sep. 29, 2024.
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processing routine, we concatenate all related trip driving cycles, inserting the
designated waiting times from MATSim’s original velocity profile in between.
However, this method may lead to instances where a vehicle’s last trip concludes
significantly later than intended.

To address this, we consider a second procedure where vehicles sacrifice portions
of their longer waiting times to catch up with the schedule. Unfortunately, this
may pose challenges in scenarios where EV charging management is critical.
However, we assert that this is not a significant issue given the relatively low
daily DRT travel mileage, as indicated in Table 2.5. With an average of 92 km
driven in a DRT pooling scenario and 131 km in a non-pooled case, vehicles
are unlikely to experience low states of charge, thus diminishing the necessity
for daytime recharging. Nevertheless, considering the ecological and economic
implications tied to the type of electricity used, it may be advantageous to
charge SAEVs during periods of high solar radiation and, consequently, lower
electricity prices.

7.9 Final toolchain and major components

Figure 7.15 illustrates the complete toolchain developed from Chapter 4 to
Chapter 7, comprising seven principal components:

1. Mesoscopic MATSim (DRT) simulation
2. SUMO network generation featuring customizable network borders
3. Microscopic travel demand synthesis
4. Travel time calibration via genetic algorithm
5. Microscopic SUMO simulation
6. Post-processing of vehicle profiles
7. Enrichment procedure (as an alternative solution to SUMO simulation)

Throughout this thesis, we explored two distinct solution paths to derive
realistic driving profiles for SAEV fleets. The first path involves our enrichment
procedure, detailed in Section 3.1. The second solution path employs our
sequential tool-coupling approach, which integrates MATSim as the mesoscopic
transport planning framework and SUMO as the microscopic traffic simulation
counterpart. Each approach presents unique advantages and limitations, and
we propose their utilization according to the guidelines in Figure 9.2.
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We primarily developed the toolchain in MATLAB, occasionally utilizing
Python or GIT BASH to handle large datasets. These auxiliary tools, along
with the SUMO command line interface, were orchestrated through MATLAB.
Importantly, we did not integrate the Java-based MATSim framework into our
MATLAB environment. Instead, our toolchain begins with existing MATSim
output files. Using any travel-time calibrated MATSim scenarios as a basis, we
can execute customized DRT runs with the assistance of the MATSim GUI or
any preferred Java IDE, such as Eclipse or IntelliJ.

237



7 Calibrating spatio-temporal network states in SUMO with MATSim observations

→

PA
TH

 II: TO
O

L C
O

U
P

LIN
G

PATH
 1

: EN
R

IC
H

M
EN

T

G
A

 FR
A

M
EW

O
R

K

*

*

*

Figure
7.15:Finaltoolchain

forderiving
detailed

driving
profilesforSA

EV
requirem

entengineering.The
toolchain

consistsofseven
m

ajor
com

ponents,each
depicted

in
a

distinctcolor.C
orresponding

softw
are

environm
entsare

indicated.

238



Part III

Tool-Chain Application and
final Evaluation

239





8 Tool-chain application – a power
engine centered study

The primary aim of this thesis is to refine SAEV engineering requirements.
Our toolchain constitutes an important advancement in reaching this objective.

Critical factors influencing vehicle design include operating hours and mileage,
directly affecting vehicle durability and lifetime. SAEV mobility patterns
closely resemble those of urban taxi fleets, with data on average SAEV operating
patterns available, e.g., from agent-based DRT simulation [34, 72, 155].

However, autonomous driving capabilities introduce further changes in driving
pattern and behavior, thereby altering the operational conditions of the vehicle
and its components. These second-order effects necessitate a comprehen-
sive approach integrating mesoscopic transport planning, microscopic traffic
simulation and nanoscopic vehicle simulation. While this thesis primarily
addresses the meso-micro coupling aspect, we employ a well-established vehicle
simulation model [190] here.

In the following sections, we apply our toolchain in a power-engine-centered
study, aiming to identify essential operating points for electrical machines
(EMAs) in SAEVs. We thereby seek to optimize EMA design to meet the specific
requirements of SAEVs. The chapter begins with an exploration of technical
aspects regarding EMAs in Section 8.1, providing a necessary background
for understanding subsequent discussions. We then present the general setup
of our methodological approach (Sec. 8.2), followed by a description of our
specific use case setup (Sec. 8.3). Finally, in Section 8.4, we interpret the study
results, offering valuable insights into the complex dynamics between evolving
mobility needs, altered operational conditions, and vehicle design.
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8.1 Efficiency of electric drive systems for
private cars

Modern EV motors designed for personal cars require versatile performance,
operating efficiently across a wide torque and speed1 range. Efficiency maps,
typically presented as contour plots, depict the maximum efficiency within a
torque-speed plane, aiding engineers in selecting optimal operating points for
critical vehicle maneuvers like acceleration, cruising, and regenerative braking.
The goal is to minimize energy losses, ensuring the electric propulsion system
operates with optimal efficiency and overall performance.

The top panel of Figure 8.1 displays exemplarily the efficiency map for a
permanent magnet synchronous motor (PMSM) and its inverter, showcasing
notable efficiency under both full and partial loads. This efficiency is attributed
to the remarkable power density of PMSMs, which achieve significant power
output relative to their compact size and weight, making them well-suited for
EV propulsion systems. However, the high costs of rare-earth magnet materials
crucial for PMSMs have driven research to further optimize motor efficiency
and performance, aiming to improve cost-effectiveness and sustainability.

The efficiency of an EMA and its associated inverter (INV) is influenced by
various factors, with the EV battery’s direct current voltage (𝑈DC) playing a
significant role. Lithium-ion batteries, common in electric vehicles, exhibit
nonlinear voltage characteristics during discharge, decreasing as the state of
charge (SOC) declines. This reduction in𝑈DC requires higher inverter currents
to maintain constant power (𝑃 = 𝑈 · 𝐼), resulting in elevated resistive losses
(𝑃Ω = 𝐼2𝑅) and decreased inverter efficiency. The left panel at Figure 8.2
illustrates how higher efficiency areas contract with reduced𝑈DC and shift to
lower torque and speed, with the maximum torque limit declining in constant
power regions.

The right panel of Figure 8.2 demonstrates the significant impact of temperature
on the drive system efficiency, highlighting the importance of effective cooling
systems. Semiconductor devices in the inverter perform better at lower tem-
peratures, while higher temperatures increase resistance and reduce switching

1 In the domain of electric drives, the term "speed" refers specifically to the rotational velocity of
the EMA, distinct from the velocity of the vehicle.
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Figure 8.1: Efficiency (top) and power loss (bottom) map derived from a 2D Finite Element
Method (FEM) based simulation for a PMSM (𝑈DC = 360V, stator/rotor temperature
𝑇R,S = 80◦). By dividing the motor into small elements, FEM calculates the distribution
of electromagnetic fields, voltages, currents, and forces within the motor. The red
dashed line marks the maximum torque line, representing the upper limit of torque
values attainable by the EMA at different speeds. The white lines in the bottom panel
denote constant EMA power lines.
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Figure 8.2: Impact of the battery’s DC voltage (𝑈DC, left panel) and the EMA’s stator/rotor
temperature (𝑇S,R, right panel) on the 97% efficiency contour, and the EMA’s maximum
torque exemplified by a 200kW PMSM.

speeds, leading to higher resistive losses in EMA and INV components. As a
result, both efficiency and maximum torque decrease significantly.

EMA losses within an EV propulsion system vary across different operating
conditions, as depicted in the lower panel of Figure 8.1. As outlined in
Table 8.1, ohmic losses are significant in regions of constant torque, crucial
for acceleration, while core and converter losses dominate in constant power
regions [186]. Regions of constant torque denote areas of low speed, where
torque remains relatively constant as long as the current is kept constant.
With increased motor speeds, higher back-electromotive forces (EMF) are
induced, opposing the applied voltage. The transition from constant torque
to constant power occurs when back-EMF equals applied voltage, leading
to decreasing torque with speed while maintaining relatively constant power
output. Operational transitions toward regions of constant power are essential
for cruising or high speeds.

8.2 Methodological approach

Optimizing vehicles for specific use cases, such as parcel delivery or SAEVs,
necessitates distinct vehicle architectures and component designs compared
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Table 8.1: Significance and variation levels of each loss type as a percentage of the maximum power
for an interior PMSM, depicted for both constant torque and constant power regimes.
Data sourced from [186]. Ohmic losses: Heat generated due to electrical resistance
in motor windings. Core losses: Energy dissipated in the motor’s magnetic core due
to hysteresis and eddy currents. Permanent magnet (PM) losses: Energy losses in the
permanent magnets due to demagnetization effects. Converter losses: Power losses
in the motor drive converter, including switching and conduction losses. Mechanical
losses: Energy losses due to friction and windage within the motor, such as bearing
friction and air resistance. Transmission system losses: Losses incurred in transferring
mechanical power from the motor to the load, including losses in gears, or shafts.

operating ohmic core PM converter mechanical transmission
region loss loss loss loss loss system loss
constant torque 0.1-13% 0.01-1.5% 0.001-0.5% 0.01-9% 0.1-1% 5-6%
constant power 0.1-5% 1-15% 0.001-1% 1-12% 0.5-3% 4-15%

to those optimized for average PC usage, typically assessed by the Worldwide
harmonized Light vehicle Test Procedure (WLTP). Addressing diverse and
future usage scenarios requires new vehicle development and optimization tools
to be applied on both architectural and component levels.

[190] offers a holistic EV simulation tool based on Gamma Technologies
GT Suite2 to optimize EV architecture and powertrain design for specific use
cases. The vehicle simulation necessitates detailed usage profiles, encompassing
velocity, status, and altitude time-series data, typically describing the operational
patterns of a particular vehicle across a sufficiently long time period. Throughout
the simulation, all energy transfers including mechanical, electrical, and notably
thermal flows within the vehicle and its subsystems are considered. This
evaluation extends beyond driving to include parking and charging phases,
enabling the determination of annual energy consumption. As a result, the tool
provides a holistic energy flow description within EVs, enabling the comparison
of different vehicle and powertrain configurations while assessing specific
efficiency measures. Additionally, it generates relevant time-series data on
energy flows and load profiles for various vehicle components, aiding in deriving
future system engineering requirements. Concerning EMA design, it produces
diverse torque-speed planes, illustrating commonly frequented operating points
and their efficiency.

2 GT-SUITE, https://www.gtisoft.com/gt-suite/. Accessed: Sep. 29, 2024.
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−

−

−

Figure 8.3: Schematic representation of the methodology for deriving automotive system require-
ments for future mobility concepts. Multi-level traffic simulation generates key usage
patterns for SAEVs, including velocity, status, and altitude profiles. These patterns
are fed to holistic EV simulation [190], facilitating the comparison of vehicle and
powertrain topologies, while assessing specific efficiency measures. The methodology
enables the derivation of load profiles for all relevant EV system components.

Integrated with multi-level traffic simulation (refer to Figure 8.3), the EV simu-
lation leverages an extensive database of present and future mobility patterns.
With the incorporation of our devised toolchain, formerly estimated SAEV
driving profiles are now methodologically derived, enabling the systematic
derivation of automotive system requirements.

8.3 Study design

In the following, we apply the toolchain depicted in Figure 8.3 to analyze
the impact of shifting vehicle use patterns and driving behavior on EMA
load profiles and highlight implications for EMA design. Microscopic driving
profiles for both PC and SAEV use pattern are deduced over a 24 hour period. PC
data is sourced from the Mobilität in Deutschland (MiD 2018) study [170] and
converted into FKFS-cycle-based driving cycles (cf. Figure 3.1), representing a
mixed driving pattern with various road types and a broad velocity spectrum (cf.
Figure 8.4 left side). SAEV driving profiles are derived from a 10% MATSim
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Figure 8.4: Daily KPIs of privately owned passenger cars and shared, autonomous electric vehicles.
PC data sourced from MiD 2018 study [170] and FKFS cycle, representing real-world
driving in the Stuttgart region. Median SAEV KPIs derived from 10% MATSim DRT
simulation, processed with our toolchain for detailed driving dynamics.

simulation of a DRT fleet in Berlin’s downtown area, focusing on urban driving
dynamics characterized by moderate vehicle speeds (cf. Figure 8.4 right side).

Figure 8.4 demonstrates notable disparities in daily driving KPIs between an
average PC and SAEV. SAEVs cover nine times the mileage of PCs, have
operation periods eighteen times longer, and experience considerably more
stop-and-go events due to their urban service area. Velocity profiles for PC and
SAEV (in conjunction with corresponding vehicle status and altitude profiles)
are fed to subsequent vehicle simulation (cf. Figure 8.3) with its EV model
relying on a 150 kW PMSM.

To ensure a sufficiently populated map of EMA operating points for PC usage,
velocity profiles were extended from the initial 24 hour period to six days by
incorporating additional FKFS cycles. For consistency, SAEV driving profiles
were expanded to the same calendric time frame by selecting additional vehicles
from the DRT fleet with median driving KPIs.
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8.4 Modified power engine requirements for
SAEV fleets

The modified driving patterns of SAEVs result in distinct frequency variations
of EMA operating points (OPs) compared to PCs, as shown in Figure 8.5. In our
case study, SAEVs exhibit considerably higher OP utilization rates due to their
extended operational period and narrower range of rotor speeds, typically up to
9 000 rpm, compared to PCs, which can reach up to 13 000 rpm. While PCs
show frequent OPs around 5 000 rpm and 7 500 rpm, SAEVs spend more time
at low rotor speeds of up to 4 000 rpm. Contrary to our expectations, there is no
noticeable broadening in torque spectra observed for PCs. It is important to note,
however, that the used PC driving cycles involved specifically trained drivers,
potentially excluding more aggressive driving behaviors typically encountered
in real-world scenarios.

We supplement the analysis by overlaying the frequency distribution of EMA
operating points with their corresponding efficiencies, thereby estimating the
OP-specific energy losses over the duration of respective PC and SAEV driving
cycles. This metric serves as a fundamental guiding principle for pinpointing the
areas where optimization of the electric drive (ED) subsystem, comprising the
EMA and INV, can be most effectively pursued. In this matter, we distinguish
between OP-specific efficiency 𝜂ED

𝑀,𝑛
across the torque-speed plane and the

overall roundtrip efficiency 𝜂ED throughout the driving cycle.

The OP-specific efficiency is defined as the ratio of mechanical power (𝑃mech)
generated by the EMA to the power supplied by the EV battery (𝑃Bat) during
forward motoring (𝑀, 𝑛 ≥ 0):

𝜂ED
𝑀,𝑛 =

𝑃mech

𝑃Bat
. (8.1)

For rotation against a torque 𝑀 , the mechanical power is given by

𝑃mech = ®𝑀 · ®𝜔 (8.2)
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Figure 8.5: Comparison of EMA operating points frequented by PC and SAEV over 6 days. Colored
areas serve as indicators for the EMAs’ OP-specific operating time, facilitating cross-
panel comparability. Yellow areas highlight the most frequented OP regions, while
bluish areas represent the least frequented ones. Contour lines delineate areas of similar
operating duration, highlighting significantly higher SAEV utilization rates. SAEVs
demonstrate longer operating times that manifest in smaller torque-speed ranges.

249



8 Tool-chain application – a power engine centered study

where ®𝜔 =
d𝜑
d𝑡 ®𝑒 represents the angular velocity about an axis parallel to the

direction vector ®𝑒. For a shaft with torque 𝑀 and rotational speed 𝑛 = 𝜔
2𝜋 , the

shaft power is determined by

𝑃mech = 𝑀 2𝜋 𝑛 (8.3)

which leads to

𝜂ED
𝑀,𝑛 =

𝑀 2𝜋 𝑛
𝑃Bat

. (8.4)

To compute the overall roundtrip efficiency 𝜂𝐸𝐷 of the electric drive system,
a shift from a power-centric to an energy-centric perspective in efficiency
calculation is necessary. Simply averaging all OP efficiencies 𝜂ED

𝑀,𝑛
based

on their temporal occurrence overlooks the significance of realized or lost
power. For instance, a low-power operating point with low efficiency may not
significantly affect the overall loss balance, as its realized losses are marginal
compared to high-power OPs with seemingly high efficiency (cf. bottom panel
of Figure 8.1). In other words, although a low-efficiency EMA OP results in high
relative energy losses, its low power throughput makes these losses negligible
in absolute terms. Therefore, we utilize cumulative power values derived from
vehicle simulation to calculate the ED’s overall efficiency, accommodating both
forward motoring and regenerative braking.

As depicted in Figure 8.6 by the bluish energy flows, during forward motoring,
the input to the ED system is the energy supplied by the high voltage system
𝐸Hv2Inv

3. Conversely, its output is the energy 𝐸Ema2Tra forwarded to the
transmission system. During braking (recuperation, highlighted in reddish
tones), the energy flow reverses, and the EMA converts the mechanical energy
transmitted by the transmission system into electric energy (𝐸Tra2Ema). This
electric energy is then returned to the battery via the high voltage system
(𝐸Inv2Hv). The roundtrip efficiency 𝜂ED is defined as:

3 Note that 𝐸Hv2Inv may differ from the energy sourced from the battery (𝐸Bat2Hv) due to additional
electrical loads in the low voltage system.
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Figure 8.6: Extract of the energy flow diagram, generated through EV simulation in GT-Suite
[190], depicting crucial energy pathways associated with an EV’s electric drive system,
comprising the electric machine and inverter.

𝜂ED =

∫
𝑃ED,out∫
𝑃ED,in

=
𝐸Inv2Hv + 𝐸Ema2Tra

𝐸Hv2Inv + 𝐸Tra2Ema
. (8.5)

Figure 8.7 depicts the cumulative power losses at specific OPs of the electric
drive system. For SAEVs, significant losses occur at low torque (0 to 30 Nm)
and moderate speeds (1500 to 5000 rpm), contrasting with PCs where losses
peak at higher speeds (7000 to 8000 rpm). Hence, the optimization of ED
efficiency for SAEVs ought to concentrate on zones characterized by moderate
speed and low torque to efficiently alleviate overall energy losses, deviating from
the conventional approach influenced by PCs, which typically prioritizes high-
power regions. Conventional EVs, often in the higher price range, prioritize
high-power machines more for marketing and emotional reasons than as a
technological necessity. Therefore, electric machines in these EVs are often
oversized and optimized for high-power OPs, crucial for tasks like acceleration
and hill climbing. SAEVs, in contrast, would greatly benefit from alternative
optimization strategies that prioritize efficiency at partial loads, aligning with
their urban driving, low-speed conditions and smoother driving style.

Table 8.2 compiles KPIs relevant to power engines, derived from vehicle simu-
lations of both PC and SAEV. Despite SAEVs exhibiting significantly greater
mileage and uptime in our use case, their average energy consumption is reduced
by 12%, mainly due to their refined driving style, lower urban speeds, and
increased recuperation gains. In this context, SAEVs additionally benefit from
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Figure 8.7: Scatter plots depicting the accumulated power losses experienced by an electric drive
over a 6-day period for PC usage (top) and a 1-day interval for SAEV usage. In both
plots, the size and color of each data point represent the magnitude of energy losses, with
smaller bluish dots indicating regions of low energy loss and larger yellowish scatter
signifying areas with higher energy losses. Additionally, KPIs related to the respective
drive cycles are presented in the upper right corner of each panel for contextualization.
Notably, scatter points characterized by larger size and a greenish-yellowish color
exhibit substantial potential of efficiency improvements, making them particularly
impactful.
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8.4 Modified power engine requirements for SAEV fleets

Table 8.2: Compilation of power-engine relevant KPIs for PCs and SAEVs, derived from vehicle
simulation using corresponding driving cycles over 6 days. The table also shows the
relative growth of SAEV KPIs compared to PCs for clarity. The electric drive (ED)
encompasses both electric machine and inverter.

KPI PC SAEV growth
mileage in km 179.7 1540.2 757 % ↑
uptime in h 4.26 81.02 1802% ↑
average speed in km/h 42.2 19.0 -55% ↓
consumption in kWh/100km 11.7 10.3 -12% ↓
mean ED efficiency in % 87.9 84.9 -3.4% ↓
accumulated ED energy losses in kWh 4.25 47.12 1009% ↑
mileage normalized ED energy losses in kWh/100km 2.37 3.06 29% ↑

second-order effects, given their sustained operation with minimal cooldown
intervals, thereby diminishing the necessity for energy-intensive preconditioning
procedures associated with the vehicle’s battery or cabin. However, SAEVs
show a lower average efficiency of the electric drive system, calculated using
Equation 8.5. This decreased efficiency results from suboptimal EMA design4,
prioritizing efficiency under full load conditions rarely encountered in SAEV
operation. Even when normalized for mileage, energy losses of the EMA and
inverter in SAEVs are increased by 29% compared to PC usage.

Scientific consensus acknowledges that battery electric vehicles (BEVs) require
less maintenance and repair than conventional vehicles [87]. However, when
considering AVs, factors supporting and opposing this trend arise. While AVs
prioritize comfort and often experience less aggressive driving, enhancing
component longevity, higher daily mileage and uptime, particularly in SAEVs,
lead to increased wear and tear on replaceable parts, potentially reducing the
lifespan of EMA and other EV components. According to our study, a typical
SAEV accumulates the runtime equivalent of a PC over a year in just 19 days.
Furthermore, PCs typically cover annual distances ranging from 13,000 to
16,000 km [170]. SAEVs achieve this mileage in just 2 months according to
our DRT simulation. This stark difference underscores the need for SAEV

4 The study’s EMA model is based on a PMSM optimized for PC usage.
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manufacturers to reassess the lifespan of fleet vehicles and consider potential
powertrain updates to ensure safety standards are upheld.

In closing, let us consider the hypothetical scenario of new EMA design
specifically tailored to meet the operational demands of SAEVs. With 14,127
fleet vehicles (cf. DRT scenario in Table 5.1) and moderate energy prices
(10 ct/kWh), even a modest 3 percent increase in the mean ED efficiency can
lead to substantial annual savings (0.81 million euro) due to reduced energy
losses, as shown in Table 8.3. This underscores the importance for future SAEV
fleet operators to prioritize investments in EVs equipped with more efficient
powertrain components.

Table 8.3: Economic impacts of enhanced ED efficiency (1/3/5% improvement) for SAEVs at
various energy prices (5/10/20 ct/kWh). Results are based on the current ED efficiency
of 85% and associated ED energy losses of 47.12 kWh over 6 days. Annual savings
offer insights into the additional expenditure that SAEV fleet providers might consider
for investing in optimized ED components. All savings are presented in terms of the
economic impact per one average SAEV vehicle.

assumed ED efficiency gain 1% ↑ 3% ↑ 5% ↑
accumulated ED losses 43.98 37.70 31.41 kWh/6d

accumulated annual ED losses 2675.37 2293.17 1910.98 kWh/a
saved annual ED losses 191.10 573.29 955.49 kWh/a

5 ct/kWh 9.55 28.66 47.77 =C/SAEV/a
10 ct/kWh 19.11 57.33 95.55 =C/SAEV/a
20 ct/kWh 38.22 114.66 191.10 =C/SAEV/a
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Summary of Contributions The principal contribution of this work lies in
the development of a two-pathed toolchain designed to facilitate the derivation
of SAEV driving cycles for automotive requirement engineering. Central to this
contribution is the successful integration of the mesoscopic transport planning
framework MATSim with the microscopic traffic simulation tool SUMO.

A significant academic achievement of this work lies in bridging the gap between
two inherently incompatible simulation frameworks of different representation
levels. Given the fundamental differences in network representation and
traffic dynamics, seamless co-simulation of MATSim and SUMO was deemed
unfeasible. However, through leveraging additional degrees of freedom inherent
to our vehicle-centric use case, we devised a sequential tool-coupling approach.
This approach adopted a novel (automotive-inspired) perspective on meso-
micro model calibration, prioritizing the consistency of ego-vehicle travel times
over traffic counts. This emphasis enabled the derivation of detailed driving
dynamics from large-scale DRT fleet simulation.

Notably, our toolchain exhibits high robustness, excelling in scenarios with
limited data availability and imperfect microscopic networks. Unlike many
large-scale microscopic traffic simulations that struggle with extensive network
cleaning and travel demand synthesis efforts, our approach minimizes these
challenges by subduing microscopic modeling effort to the less restrictive
requirements of mesoscopic transport planning.

We also developed a secondary, more pragmatic (albeit less measure-responsive)
data-driven solution for deriving SAEV drive cycles. This alternative method
involves enhancing mesoscopic speed profiles in MATSim by incorporating
real-world driving data, allowing for detailed driving dynamics to be derived
from purely mesoscopic transport planning.

In essence, our contributions span both pragmatic data-driven solutions and
sophisticated model-based methodologies. The versatility of our toolchain
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makes it a valuable asset to investigate the impact of new mobility concepts on
vehicle usage and component load profiles. This not only aids the automotive
industry in designing future vehicle systems but also advances the field of
multi-level traffic simulation and modeling.

Revisit of Research Objectives Initially, driven by the need for dependable
SAEV driving profiles in automotive requirement engineering, our primary
objective was to devise a method capable of deducing these driving cycles
while adhering to specific criteria (see KR0-5 in Section 1.4).

Originating from this industry-driven objective, our task was to identify SAEV
travel demand in a scenario-based manner (KR0). We aimed to extract driving
profiles that accurately depicted the daily movements of SAEVs across entire
metropolitan regions, considering all EV range and charging constraints, as
well as diverse DRT routing and dispatching strategies (KR1). These profiles
needed to encompass specific vehicle states (KR2), including charging, idling,
or occupied, to facilitate optimal climate control and battery management.
The primary emphasis lay in modeling second-by-second velocity profiles
with intricate driving dynamics (KR3), reflecting a wide spectrum of driving
behaviors, traffic states, and transport infrastructures for vehicle simulation.
Furthermore, the incorporation of additional time-series data, such as vehicle-
specific altitude and occupancy profiles (KR4), was deemed advantageous for
SAEV prototyping and component design. Due to the application-driven nature
of this thesis, practical feasibility (KR5) was prioritized over strict adherence to
specific scientific methodologies.

Over time, our initially industry-oriented research objective evolved into a
more academic pursuit, shifting towards the exploration of multi-level traffic
simulation (cf. Figure 9.1). This evolution eventually led to the development of
a sequential tool coupling between mesoscopic transport planning in MATSim
and microscopic traffic simulation in SUMO. Bridging the gap between these
inherently incompatible frameworks of different representation levels presents
an academic challenge that has not been adequately investigated or practically
demonstrated thus far.

Due to the broad scope of the thesis, we deliberately relied on existing function-
alities from MATSim and SUMO to meet our SAEV related key requirements
(KR0-4) to strengthen our focal point on the actual tool-coupling development

256



•

•
−
−
−
−

•

•

Figure 9.1: Evolution of research objectives: The transition from industry-driven to academic
inquiry in automotive research. Initially, prompted by the need for dependable SAEV
driving profiles for automotive requirement engineering, specific drive cycle criteria
(KR0-5) were outlined for SAEV prototyping. Over time, the focus shifted towards
a more academic exploration, culminating in the coupling of mesoscopic transport
planning in MATSim with microscopic traffic simulation in SUMO. The figure further
illustrates the allocation of various SAEV modeling components to the respective
MATSim and SUMO domains.

and practical demonstration. So, in Chapter 2, we leveraged MATSim’s capa-
bility to simulate and track electric DRT fleets within large-scale multi-modal
transport environments. This approach addressed the requirements KR0, KR1,
KR2, and KR4 as outlined in Section 1.4.

To address MATSim’s limitations in traffic dynamic modeling, we developed
two approaches to deduce realistic velocity profiles (KR3) in Chapter 3. First, we
enhanced mesoscopic driving cycles from MATSim simulations with real-world
data using data-driven methods. However, this enrichment method showed
limited sensitivity to various driving styles and autonomous driving features
like platooning. To overcome this, and to reduce the need for resource-intensive
on-road measurements, we also explored microscopic traffic simulation in
the same chapter. This provided a more responsive, albeit more complex,
model-based approach to fulfill KR3.
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To achieve our revised objective of meso-micro tool-coupling, we developed
automated methods for building and populating microscopic SUMO models
within areas of interest in MATSim. This included implementing a robust
network matching routine to translate mesoscopic network attributes to their
microscopic counterparts (Chapter 4). Furthermore, we created a technique
to disaggregate MATSim’s sampled travel demand into the higher-resolved
microscopic simulation domain across dynamic meso-micro network borders
(Chapter 5). Using stochastic methods, we minimized computational efforts in
the microscopic part by reducing the share of DRT fleet vehicles being trans-
ferred, while maintaining fleet representativeness. Throughout our toolchain
development, meeting the requirements of KR5 was our top priority.

Our primary focus was on establishing consistency between MATSim and
SUMO, a prerequisite for successful tool-coupling. In Chapter 6, we conducted
various experiments to analyze the conformity of both frameworks in terms
of traffic dynamics and network capacity. The results revealed inherent non-
compatibility between the frameworks, thwarting our initial aspirations for
meso-micro co-simulation.

To overcome this challenge, we devised an alternative toolchain design in
Chapter 7 that effectively aligns traffic states spatio-temporally in both meso
and microscopic simulation components. This involved a novel calibration
approach tailored for microscopic traffic simulations, focusing on reproducing
observed travel times of individual vehicles rather than traffic counts.

In alignment with the automotive context of the thesis, we demonstrated the
toolchain’s feasibility in a study centered on the design of power engines in
Chapter 8. Specifically, we exemplified the deduction of modified power engine
requirements arising from distinct driving patterns and behaviors inherent
to SAEV fleets compared to privately-owned passenger cars through vehicle
simulation.

Limitations, Methodological Reflection and Areas of Future Research
Our toolchain’s practical feasibility is subject to certain limitations. Notably, it
primarily confines to our automotive-inspired use case where precise modeling
of microscopic driving patterns and associated ego-vehicle dynamics takes
precedence over the accurate representation of traffic conditions. While a
multi-level co-simulation approach is desirable for broader applicability, its
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feasibility remains uncertain and necessitates substantial research efforts, as
elucidated in Section 6.1. In hindsight, while reflecting on our methodological
approach, it would have been beneficial to adopt a more open-minded approach
to multi-level co-simulation, starting with the careful selection of inherently
compatible tools, as exemplified by prior efforts [37]. However, the tool choice
of MATSim and SUMO was fixed by the customer.

Our toolchain relies on an existing travel-time calibrated mesoscopic transport
model. While theoretically transferable to other metropolitan areas, its practical
feasibility hinges on the availability of such a model. Constructing and
calibrating a new MATSim model from scratch using surveys and land-use data is
resource-intensive, defying automotive business economics. To circumvent this,
we suggest outsourcing future model construction to SENOZON AG1, which
offers customer-specific mobile-based demand data for MATSim integration,
leveraging MATSim’s recent applications in epidemiological research [158,
157, 160, 159].

We recognize the need for further improvements in the user-friendliness and
performance of our toolchain, especially regarding automation capability and
computational efficiency in large-scale scenarios. Firstly, meaningful simulation
initiation and effective troubleshooting still require a significant background in
traffic engineering. Secondly, despite efforts to minimize manual intervention
(e.g., toolchain’s resilience to imperfect, uncleaned networks) and computational
resources (e.g., extraction and microscopic simulation of fleet representatives
in an area-minimized network), substantial resources are still necessary for a
single toolchain run, requiring either a high-performance computing cluster or
significant time investment.

A notable bottleneck is the genetic algorithm-based calibration process, which
aligns spatio-temporal network states in SUMO with observed states in MAT-
Sim. Exploring more deterministic calibration approaches with superior
pre-screening capabilities for local optima could reduce the need for repetitive
or redundant microscopic simulations in SUMO.

Another area requiring improvement pertains to our approach in modeling
autonomous driving behavior. Despite SUMO’s various Car2X interfaces and
suitable car-following models, we chose the simplistic Krauss model due to the

1 SENOZON, https://senozon.com/. Accessed: Sep. 29, 2024.
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relatively broad scope of our thesis. We prioritized our focus on meso-micro
tool coupling over delving deeper into the intricacies of autonomous driving
modeling. By doing so, we acknowledge the possibility of overlooking relevant
issues in this area, warranting future investigation.

Theoretical and Practical Implications In the operational setting of an
automotive supplier, our toolchain adeptly addresses the challenges posed by
uncertain travel demands, usage patterns, and driving behaviors stemming
from emerging mobility concepts. Although estimates exist for SAEVs’ daily
mileage and there is a consensus on a smoother driving style, the absence of
"measure-sensitive" 24-hour velocity profiles has impeded detailed vehicle
simulation and component design efforts to date. Our contribution addresses
this limitation, offering a method for more precise SAEV prototyping.

Furthermore, our engagement in multi-level traffic simulation provides a
foundation for the automotive industry to explore new business opportunities.
Beyond its core focus on SAEVs, our toolchain offers diverse applications in the
automotive sector by facilitating access to microscopic SUMO functionalities
within mesoscopic transport simulation. This encompasses the evaluation of
other emerging mobility concepts like urban air mobility, platooning vehicle
convoys, or integrated passenger and freight transport. Additionally, it aids
mobility service providers in fleet operations and enables virtual testing of
Car2X technologies, traffic control innovations, and other initiatives aimed at
fostering sustainable urban living.

From an academic standpoint, our automotive-focused study illustrates how
companies without traditional traffic engineering backgrounds can innovate and
enrich the conventional field of traffic and transport simulation with their novel
requirements and applications. Our approach, emphasizing realistic driving
behavior over traffic counts, offers a blueprint for future meso-micro coupling
endeavors within the context of automotive requirement engineering. Our tool-
coupling automates the creation, population, and calibration of microscopic
SUMO models from mesoscopic MATSim data, making it appealing for
vehicle-centered studies.

Despite the tool-coupling’s capabilities, it is essential to recognize that the less
intricate enrichment method likely suffices for most engineering cases. While the
meso-micro tool-coupling offers greater versatility and measure-sensitivity, its

260



setup demands significant computational resources and time investment. From
an entrepreneurial standpoint, this approach may not always be justified. Thus,
subjecting every fleet scenario to subsequent SUMO simulation is impractical,
as the benefits must outweigh the added effort. Depending on the use case,
pure mesoscopic MATSim simulation (with or without sequential real-data
enhancement) is often adequate. Sequential microscopic simulation is valuable
for initial exploratory scenarios impacting vehicle design (cf. Figure 9.2),
particularly where the enrichment method may miss relevant effects, such as
driving in vehicle platoons.

Broader Significance in Automotive Context This thesis, initiated in
2018, maintains relevance in today’s rapidly evolving automotive landscape.
As the industry witnesses the decline of traditional ICE-based vehicles and
awaits the full realization of autonomous driving and electric vehicles, signif-
icant consolidation looms, with emerging market dynamics yet to stabilize.
Traditional players must navigate this complexity, balancing the need for agility
with a cautious decision-making approach aimed at safeguarding employment
stability.

In response to these challenges, automotive suppliers are compelled to di-
versify revenue streams and shift away from reliance on ICE technologies.
The exploration of alternative travel modes presented in this thesis marks a
step toward identifying new business opportunities, enabling scenario-based
decision-making in this context. With intensifying competitiveness and cost
pressures, there is a growing urgency for suppliers to adopt modular solu-
tions adaptable to diverse use cases, departing from the prevalent practice
of customized component development based on OEM specifications. Thus,
embracing new model- or data-driven methodologies to determine univer-
sal vehicle requirements independently in a scenario-based manner becomes
paramount, facilitating the development of modular component systems that
enhance adaptability, reduce costs, and bolster competitiveness.
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- pricing scheme
- city & service area
- dispatching & rebalancing & charging strategy
- pooled/ non-pooled
- service requirements

- driver model
- vehicle properties
- elevation model

resource-consuming
(despite automation)

- network generation & matching
- travel demand transfer
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Legend: 

Figure 9.2: Comparison of simulation outputs for automotive SAEV requirement engineering:
Blue text boxes denote outputs from pure mesoscopic transport simulation, while red
ones represent additional results from microscopic traffic simulation. Compared to
SUMO outputs, the enrichment procedure exclusively enhances the MATSim results
with realistic driving dynamics. The figure further illustrates challenges in meso-micro
integration and, depending on the preferred SAEV scenario, offers recommendations to
use (a) pure mesoscopic transport planning, (b) pure microscopic traffic simulation, (c)
mesoscopic simulation with real-data enrichment, and (d) meso-micro coupling.
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A Appendix

A.1 Applied SUMO command line options

a) Conversion of .osm.pbf file to .osm file

osmconvert input.osm.pbf --out-osm -o=output.osm

b) Cutting .osm files using a boundary box (longitude, latitude)

osmconvert input.osm -b=minlon,minlat,maxlon,maxlat
--out-osm -o=extract.osm

c) Clip OSM file based on produced polyfile

osmosis --read-xml file=input.osm.xml --bounding-polygon
file=polyfile.poly --write-xml file=clipped.osm.gz

Osmosis is a command line Java application for processing OSM data and avail-
able at https://github.com/openstreetmap/osmosis, accessed: Oct.
03, 2024.

d) SUMO network import from OSM

netconvert --osm-files input.osm -o network.net.xml
--geometry.remove --ramps.guess --junctions.join --tls.guess-signals
--tls.discard-simple --tls.join --tls.default-type actuated
--keep-edges.by-vclass passenger --remove-edges.by-type highway.track
--roundabouts.guess --remove-edges.isolated --log network.log
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e) Routing SUMO vehicles with DUAROUTER

duarouter -n network.net.xml --route-files trips.rou.xml.gz
-o duaroutes.rou.xml.gz --departlane best --departpos last
--departspeed max --arrivalpos max --remove-loops true
--repair.from true --repair.to true --xml-validation always
--error-log error_log.txt --ignore-errors true --routing-threads 4

f) Run SUMO simulation

sumo-gui -c testrun.sumocfg

The relevant options of the SUMO configuration file (in this case,
testrun.sumocfg) are illustrated as an example in Section A.2.

A.2 Example SUMO configuration file (.sumocfg)

The SUMO configuration file requires two key input files: the net-file and
route-files. In a basic setup, the net-file can be generated from OSM
data using command (d) in Section A.1, which configures import heuristics and
road network granularity. OSM files can be obtained through commands (a),
(b), or (c). Travel demand, represented by route-files, is generated using
the DUAROUTER tool (command (e)), converting (in our case MATSim) trips
into SUMO-compatible routes.

For the calibration procedure in Chapter 7, the configuration file must specify
summary-output and tripinfo-output options for aggregated and detailed
trip information, respectively, essential for our GA’s objective function. The
fcd-output option, which generates floating car data, is necessary for re-
constructing microscopic driving cycles. The optimal processing and routing
options in the configuration file are based on best practices and refined through
calibration, as detailed in Chapter 7. The SUMO simulation is executed using
command (f), which invokes the specified configuration file to run the simulation
scenario.
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A.2 Example SUMO configuration file (.sumocfg)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!-- generated on 06/26/20 19:03:17 by Eclipse SUMO Version 1.6.0
3 -->
4 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/
sumoConfiguration.xsd">

5
6 <input>
7 <net-file value="final_network_397134901.net.xml"/>
8 <route-files value="trips_397134901_80p_wego.rou.xml"/>
9 <additional -files value="dua_dump_80p.add.xml"/>

10 </input>
11
12 <output>
13 <summary-output value="summary_80p.xml"/>
14 <tripinfo -output value="tripinfo_80p.xml"/>
15 <fcd-output value="fcddata_80p.xml"/>
16 </output>
17
18 <time>
19 <begin value="0"/>
20 </time>
21
22 <processing>
23 <route-steps value="200"/>
24 <no-internal -links value="false"/>
25 <time-to-teleport value="40"/>
26 <time-to-teleport.highways value="0"/>
27 <eager-insert value="false"/>
28 <ignore-route-errors value="true"/>
29 <max-depart-delay value="720"/>
30 <ignore-junction -blocker value="60"/>
31 </processing>
32
33 <routing>
34 <device.rerouting.probability value="0.9"/>
35 <device.rerouting.deterministic value="true"/>
36 <device.rerouting.period value="60"/>
37 <device.rerouting.adaptation -steps value="180"/>
38 <device.rerouting.adaptation -interval value="1"/>
39 </routing>
40
41 <report>
42 <verbose value="true"/>
43 <no-warnings value="false"/>
44 <log value="iteration_80p.sumo.log"/>
45 <no-step-log value="true"/>
46 </report>
47
48 <random_number>
49 <seed value="23423"/>
50 </random_number>
51
52 </configuration>

Listing A.1: Structural composition of a SUMO configuration file (.sumocfg).
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