KIT | KIT-Bibliothek | Impressum | Datenschutz

A cohomology-based Gromov–Hausdorff metric approach for quantifying molecular similarity

Wee, JunJie ; Gong, Xue ; Tuschmann, Wilderich 1,2; Xia, Kelin
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

We introduce a cohomology-based Gromov–Hausdorff ultrametric method to analyze 1-dimensional and higher-dimensional (co)homology groups, focusing on loops, voids, and higher-dimensional cavity structures in simplicial complexes, to address typical clustering questions arising in molecular data analysis. The Gromov–Hausdorff distance quantifies the dissimilarity between two metric spaces. In this framework, molecules are represented as simplicial complexes, and their cohomology vector spaces are computed to capture intrinsic topological invariants encoding loop and cavity structures. These vector spaces are equipped with a suitable distance measure, enabling the computation of the Gromov–Hausdorff ultrametric to evaluate structural dissimilarities. We demonstrate the methodology using organic–inorganic halide perovskite (OIHP) structures. The results highlight the effectiveness of this approach in clustering various molecular structures. By incorporating geometric information, our method provides deeper insights compared to traditional persistent homology techniques.


Verlagsausgabe §
DOI: 10.5445/IR/1000181036
Veröffentlicht am 14.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000181036
Erschienen in Scientific Reports
Verlag Nature Research
Band 15
Heft 1
Seiten 10458
Vorab online veröffentlicht am 26.03.2025
Nachgewiesen in Web of Science
OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page