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ARTICLE INFO ABSTRACT

Keywords: The Korteweg-De Vries (KdV) equation is a partial differential equation used to describe the
Solitons dynamics of water waves under the assumptions of shallow water, unidirectionality, weak
Korteweg-De Vries equation nonlinearity and constant depth. It can be solved analytically with a suitable nonlinear Fourier
Shallow water waves transform (NFT). The NFT for the KdV equation is subsequently referred to as the KdV-NFT.

Nonlinear Fourier transform

N . The soliton part of the nonlinear Fourier spectrum provides valuable insights into the nonlinear
Directional spreading

evolution of waveforms by exposing the amplitudes and velocities of potentially hidden solitonic
components. Under the KdV equation, the nonlinear spectrum evolves trivially according to
simple analytic rules. This in particular reflects that solitons are conserved by the KdV equation.
However, in reality, the nonlinear spectrum will change during evolution due to deviations
from the KdV equation. For example, waves in the ocean are typically multi-directional.
Furthermore, the water depth may range into the intermediate regime, e.g. depending on
tides and peak periods. It is therefore uncertain how long the nonlinear spectrum of real-
world data remains representative. In particular, it is unclear how stable the detected soliton
components are during evolution. To assess the effectiveness of the KdV-NFT in representing
water wave dynamics under non-ideal conditions, we generated numerical sea states with
varying directional spreading in intermediate water (kh = 1.036) using the High-Order Spectral
Ocean (HOS-Ocean) model for nonlinear evolution. After applying the NFT to space series
extracted from these evolving directional wave fields, we observe that the KdV-soliton spectra
from the NFT are quite stable for cases with small directional spreading. We in particular
observe that the largest soliton amplitude is (sometimes dramatically) more stable than the
amplitude of the largest linear mode. For large directional spreading, the applicability is limited
to short propagation times and distances, respectively.

1. Introduction

Solitons have been recognized as fundamental building blocks in the field of nonlinear dynamics. Their initial discovery dates
back to the experiments by John Scott Russell in 1844 [1]. They were subsequently described mathematically by the Korteweg-De
Vries (KdV) equation [2]. The KdV equation provides a mathematical framework for the evolution of weakly nonlinear and dispersive
progressive unidirectional free-surface waves in shallow water with a constant water depth.
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The Nonlinear Fourier Transform (NFT)' is as a powerful mathematical tool capable of effectively solving the KdV equation [3].
By employing the NFT, we obtain a nonlinear spectrum that reveals physically meaningful nonlinear components with respect to
the KdV equation. The solitonic part of the nonlinear spectrum provides amplitudes, velocities, and phases of solitons, offering
essential information for understanding the behavior of systems affected by (potentially hidden) solitons. The nonlinear spectrum
evolves trivially when the wave propagation is governed by the KdV equation. As there are also NFTs for other (so-called integrable)
equations than the KdV, we refer to the KAdV-NFT. The KdV-NFT can be used as a signal processing tool [4], and has been utilized
to analyze both experimental [5-9] and field measurements [10-14]. Especially in field measurements, the KdV equation can only
be an approximate model for wave propagation. In [13], where the measurement site was not specifically chosen to demonstrate
the KdV-NFT, non-negligible directional spreading was present and some of the data ventured into intermediate water depths. At
the moment, it is not clear what the lifetime of the detected soliton components is. The goal of this paper is to shed some light into
this question.

Recently, the paper [15] has explored the impact of directional spreading on the nonlinear Fourier spectrum with respect to the
nonlinear Schrodinger equation, which applies to the deep water case. However, there currently is no study that investigates the
distance for which KdV solitons can maintain stability during non-ideal evolution. In this paper, we therefore investigate the effects
of directional spreading on the solitonic part of KdV-NFT spectra in intermediate water using numerical simulations, and estimate
the propagation distances of the soliton components in various scenarios.

To perform the simulations, we utilize a nonlinear phase-resolving wave model based on the High-Order Spectral (HOS) method
in order to generate the spatio-temporal evolution of surface wave elevation. We employ the open-source model HOS-Ocean by
Ducrozet et al. [16]. HOS-Ocean is based on the Zakharov equation [17], which describes the dynamics of weakly nonlinear and
dispersive surface gravity waves in arbitrary constant depths (see the HOS-Ocean repository on GitLab https://gitlab.com/lheea/
HOS-Ocean). The HOS-Ocean model has been employed in numerous investigations focused on extreme wave phenomena and rogue
waves [18-23]. Simulating nonlinear waves numerically poses a challenge due to the issue of wave breaking [24]. The applicability
of the HOS-Ocean model is constrained to non-breaking waves propagating within a uniform water depth. Therefore, wave-breaking
conditions should be avoided as discussed in [25,26]. (More details on this aspect are provided in subsequent sections.)

Our paper reports the first results on the impact of directionality on the NFT based on the (uni-directional) KdV equation. The
structure of this paper is as follows. The theoretical background of the methods is introduced in Section 2. The simulation set-up is
presented in Section 3. The results are presented in Section 4. In Section 4.1, we first show fundamental statistical results for the
HOS-Ocean simulation. These results will be used to make a comparison with the KdV evolution under unidirectional conditions in
Section 4.2. In Section 4.3, we present the results of the NFT applied to wave fields from the HOS-Ocean model. Two evaluation
indices will be used to assess the impact of directional spreading on the evolution of the soliton spectrum in Section 4.4. Finally,
we discuss the results and provide a summary in Section 5.

2. Methods
2.1. The high-order spectral method

Simulations of the random surface waves were performed using the open-source model HOS-Ocean [16]. It is based on the
High-Order spectral (HOS) method first proposed by [27,28]. HOS-Ocean demonstrates superior efficiency and accuracy in wave
propagation when compared to other advanced methods [18,29,30]. It has been widely used to investigate the simulation of rogue
waves [18,19,31,32], wave-structure interaction [33], and the effects of ship motion [34].

The model is based on the potential flow formalism, assuming an incompressible, inviscid fluid, and irrotational flow. The Laplace
equation for the velocity potential ¢ is solved with boundary conditions. The Laplace equation can be written as

2, P
Vg + pri 0, [€))
where V is the gradient operator. The kinematic and dynamic free surface boundary conditions, involving the free surface elevation
n and the free surface velocity potential d(x,1) = Pp(x, z = n(x,1),1), satisfy
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D (14 1nP) W =V Vn,

or

a$ 1 2 1 @
2 - ZIVO + = (1 2y w2

S, = 8= 5I1Vel + 5 (1+1Val) W2,

where W is the vertical velocity at the free surface elevation. It solves the fully nonlinear boundary value problem for two unknowns
which are the surface elevation 5 and velocity potential ¢. HOS-Ocean considers periodic boundary conditions:

0. 6. W)(x=0.0) = (0. 6. W) (x = Ly.1). @)
The HOS-Ocean model evaluates the vertical velocity W with the HOS nonlinear order M,
M
$x,z,0) = Y ¢"(x, 2,0, )

m=1

1 The NFT is also known as the forward transform of the inverse scattering method.
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where ¢((x, z,) is assumed to be of order O(e™), and ¢ is a measure of the wave steepness. The HOS nonlinear order M enables
considering up to M + 1 nonlinear wave interactions. The nonlinear order M = 2 thus considers the three-wave nonlinear process,
while M = 3 considers the four-wave quasi-resonant interactions.

From the mean water level of z = 0, the velocity potential ¢ can be expanded to other water levels using Taylor series:

¢ (x,0,1) = g(x, 1),

m=l g ok p(m—k) )
O 0y form> 1.
kT oz

(0.1 =~
Once the individual orders of velocity potential ¢ are obtained, the vertical velocity W can also be calculated using the Taylor
expansion:

M
W= Y W™ (x, 2,1,
m=1

mol gk gkt gm—k) ©
W (x,1) = % — 0.0,

k=0

The HOS-Ocean model utilizes a pseudo-spectral method in order to achieve a balance between the high accuracy of spectral

methods and the computational efficiency of real-space calculations [16]. This methodology involves representing the solution using
a series of basis functions, typically Fourier series, enabling the application of Fast Fourier Transforms (FFTs) for efficient conversion
between real and spectral domains. In terms of temporal evolution, HOS-Ocean model commonly employs an efficient 4th order
Runge-Kutta Cash-Karp scheme renowned for their precision and stability in integrating equations over time [35]. These methods
iteratively propagate the solution forward by computing intermediate steps within each time increment.

2.2. Nonlinear Fourier analysis

Nonlinear Fourier transforms (NFTs) enable the characterization of nonlinear wave dynamics by decomposing waveforms into
nonlinearly interacting solitons and radiation waves. This study investigates to which degree the soliton spectrum remains invariant
under the evolution of directional free surface waves in intermediate waters, by applying the KdV-NFT to data generated by the
HOS-Ocean model.

The spatial KdV equation is

u; + coy + auuy + Pug, =0, @

where u = u(x, 1) is the elevation of the free surface elevation at location x and time ¢, the subscripts donate partial derivatives,
¢y = \/ghy is the linear phase speed in shallow water, g is the gravitational acceleration, h, the water depth, a = 3cy/2h, is the
coefficient of the nonlinearity, f = cohg /6 is the coefficient of the dispersive term. The KdV equation is derived, as already mentioned
earlier, under several assumptions: shallow water, unidirectionality, weak nonlinearity, and a flat bottom. In particular the first two
assumptions are often violated for real-world measurements. While shallow water is commonly defined by kh < z/10, this is not
a sharp cut-off. The KdV equation can be used with larger kh, at the price of decreased accuracy. In the literature, various cut-off
criteria for the applicability of the KAV equation have been used: kh < 1 [5], kh < 1.36 [36], and kh < 1.14 [11]. These criteria
exceed the usual range of shallow water (kh < x/10) and extend into the intermediate water range (/10 < kh < r). Figure 1b in [36]
illustrates that kh = 1.14 corresponds to a 6% mismatch between the shallow water dispersion relation and the dispersion relation
of the KdV equation, while k4 = 1.36 corresponds to a mismatch of 14%. When the threshold kh exceeds 1.363, the modulational
instability arises [37,38], causing the underlying wave dynamics to be better described by the nonlinear Schrédinger equation.

We now consider the nonlinear Fourier transform with periodic boundary conditions. There is also a mathematically simpler
variant for wave packets [3], but since the data generated by HOS-Ocean is truly periodic, we use the more complicated periodic
NFT. In this way, we avoid glitches in the spectrum due to boundary mismatches that would make it harder to isolate the effects
we are actually interested in. (For the same reason, we will consider space series instead of time series, as the time series created by
HOS-Ocean are not periodic. In lab experiments, it was observed that the solitons detected from space series match those detected
from time series very well [8].) The periodic KdV-NFT is defined for so-called finite genus solutions of the KdV equation. Finite genus
solutions are linear superpositions of finitely many hyperelliptic functions y;(x, ), representing nonlinearly interacting nonlinear
waves [4,5,39]:

N
AuCx,t) = —Ey + Y [20(x, 1) = Ey; = Epy] )
i=1

where 4 = a/(68) and a and p are physical constants given in the spacial KdV equation. It is known that finite genus solutions can
approximate arbitrary periodic solutions. For small-amplitude surface elevations, they turn into Fourier series. The NFT of a finite
genus solution consists of several parts, of which will only need the constants E;. These constitute the so-called main spectrum. For
the computation of the main spectrum from a given spatial measurement u((x), the second-order Schrodinger eigenvalue problem
has to be solved. The Schrodinger eigenvalue problem is given by [4]

W + [u(x,0) + K1y =0, w = w(x; k%), ©
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where k is the “nonlinear frequency” with k> = E. The monodromy matrix M(k?) is a matrix-valued solution of (9), which is obtained
by using the 2 x 2 identity matrix as an initial condition at an arbitrary point, and propagating it over one period of the waveform.
The trace A(E) of the monodromy matrix M is the Floquet discriminant A(E) = L7/M. The Floquet discriminant shows for which
k% in Eq. (8) has quasi-periodic solutions [36,40]. The main spectrum can be calculated by finding the solutions of A(E) = +1. The
constants E; in the main spectrum correspond to the k? for which (9) has periodic (if A(E) = +1) and anti-periodic (—1) solutions y.
Two adjacent eigenvalues determine an open band E,;, E,;,; when |A(E)| > 1 for E,; < E < E,;, ;. There is also an auxiliary spectrum
(not shown), which consists of initial conditions y;(x,,?,) for the hyperelliptic modes. The nonlinear KdV spectrum is commonly
decomposed into soliton and radiation components. The modulus m of the hyperelliptic functions is employed to distinguish between
soliton and radiation waves:
Esiy1 — Ey

m; =

= , O<m <1 (10)
b By — By '

A modulus m; < 0.99 indicates an oscillatory mode. For m; > 0.99, we have solitons. The amplitude g; of an hyperelliptic oscillation
mode can be expressed as
Esiv1 — Eyi
a; = T (1 1)
The soliton amplitudes 7, are given by
_ 2(Eref - EZn)
1 A ?
Here, the number of solitons N, is the largest N such that m; > 0.99 for all i = 1,2,..., N. The reference level Ef = Eyy_
corresponds to the level at which the solitons travel in periodic theory [4,5,41].

To illustrate the periodic KdV-NFT, we now show one example from the HOS-Ocean model. Using basic settings of H; = 6
m, T, = 10 s and © = 0, a unidirectional wave field is generated. The space series extracted from the middle of the wave field
with respect to the y-direction is shown in Fig. 1(a). After applying the NFT on the space series, the associated Floquet spectrum
shown in Fig. 1(b) is found. It consists of the Floquet discriminant A(E) (blue line), main spectrum points (red dots), reference
level E, (pink line) and open bands (red lines). The main spectrum points are located at the intersections of A(E) with +1. The
reference level is used to distinguish between the soliton components and the radiation components. Solitons are calculated by the
Floquet discriminant to the left of reference level, while radiation waves are to the right of reference level. An open band refers to
intervals of E (as illustrated in Fig. 15.1 and 17.3-17.5 in Osborne’s book [4]). In Fig. 1(c), the hyperelliptic modes are described
by their amplitude (blue line) and modulus (red line). One soliton can be found in spectrum with modulus larger than 0.99. The
other components are oscillatory waves. A feature of the nonlinear Fourier spectrum is that it can be represented by the linear
superposition of cnoidal waves and their interactions with each other [42]. Note that the calculated wave number of the soliton
is negative by convention, to separate it from the oscillatory part. For a detailed interpretation of the nonlinear Fourier spectrum
obtained from the periodic NFTs based on the KdV equation, see [4,6].

For this paper, the main spectrum part of the periodic KdV-NFT (i.e., the E;) was computed using a development version
of the open source software library FNFT (commit 7bd10db) [43], which has already been applied to various problem in the
context of optical fiber [44-46] and hydrodynamics [13,47-49]. More information about FNFT can be obtained online at https:
//github.com/FastNFT/FNFT. The moduli, reference level and soliton amplitudes were computed from the main spectrum in a
custom Matlab function, which implemented the formulas given above.

1 S n S NSOl' (12)

3. Simulation setup

The HOS-Ocean model utilizes a directional spectrum of the form S(w,0) = F(w)G(0), where F(w) is a JONSWAP spectrum
and G(0) is a directional spreading function. The JONSWAP spectrum is a widely recognized empirical model extensively used
for characterizing irregular waves [16]. It takes into account the significant wave height (H,), angular peak frequency (w,), peak
enhancement factor (y), and angular spreading parameter (a):

2
—4 exp(— (wmop) >
F(0) = a; H]wyo™ exp [_2 <§> ] PN a3

P

0.07 for w<w
with ¢ = 7, where a; is a constant to obtain the correct significant wave height. The directional spreading
0.09 for 2w,

function G(9) is defined as [16,50,51]
70

2
G@0) = l cos<”—0>] s —
B 2p 2p

where g is a measure of the directional spreading. We introduce © = 2§ in degrees, which represents the range of the directional
distribution. The parameter g is suggested to be in the range [0, 0.6], where = 0.6 represents a short-crested sea state with very
large spreading [25]. In this study, we set the parameter § to 0, 0.0872, 0.1309, 0.1745, 0.2618, 0.5236, which corresponds to
6 =0°, 10°, 15°, 20°, 30°, and 60°, respectively. Fig. 2(a) depicts the corresponding spreading functions.

z
<35

14)
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Fig. 1. (a) Example of simulated space series (b) The Floquet spectrum of simulated space series contains the Floquet discriminant A(E) (blue line), main spectrum
points (red dots), reference level E, . (pink line) and open bands (red lines). (c) The nonlinear Fourier spectrum of simulated space series. The nonlinear modes
are represented by amplitudes (blue circle line) and modulus (red cross line). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The HOS-Ocean model is unable to explicitly describe wave breaking. Guidelines for ensuring the applicability of the model for
directional irregular sea states with different water depths have been developed in [25]. In this study, we consider a water depth
of 20 m. The threshold for wave breaking in different water depths is, based on the Ref. [52], given by

Hy = kA, tanh(K,h), 1s)

where H, is the breaking wave height, « is a coefficient, 4, is the wave length based on the peak period, k, is the peak wave number,
and h is the water depth. The value of k varies across locations, depending on the local water depth and environments [53-55]. We
use k € [0.067;0.076], which is considered suitable for the HOS-ocean model according to [25]. Fig. 2(b) shows the applicability range
for the highest possible irregular wave field at different water depths. Under consideration of the non-breaking wave conditions,
the wave fields are generated with significant wave heights of H; = 4,5,6 m and a peak period of 7, = 10 s. The relative water
depth kh is equal to 1.036 in our case, which corresponds to an intermediate water depth (0.1z < kh < ) [56,57]. It is nevertheless
below the two KdV applicability thresholds discussed earlier, kh < 1.14 [11] and kh < 1.36 [36].

In this study, we have simulated the evolution of in total 36 wave fields corresponding to different input conditions, as shown
in Table 1. We adopted a spatial discretization of N, = 256 and N, = 64 grid points for all simulations, with computational domain
lengths of L, = 164, ~ 1932.21 m and L, = 84, ~ 954.74 m, where A, = 2z/k, is the peak wavelength. The mesh resolution is
Ax=L,/(N,-1)~758 mand 4y = L,/(N, — 1) ~ 15.15 m. The nonlinear order M is either M =2 or M = 3. We point out that
all simulations have been carried out at least once including third-order nonlinearities (M = 3). Furthermore, several simulations
have been additionally been carried out using only second-order nonlinearities (M = 2). The motivation was to study the impact
of third-order nonlinearities in our scenario. (We are considering an intermediate water depth, and it is known that the effects of
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Fig. 2. (a) Directional spreading function G(9) of angle 6 for different directional spreadings. (b) Applicability limits for HOS simulation with water depths of
h =10 m (red lines), ~ =20 m (purple lines), 4 =35 m (blue lines) and 4 = 150 m (black lines) with coefficient x varying from local sites. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Input wave parameters of directional seas for the HOS-Ocean simulation.

Case H, [m] T, [s] 0[] M Case H, [m] T, [s] o] M
1 4.0 10.0 0° 2 19 4.0 10.0 0° 3
2 5.0 10.0 0° 2 20 5.0 10.0 0° 3
3 6.0 10.0 0° 2 21 6.0 10.0 0° 3
4 4.0 10.0 10° 2 22 4.0 10.0 10° 3
5 5.0 10.0 10° 2 23 5.0 10.0 10° 3
6 6.0 10.0 10° 2 24 6.0 10.0 10° 3
7 4.0 10.0 15° 2 25 4.0 10.0 15° 3
8 5.0 10.0 15° 2 26 5.0 10.0 15° 3
9 6.0 10.0 15° 2 27 6.0 10.0 15° 3
10 4.0 10.0 20° 2 28 4.0 10.0 20° 3
11 5.0 10.0 20° 2 29 5.0 10.0 20° 3
12 6.0 10.0 20° 2 30 6.0 10.0 20° 3
13 4.0 10.0 30° 2 31 4.0 10.0 30° 3
14 5.0 10.0 30° 2 32 5.0 10.0 30° 3
15 6.0 10.0 30° 2 33 6.0 10.0 30° 3
16 4.0 10.0 60° 2 34 4.0 10.0 60° 3
17 5.0 10.0 60° 2 35 5.0 10.0 60° 3
18 6.0 10.0 60° 2 36 6.0 10.0 60° 3

third-order nonlinearity reduce close to shallow water conditions [58].) The input parameters for the JONSWAP spectrum are set to
H;=4,56m,T,=10sand y = 3.3. The random phases were fixed by using the same initial seed for the random number generator.
The wave fields are evolved for 1200 s. We show an example of nonlinear wave fields at r = 201 s with the settings H, = 4 m,
T,=10s and M = 3 with ® = 0°,10°, 15°,20°,30°,60° in Fig. 3. It should be noted that in HOS-Ocean simulation, the initial wave
field is generated using linear solutions. An adjustment period is necessary to manage the transition from linear initial conditions to
a nonlinear surface wave field [59,60]. The adjustment duration is recommended for the first 20 wave periods, which in our cases,
with a peak wave period of T, = 10 s, amounts to 200 s.

In Fig. 4, we present the spectral evolution of the two-dimensional linear spectrum for a directional spreading of 60° (initial
wave field in Fig. 3(f)). The proper wavenumber-domain bandwidth ensures accurate representation of the wave field and efficient
numerical computation. The wavenumbers are distributed in the range between k,;, and k,,,,. As suggested in [25,61], we select
kmax = 8k, with the peak wave number k, = 2z/4, as the bandwidth of the reconstructed wave field.

4. Results

Utilizing the HOS-Ocean model with the aforementioned settings, we discuss the nonlinear spectral characteristics of the wave
field under different directional spreading. We first present conventional statistical results for the simulated wave fields in Section 4.1
to characterize the simulation setup, and contrast these results with a KdV-based evolution in Section 4.2. The temporal evolution
of the nonlinear KdV-type soliton spectrum under the HOS model is presented in Section 4.3 to assess the impact of directional
spreading and intermediate water conditions. In Section 4.4, we then quantify the impact of directional spreading on the KdV-NFT
soliton spectra. Finally, in Section 4.5, the evolution of the largest soliton is compared to that of the largest linear mode.
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Fig. 3. Simulated wave fields by HOS-Ocean model with conditions of H, =4 m and T, = 10 s at # = 201 s by HOS-Ocean model under different directional
spreading conditions: (a) © =0° (b) © =10° (c) © =15° (d) © =20° (e) © =30° (f) © =60°.
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Fig. 4. Evolution of wave spectrum with H, =4 m, 7, = 10 s, and @ = 30° by the HOS-Ocean model during nonlinear propagation at (a) t =0 s (b) =200 s
(c) t=400 s (d) =600 s (e) =800 s (f) r=1000 s.

4.1. Statistical characteristics during nonlinear evolution

The simulated wave fields correspond to two conditions with nonlinear order M: M = 2 and M = 3. Three parameters
including maximum wave height, kurtosis, and skewness are used to represent spectral characteristics. Kurtosis measures wave
height concentration around the mean, with high values indicating intense, steep waves and low values suggesting uniform
distribution [62,63]. Skewness assesses distribution asymmetry, with positive values implying a prevalence of taller, sharper crests

and shallower, more rounded troughs [62]. The skewness and kurtosis can be expressed as

w?
Skewness = —, (16)
7
Kurtosis = ;, a7
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Fig. 5. Statistical results of maximum wave height, kurtosis and skewness of wave fields with H; =4 m, 7, = 10 s, and M = 2 under nonlinear wave evolution
with different directional spreadings. The results are presented with the maximum shown by the upper black line, the minimum by the lower black line, and
the mean by the middle red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where o is the standard deviation of the surface elevation 5, and the overbar indicates the time average operator.

In Figs. 5 and 6, we show exemplary statistical results for the wave field with H; = 4 m and 7, = 10 s for two conditions,
where M = 2 and M = 3. We first focus on the M = 2 case. For directional spreading ©® = 0° (Fig. 5(a)-(c)), the wave field
is long-crested and aligned in the x-direction. As mentioned in Section 3, the first 20 periods represent the transition from linear
solutions to nonlinear behavior. The statistical and spectral wave characteristics become stationary after the transition stage. This
characteristic can also be observed in both Figs. 5 and 6. The maximum wave height of the initial space series is 8 m. During the
transition stage, the maximum wave height decreases and settles at around 5 m afterward. A similar trend can also be observed in
the kurtosis, which starts at 6.6, decreases during the transition, and finally stabilizes at around 2.5. The skewness is also unstable
during the first 20 periods, thereafter, it mostly maintains values above 0. The maximum value of skewness observed throughout
the evolution is 0.53. A normal distribution has a kurtosis of 3, whereas our simulation’s kurtosis of 2.5 is slightly lower than that
of a normal distribution, indicating that extreme values of wave elevation are slightly less common than in a normal distribution.
Additionally, the positive skewness during the evolution suggests a noticeable asymmetry in our simulation.

When directionality is introduced to a long-crested wave field (starting from Fig. 5(d)), it leads to a transition to short-crested
waves, which exhibit a more chaotic pattern. The wave energy is distributed spatially across a range of directions based on
the directional spreading. The directionality alters the wave pattern along the y-direction. The statistical parameters such as the
maximum (upper line), minimum (lower line), and mean (middle line) values are computed across all spatial series in the y-direction.
The statistical parameters of the HOS wave fields under different directional spreading with ® = 10°, 15°, 20°, 30°, and 60° are
depicted in Fig. 5(c)—(r). With increasing directional spreading, it is evident that the statistical parameters including maximum wave
height, kurtosis, and skewness exhibit a wider variation range from minimum to maximum values. If we compare the maximum
wave height under directional spreading with © = 60° (Fig. 5(p)) with the unidirectional case (Fig. 5(a)) after the transition stage
(¢ > 200) s, it is observed that as waves are distributed in the y-direction in the multi-directional case, the interaction among waves
results in larger waves compared to the unidirectional case. The largest maximum wave height of H,,, = 8.42 m is detected at
t = 930 s. Similar results are observed in kurtosis (Fig. 5(q)) and skewness (Fig. 5(r)). The largest kurtosis value is Kurtosis = 6.09
at t = 225 s, while the largest skewness value is Skewness = 0.96 at t = 582 s.

Subsequently, we compare the nonlinear orders M = 2 (Fig. 5) and M = 3 (Fig. 6). The overall results are very similar;
however, there are more extreme values of the statistical parameters are observed in the M = 3 cases. Considering that third-order
nonlinearity is typically more pronounced in deep water conditions, and our simulations are conducted under intermediate water
conditions, the third-order effects are not as prominent in our cases. Nonetheless, they still contribute slightly to enhancing the
statistical parameters. The statistical results here are quite similar to the simulations of two-dimensional shallow water waves using
the Kadomtsev—Petviashvili equation by Toffoli et al. (2008) [64], suggesting that the interaction of two crossing wave trains in
shallow water may increase skewness and kurtosis under certain crossing angles.
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Fig. 6. Statistical results of maximum wave height, kurtosis and skewness of wave fields with H; =4 m, T, = 10 s, and M = 3 under nonlinear wave evolution
with different directional spreadings. The results are presented with the maximum shown by the upper black line, the minimum by the lower black line, and
the mean by the middle red line.

4.2. Comparison with spectral characteristics obtained from KdV-dynamics

Similarly to the HOS model considered in the previous subsection, the nonlinear dynamics of random wave fields governed by
the KdV equation exhibits different behavior compared to wave evolution by linear wave theory. As nonlinearity increases in the
system, the wave fields deviate from a near-Gaussian distribution towards greater asymmetry, characterized by increased kurtosis
and positive skewness [65]. This could occur under the interaction of two crossing wave trains in a two-dimensional wave field [64].

In the previous section, we showed the statistical results of the HOS simulation during temporal evolution. The question here
is whether the temporal evolution of the HOS wave field under unidirectional conditions resembles that of the KdV equation. The
statistical comparison of nonlinear wave fields under unidirectional conditions by the HOS-Ocean model and the KdV equation is
illustrated in Fig. 7 for M =2 and 8 for M = 3. For applying the HOS-Ocean model, the first 20 periods of the simulation should be
neglected to avoid the transition stage as it becomes nonlinear (as mentioned in Section 3). The spatial series at r = 201 s is chosen
as the initial input for the Korteweg—de Vries (KdV) equation. The temporal evolution will be simulated for 1000 s to compare the
statistics of the propagated waveform with the HOS-Ocean model. The temporal evolution using the KdV equation is performed
using the spin command of the Matlab package Chebfun [66]. The numerical settings for Chebfun include 10,000 grid points
and a time step of dt = 0.1 s. The propagation time is set as 1000 s with an interval of 1 s, which allows a comparison with the
HOS-Ocean simulation. In Fig. 7(a) with the condition of H; = 4 m, it is observed that the maximum wave height H, . of KdV
evolution can exceed that of the HOS-Ocean model. Similar results can be found in Fig. 7(d) with H;, = 5 m and (g) H, = 6 m.
Similar to maximum wave height, kurtosis in the KdV evolution tend to be larger than those obtained from the HOS-Ocean model,
as shown in Fig. 7(b,e,h). Regarding skewness, depicted in Fig. 7(c, f, i), the skewness has more positive and larger values in the
HOS simulation than in the KdV equation during temporal evolution. This suggests that the HOS-Ocean model generates wave fields
with greater asymmetry during evolution, whereas the KdV equation produces more symmetrical wave fields.

Considering the nonlinear order M = 3, Fig. 8 depicts the temporal evolution of statistical parameters for the HOS wave field
including third-order nonlinearity. We had observed that the evolution of maximum wave heights for the three different conditions
with M = 3 is slightly larger than the corresponding conditions for M = 2. However, the KdV equation evolution does not exhibit
this trend of M = 3 cases exceeding the corresponding M = 2 conditions. (The KdV equation itself is of course not influenced by
the nonlinear order parameter M of the HOS model. Only its initial conditions, which are extracted from the HOS model at ¢ = 201
s, change.) As shown in Fig. 8(g), the maximum wave height of the HOS-Ocean model can be larger than that of the KdV equation
during evolution. Similar results are observed for kurtosis and skewness, where M = 3 cases are larger than M = 2, but this trend is
not observed in the KdV evolution. Our results show that both methods exhibit different nonlinear evolution properties even under
unidirectional conditions. This difference can be attributed to two main factors. First, the applicability of the KdV equation is more
suitable for shallow water conditions, whereas the wave fields by HOS-ocean are modeled under intermediate water condition in
this study. Second, the KdV equation is, in contrast to HOS-Ocean, only a weakly nonlinear model.



Y.-C. Lee and S. Wahls

H=4m

H=5m
s

H=6m

Wave Motion 137 (2025) 103542

a (b) ()
(a) 12 \ 0.8 oS
— 10 = T o4 Kdv
E 2 8
x 8 23 0 fl
6 < ) & 04
4
0.8
o O P O o P P O ® o O O P ®
ts] t[s] t[s]
(d) 12 (e) M os
HOs
— 10 =* Z 04 Kav
£ ) 2
58 23 g o
< £ :
6 4 R fff -0.4
4
0.8
o P @ P o P @ P P o P @ P
tls] ts] ts]
(h) () o.
(9) 12 \ 0.8 oS
— 10 = T 04 Kdv
E 2 8 |
3 8 33 0
L W
6 < & -04
2
4
0.8
o D P O o P P W ® o P @ P
t[s] t[s] t[s]

Fig. 7. Comparison of the HOS-Ocean model with the KdV equation under unidirectional conditions. The nonlinear order M = 2 is used. The parameters
maximum wave height, kurtosis, and skewness are examined for H, =4 m, H, =5 m, and H, = 6 m. The blue line represents the HOS-Ocean model, and the
orange line represents the KdV evolution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

H=4m
H=5m
H=6m

a) 12 (b) (€) o.
(a) \ 0.8 oS
— 10 = Z 04 Kav
£ @ 2
5 8 83 2 of)
-+ £ :
6 2 & 04
4
0.8
o P @ P o P @ P o
t[s] tls]
d e ()
(d) 12 ( )4 0.8 oS
— 10 = = 04 Kav
E . @ §
0
3 0
6 < R & 0.4
4
0.8
o P @ W P o P @ P P o P O W P
tls] ts] ts]
h i
@ 12 (h) @ o8 HOS
= 1 34 T 04 Kav
[}
=3 o 17
% 8 A 24 e y M
= g kﬁ 3 )
6 2 & 04
4
0.8
@ o © S ® @ ® @ o P o ® @ P

t[s]

t[s]

Fig. 8. Comparison of the HOS-Ocean model with the KdV equation under unidirectional conditions. The nonlinear order M = 3 is used. The parameters
maximum wave height, kurtosis, and skewness are examined for H =4 m, H, =5 m, and H; = 6 m. The blue line represents the HOS-Ocean model, and the
orange line represents the KdV evolution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

4.3. Change of the nonlinear KdV-soliton spectrum under HOS dynamics

In this section, we show the results of the nonlinear Fourier analysis of the wave fields simulated using the HOS-Ocean model. The
space series required by the NFT are extracted from the wave fields by considering only the center with respect to the y-direction. By
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Fig. 9. The amplitudes of solitons in soliton spectra of HOS wave fields with M = 3 under the conditions of significant wave height H, = 6 m. Different
directional spreadings are considered © =0°, © =10°, © = 15°, © =20°, @ =30°, @ = 60° from (a) to (f), respectively. The amplitudes of the largest soliton A,
is represented by the blue line, second-largest soliton A, by the red line, and third-largest soliton A; by the yellow line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

applying the NFT with periodic boundary conditions to a specific space series (i.e., for some fixed time 7 = #,), the nonlinear Fourier
spectra are obtained. In our simulations, the modulus of the first amplitude of hyperelliptic oscillation modes, A, is consistently
greater than 0.99, indicating the presence of a soliton. In the following, we call A, the amplitude of the largest soliton. Similarly,
when present, A, and A; denote the amplitudes of the second- and third-largest solitons, respectively.

Recall that soliton amplitudes are calculated using a reference level in the periodic KAV-NFT (12). As mentioned in Section 2.2,
the reference level is considered to be the propagation level of solitons. Typically, it differs from the still water level [41]. In practice,
it is found by checking when the modulus of the hyperelliptic modes drops below the threshold of 0.99. When applying the NFT to
wave fields generated by the HOS-Ocean model, we encountered a critical issue: the soliton amplitudes regularly made implausible
large jumps. The discontinuities arise from the use of a fixed threshold. Under non-KdV evolution, the moduli of the hyperelliptic
change during propagation. When a modulus passes the threshold, the reference level jumps suddenly due to the way it is computed.
To address this issue, we use the maximum reference level seen throughout the temporal evolution as the reference level for each
individual space series. With this revision, we obtain soliton amplitudes that change continuously over time.

Based on the above revision of the reference level, we first show that the solution amplitudes evolve continuously in our simulated
wave fields with M =3, H; = 6 m, in Fig. 9. In this case, there are in total three soliton components, where the amplitudes of the
largest soliton A, is represented by the blue line, second-largest soliton A, by the red line, and third-largest soliton A; by the yellow
line. In unidirectional case with ® = 0° in Fig. 9(a), we can observe that amplitudes of the three soliton components are quite stable
after the transition stage. This feature is also observed in the cases with directional spreading. Even at larger directional spreading
(6 =60°), A, consistently maintains a higher amplitude than A,. Furthermore, there is no crossover between the amplitudes during
temporal evolution, indicating that there is almost no energy exchange among them.

Subsequently, we focus on the amplitude of the largest soliton A, as the dominant representative of the soliton spectrum. In
Fig. 10, we show how the amplitude of the largest soliton A; changes during temporal evolution of HOS-Ocean model with M =2
under various significant wave heights (H; = 4, 5, and 6 m) and directional spreadings (@ = 0°, 10°, 15°, 20°, 30°, 60°). In
Fig. 10(a), it can be observed that A; changes most slowly and remains quite stable under unidirectional spreading. In ideally
KdV-governed wave fields, the soliton amplitude would remain constant during evolution. Our results thus show that the non-ideal
evolution conditions (from a KdV perspective) in the HOS-ocean simulations only have minor effects on the soliton spectrum under
uni-directional spreading. Variations in the amplitudes of the soliton increase with greater directional spreading. According to Fig.
3, we see that wavelengths are quite short compared to the simulated wave fields in the y-direction, and thus wave groups can
enter or leave the area where the space series is measured. When considering larger significant wave heights in Fig. 10(b) and (c),
the variations of A, also increase due to higher nonlinearity in the system, which increasingly deviates from the weakly nonlinear
assumption of the KdV equation. Nevertheless, for cases with comparatively small directional spreadings (O < 30°), the variations
of the soliton amplitudes hardly increases. Only for © = 60°, a noticeable increase in the variation of A, is observed.

Fig. 11 shows the temporal evolution of the amplitude of the largest soliton A; in a nonlinear wave field modeled by the HOS-
Ocean model with M = 3. The temporal evolution of A, is quite similar to the case M = 2 in Fig. 10, but A, in the M = 3 case is
slightly larger than in the M =2 case. This indicates that the third-order nonlinearity increases the amplitude of A,, and it is more
pronounced in wave fields with larger significant wave height. It also leads to somewhat larger variations of A; when the significant
wave height is large (H, = 6 m), compared to the cases with M =2.

11
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Fig. 11. The amplitudes of the largest soliton A, in soliton spectra of HOS wave fields with M = 3 under the conditions of significant wave height (a) H, =4
m, (b) H, =5 m and (¢) H, = 6 m with directional spreadings © =0°, © = 10°, © = 15°, © =20°, © = 30°, © = 60°.

4.4. Quantification of the impact of directional spreading on nonlinear KdV-soliton spectra in intermediate water conditions

We use the largest solitons as representatives of the nonlinear spectrum when describing the nonlinear evolution of shallow
water waves. However, in the case of larger directional spreading, part of the soliton’s energy may travel into other regions that our
selected space series does not capture, causing a larger variation in soliton amplitude. In order to quantify the impact of directional
spreading on nonlinear soliton spectra during temporal evolution, we consider the Relative Error (RE) and the Relative Deviation
of the Mean (RDM). Denoting the amplitude of largest soliton at time ¢ by A,(¢), the relative error (RE) is the relative change in
A,(r) compared to its value at the end of the HOS-Ocean start-up phase after (i.e., at r = 201 s):

|4, (®) — A, (20D)]

The second evaluation parameter, Relative Deviation of the Mean (RDM), focuses on the deviation of the average amplitude of the
largest soliton over the time interval [201,¢] from the initial value:

L AL@)
Zio—lzog) = 4,201

RDM(t) = —a@mn (19)
Due to the averaging, the RDM results in smoother curves than the RE. We use these two evaluation indices to assess the impact of
directional spreading on nonlinear soliton spectra, as shown in Fig. 12 for M =2 and Fig. 13 for M =3.

Fig. 12 shows the temporal evolution of the RE and RDM of the soliton amplitude A,(r) for shallow water waves fields with
M =2 and significant wave heights of (a, d) H; =4 m, (b, ) H; =5 m, (c, f) H; = 6 m. We focus on the practically relevant initial
stage and observe when the RE and RDM, respectively, hit fixed thresholds for the first time. (Under ideal propagation according
to the periodic KdV equation, this would never happen as both indicators would stay zero forever.) We use the unidirectional case
with @ = 0° as a baseline to determine these thresholds. In Fig. 12(a), we first focus on the unidirectional case of ©® = 0° with H; =4
m, where the RE reaches a first major maximum of RE = 0.15 after 236 s before, and the RDM reaches a first major maximum of
RDM = 0.065 after 346 s. Under unidirectional conditions, the RE never exceeds 0.15 and the RDM never exceeds 0.071. In the
following, we therefore use the more stringent thresholds RE = 0.10 and RDM = 0.05.

We then calculate the propagation times required for the RE to reach 0.1 and the RDM to reach 0.05 for all directional spreadings
(® =0°,10°, 15°, 20°, 30°, 60°). The results show that the durations for these cases are 213 s, 202 's, 178 s, 112 s, 37 s and 16 s,
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Fig. 12. Evaluation of the amplitude of largest soliton A, by relative error (RE) and relative deviation of the mean (RDM) based on the HOS wave fields with
M = 2 under the conditions of significant wave heights H, =4 m, H, =5 m and H, = 6 m, and directional spreading ©® = 0°, © = 10°, @ = 15°, © = 20°, © = 30°
and O = 60°.

respectively. We also evaluate the propagation time with the RDM shown in Fig. 12(d). When it reaches 0.05, we obtain results of
268 s, 255 s, 246 s, 142 s, 24 s and 22 s for corresponding directional spreadings. The corresponding results for H; = 5 m (see Fig.
12(b,e)) and H, = 6 m (shown in Fig. 12(c,f)) are provided in Table 2. It can be observed that under smaller directional spreading
conditions (O < 20°), the representative propagating time can last more then 110 s. For larger directional spreading conditions
(@ > 30°), the RE and RDM deviate significantly faster, resulting in a reduced representative propagation time. This finding is
consistent for all significant wave heights.

The evaluation of the impact of directional spreading on the soliton amplitude for M = 3 is provided in Fig. 13 and Table 2. In
Fig. 13, it can be observed that the RE and RDM with directional spreadings of ©® = 0°,10° and 15° are almost the same. The RE
and RDM start to increase when the directional spreading becomes larger (© > 20°). The general behavior of the errors in case of
M =3 is quite similar to the results for M = 2. Based on Table 2, the representative propagation times for M = 3 closely resemble
the case for M =2.

To estimate a representative propagation distance for solitons, we consider a single solitary wave u(x,?) = Asech?[(x — en/ll,
where ¢ = 1/g(h + A) is the wave celerity and / = y/4h3/(3A) is the characteristic length [4,67,68]. For a wave field with M = 2,
H, =4 m and h = 20 m, a soliton amplitude of 0.4 m can be read off in Fig. 10(a). The corresponding wave celerity is calculated as
14.15 m/s. For small directional spreading (@ < 15°), propagation times of at least #,,, = 178 s can result in propagation distances
larger than ¢ X #,rop = 14.15 m/s X 178 s ~ 2519 m. Compared to the characteristic length of a soliton with amplitude 0.4 m, which
equals 163.3 m, this propagation distance is about 15.4 times the characteristic length. In contrast, with large directional spreading
(6 = 60°), a propagation time of 16 s yields a calculated propagation distance of only around 226 m. In this case, the nonlinear
spectrum remains representative for approximately 1.4 times of characteristic lengths. This suggests that the NFT-based method can
capture the nonlinear evolution of waves with directional spreading for limited propagation times or distances, which decrease with
increasing directional spreading and significant wave height.

4.5. Comparison with linear Fourier modes

To compare our results with the linear Fourier method, we also calculated the RE of the dominant linear Fourier mode during
temporal evolution. Based on the HOS wave fields with M =3 and H; = 6 m, we show the results in Fig. 14. The RE of the largest
linear Fourier mode obtained by the fast Fourier transform (FFT) and is marked by a blue line. The largest nonlinear mode (soliton)
obtained by the NFT is marked with a red line. The RE of the largest linear mode increases faster than the RE of the largest soliton
in the practically important initial phase for all cases except ©® = 60°. For the cases with © < 20°, the soliton RE even stays close
to zero for a significant time, while the linear mode RE in contrast increases immediately. These results suggest that the nonlinear
Fourier transform may be a more appropriate method for describing the nonlinear evolution of directional wave fields than the
conventional linear FFT, even under non-ideal intermediate water and moderate directional spreading conditions.

5. Discussion and conclusions

This paper evaluated the impact of directional spreading and intermediate water conditions on soliton components detected
using the nonlinear Fourier transform (NFT) for the Korteweg-de Vries (KdV) equation. Under ideal KdV propagation, the soliton
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Fig. 13. Evaluation of the amplitude of largest soliton A, by relative error (RE) and relative deviation of the mean (RDM) based on the HOS wave fields with

M = 3 under the conditions of significant wave heights H, =4 m, H =5 m and H, = 6 m, and directional spreading ©® = 0°, © = 10°, © = 15°, © = 20°, © = 30°
and O = 60°.
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Fig. 14. Evaluation of the amplitudes of dominant linear Fourier modes by relative error (RE) based on the HOS wave fields with M = 3 under the conditions
of significant wave heights H; = 6 m, and directional spreading ©® = 0°, ® = 10°, © = 15°, © = 20°, © = 30° and © = 60° from (a) to (f), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

amplitudes would stay constant during propagation. Directional spreading and intermediate water conditions however violate
the assumptions of the KdV equation, so that the soliton amplitudes are expected to change during propagation. We explored
how long the soliton amplitudes remain representative for different directional spreading conditions. To this end, the nonlinear
evolution of randomly generated wave fields was simulated using the HOS-Ocean model [16] for various directional spreadings
under intermediate water conditions (kh = 1.036).

The nonlinear temporal evolution of wave fields was simulated using the HOS-Ocean model for sea states with significant wave
heights H, =4 m, H, =5 m and H, = 6 m, respectively. A statistical analysis of basic wave parameters during nonlinear evolution
was then performed. The evolution of several statistical parameters was compared between the HOS-Ocean model and the KdV
equation. This confirmed that the two methods exhibit different nonlinear evolution. Although the KdV equation has limitations in
its applicability, we found that the soliton amplitudes obtained from the KdV-NFT nevertheless may vary only slightly during the
nonlinear evolution of directional intermediate water waves for certain propagation times or distances, depending on the directional
spreading conditions. Moreover, we observed that except for strong spreading conditions, the largest soliton is more stable than the
largest linear Fourier mode.
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Table 2
Representative propagation time for the nonlinear spectra under different directional spreading conditions.
M=2 M=3
H =4m H =5m H =6m H =4m H =5m H =6m

0° 213 s 268 s 215 s 289 s 216 s 247 s 212's 265 s 201 s 271 s 200 s 281 s
10° 202 s 255 s 216 s 262 s 198 s 243 s 202 s 259 s 202 s 265 s 200 s 249 s
15° 178 s 246 s 161 s 239 s 161 s 241 s 182's 267 s 184 s 283 s 201 s 266 s
20° 112's 142 s 131 s 161 s 137 s 180 s 133 s 150 s 135 s 171 s 161 s 289 s
30° 37 s 24 s 75 s 27 s 75 s 27 s 35s 15s 77 s 15 s 86 s 15 s
60° 16 s 22's 14 s 2ls 13 s 16 s 11s 10 s 8s 6s 9s 9s

We also observed that the soliton amplitude remains stable during temporal evolution in the unidirectional case although the
wavefields were propagated using the HOS method instead of the KdV equation, and intermediate waters were considered. Under
increasingly directional spreading conditions, the soliton amplitude exhibits larger and larger variations during temporal evolution.
Using two evaluation metrics, the Relative Error (RE) and the Relative Deviation of the Mean (RDM), we determined representative
propagation times for the soliton wave heights for various significant wave heights and directional spreading conditions (see Table
2). Our results show that the largest soliton in the nonlinear spectrum is quite stable for the small directional spreading cases.
However, even in cases with large directional spreading, the soliton amplitudes provided by the KdV-NFT can still retain their
representative character for short propagation times or distances. These findings indicate that NFT-based analyses can be physically
meaningful even under physical propagation conditions different from the integrable equation that is solved exactly by the NFT.
Similar results have also been reported only recently for the deep water case, where the NFT for the nonlinear Schodinger equation
is used [15].

From a practical point of view, this study provides the first attempt to quantify in particular of impact of directional spreading
on nonlinear Fourier spectra obtained by applying the KdV-NFT to space series extracted from multidirectional seas. Such results
are important to further interpret the results of real-world studies based on the KdV-NFT such as [10-14]. For the sea states with
moderate directional spreading, the nonlinear soliton spectrum varied only moderately during evolution when considered for short
enough periods of time. Since surface waves in shallow water regions are expected to experience reduced spreading compared
to deep water locations due to the shallow water effects [11,69], this further enhances the potential of the KdV-NFT for field
measurements. We finally remind the reader that these results are based on the nonlinear temporal evolution of JONSWAP wave
fields by the HOS-Ocean model. While HOS-Ocean is a powerful model, numerical models cannot always describe the nonlinear
evolution of realistic wave fields accurately. For example, the HOS-Ocean model only considers non-breaking waves propagating
within a uniform water depth. Another limitation of our study is that only nonlinearities up to the third order have been considered.
Furthermore, real-world wave spectra tend to be more complicated than JONSWAP spectra. Therefore, high-quality field data will
be essential for future investigations into the practical applicability of the KdV-NFT.
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