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 A B S T R A C T

The Korteweg–De Vries (KdV) equation is a partial differential equation used to describe the 
dynamics of water waves under the assumptions of shallow water, unidirectionality, weak 
nonlinearity and constant depth. It can be solved analytically with a suitable nonlinear Fourier 
transform (NFT). The NFT for the KdV equation is subsequently referred to as the KdV-NFT. 
The soliton part of the nonlinear Fourier spectrum provides valuable insights into the nonlinear 
evolution of waveforms by exposing the amplitudes and velocities of potentially hidden solitonic 
components. Under the KdV equation, the nonlinear spectrum evolves trivially according to 
simple analytic rules. This in particular reflects that solitons are conserved by the KdV equation. 
However, in reality, the nonlinear spectrum will change during evolution due to deviations 
from the KdV equation. For example, waves in the ocean are typically multi-directional. 
Furthermore, the water depth may range into the intermediate regime, e.g. depending on 
tides and peak periods. It is therefore uncertain how long the nonlinear spectrum of real-
world data remains representative. In particular, it is unclear how stable the detected soliton 
components are during evolution. To assess the effectiveness of the KdV-NFT in representing 
water wave dynamics under non-ideal conditions, we generated numerical sea states with 
varying directional spreading in intermediate water (𝑘ℎ = 1.036) using the High-Order Spectral 
Ocean (HOS-Ocean) model for nonlinear evolution. After applying the NFT to space series 
extracted from these evolving directional wave fields, we observe that the KdV-soliton spectra 
from the NFT are quite stable for cases with small directional spreading. We in particular 
observe that the largest soliton amplitude is (sometimes dramatically) more stable than the 
amplitude of the largest linear mode. For large directional spreading, the applicability is limited 
to short propagation times and distances, respectively.

. Introduction

Solitons have been recognized as fundamental building blocks in the field of nonlinear dynamics. Their initial discovery dates 
ack to the experiments by John Scott Russell in 1844 [1]. They were subsequently described mathematically by the Korteweg–De 
ries (KdV) equation [2]. The KdV equation provides a mathematical framework for the evolution of weakly nonlinear and dispersive 
rogressive unidirectional free-surface waves in shallow water with a constant water depth.
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The Nonlinear Fourier Transform (NFT)1 is as a powerful mathematical tool capable of effectively solving the KdV equation [3]. 
By employing the NFT, we obtain a nonlinear spectrum that reveals physically meaningful nonlinear components with respect to 
the KdV equation. The solitonic part of the nonlinear spectrum provides amplitudes, velocities, and phases of solitons, offering 
essential information for understanding the behavior of systems affected by (potentially hidden) solitons. The nonlinear spectrum 
evolves trivially when the wave propagation is governed by the KdV equation. As there are also NFTs for other (so-called integrable) 
equations than the KdV, we refer to the KdV-NFT. The KdV-NFT can be used as a signal processing tool [4], and has been utilized 
to analyze both experimental [5–9] and field measurements [10–14]. Especially in field measurements, the KdV equation can only 
be an approximate model for wave propagation. In [13], where the measurement site was not specifically chosen to demonstrate 
the KdV-NFT, non-negligible directional spreading was present and some of the data ventured into intermediate water depths. At 
the moment, it is not clear what the lifetime of the detected soliton components is. The goal of this paper is to shed some light into 
this question.

Recently, the paper [15] has explored the impact of directional spreading on the nonlinear Fourier spectrum with respect to the 
nonlinear Schrödinger equation, which applies to the deep water case. However, there currently is no study that investigates the 
distance for which KdV solitons can maintain stability during non-ideal evolution. In this paper, we therefore investigate the effects 
of directional spreading on the solitonic part of KdV-NFT spectra in intermediate water using numerical simulations, and estimate 
the propagation distances of the soliton components in various scenarios.

To perform the simulations, we utilize a nonlinear phase-resolving wave model based on the High-Order Spectral (HOS) method 
in order to generate the spatio-temporal evolution of surface wave elevation. We employ the open-source model HOS-Ocean by 
Ducrozet et al. [16]. HOS-Ocean is based on the Zakharov equation [17], which describes the dynamics of weakly nonlinear and 
dispersive surface gravity waves in arbitrary constant depths (see the HOS-Ocean repository on GitLab https://gitlab.com/lheea/
HOS-Ocean). The HOS-Ocean model has been employed in numerous investigations focused on extreme wave phenomena and rogue 
waves [18–23]. Simulating nonlinear waves numerically poses a challenge due to the issue of wave breaking [24]. The applicability 
of the HOS-Ocean model is constrained to non-breaking waves propagating within a uniform water depth. Therefore, wave-breaking 
conditions should be avoided as discussed in [25,26]. (More details on this aspect are provided in subsequent sections.)

Our paper reports the first results on the impact of directionality on the NFT based on the (uni-directional) KdV equation. The 
structure of this paper is as follows. The theoretical background of the methods is introduced in Section 2. The simulation set-up is 
presented in Section 3. The results are presented in Section 4. In Section 4.1, we first show fundamental statistical results for the 
HOS-Ocean simulation. These results will be used to make a comparison with the KdV evolution under unidirectional conditions in 
Section 4.2. In Section 4.3, we present the results of the NFT applied to wave fields from the HOS-Ocean model. Two evaluation 
indices will be used to assess the impact of directional spreading on the evolution of the soliton spectrum in Section 4.4. Finally, 
we discuss the results and provide a summary in Section 5.

2. Methods

2.1. The high-order spectral method

Simulations of the random surface waves were performed using the open-source model HOS-Ocean [16]. It is based on the 
High-Order spectral (HOS) method first proposed by [27,28]. HOS-Ocean demonstrates superior efficiency and accuracy in wave 
propagation when compared to other advanced methods [18,29,30]. It has been widely used to investigate the simulation of rogue 
waves [18,19,31,32], wave-structure interaction [33], and the effects of ship motion [34].

The model is based on the potential flow formalism, assuming an incompressible, inviscid fluid, and irrotational flow. The Laplace 
equation for the velocity potential 𝜙 is solved with boundary conditions. The Laplace equation can be written as 

∇2𝜙 +
𝜕2𝜙
𝜕𝑧2

= 0, (1)

where ∇ is the gradient operator. The kinematic and dynamic free surface boundary conditions, involving the free surface elevation 
𝜂 and the free surface velocity potential 𝜙(𝑥, 𝑡) = 𝜙(𝑥, 𝑧 = 𝜂(𝑥, 𝑡), 𝑡), satisfy 

𝜕𝜂
𝜕𝑡

=
(

1 + |∇𝜂|2
)

𝑊 − ∇𝜙 ⋅ ∇𝜂,

𝜕𝜙
𝜕𝑡

= −𝑔𝜂 − 1
2
|∇𝜙|

2
+ 1

2
(

1 + |∇𝜂|2
)

𝑊 2,
(2)

where 𝑊  is the vertical velocity at the free surface elevation. It solves the fully nonlinear boundary value problem for two unknowns 
which are the surface elevation 𝜂 and velocity potential 𝜙. HOS-Ocean considers periodic boundary conditions: 

(𝜂, 𝜙,𝑊 )(𝑥 = 0, 𝑡) = (𝜂, 𝜙,𝑊 )
(

𝑥 = 𝐿𝑥, 𝑡
)

. (3)

The HOS-Ocean model evaluates the vertical velocity 𝑊  with the HOS nonlinear order M, 

𝜙(𝑥, 𝑧, 𝑡) =
𝑀
∑

𝑚=1
𝜙(𝑚)(𝑥, 𝑧, 𝑡), (4)

1 The NFT is also known as the forward transform of the inverse scattering method.
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where 𝜙(𝑚)(𝑥, 𝑧, 𝑡) is assumed to be of order 𝑂(𝜖𝑚), and 𝜖 is a measure of the wave steepness. The HOS nonlinear order M enables 
considering up to 𝑀 + 1 nonlinear wave interactions. The nonlinear order M = 2 thus considers the three-wave nonlinear process, 
while M = 3 considers the four-wave quasi-resonant interactions.

From the mean water level of 𝑧 = 0, the velocity potential 𝜙 can be expanded to other water levels using Taylor series: 
𝜙(1)(𝑥, 0, 𝑡) = 𝜙(𝑥, 𝑡),

𝜙(𝑚)(𝑥, 0, 𝑡) = −
𝑚−1
∑

𝑘=1

𝜂𝑘

𝑘!
𝜕𝑘𝜙(𝑚−𝑘)

𝜕𝑧𝑘
(𝑥, 0, 𝑡)  for 𝑚 > 1.

(5)

Once the individual orders of velocity potential 𝜙(𝑚) are obtained, the vertical velocity 𝑊  can also be calculated using the Taylor 
expansion: 

𝑊 (𝑥, 𝑡) =
𝑀
∑

𝑚=1
𝑊 (𝑚)(𝑥, 𝑧, 𝑡),

𝑊 (𝑚)(𝑥, 𝑡) =
𝑚−1
∑

𝑘=0

𝜂𝑘

𝑘!
𝜕𝑘+1𝜙(𝑚−𝑘)

𝜕𝑧𝑘+1
(𝑥, 0, 𝑡).

(6)

The HOS-Ocean model utilizes a pseudo-spectral method in order to achieve a balance between the high accuracy of spectral 
methods and the computational efficiency of real-space calculations [16]. This methodology involves representing the solution using 
a series of basis functions, typically Fourier series, enabling the application of Fast Fourier Transforms (FFTs) for efficient conversion 
between real and spectral domains. In terms of temporal evolution, HOS-Ocean model commonly employs an efficient 4th order 
Runge–Kutta Cash-Karp scheme renowned for their precision and stability in integrating equations over time [35]. These methods 
iteratively propagate the solution forward by computing intermediate steps within each time increment.

2.2. Nonlinear Fourier analysis

Nonlinear Fourier transforms (NFTs) enable the characterization of nonlinear wave dynamics by decomposing waveforms into 
nonlinearly interacting solitons and radiation waves. This study investigates to which degree the soliton spectrum remains invariant 
under the evolution of directional free surface waves in intermediate waters, by applying the KdV-NFT to data generated by the 
HOS-Ocean model.

The spatial KdV equation is 
𝑢𝑡 + 𝑐0𝑢𝑥 + 𝛼𝑢𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 0, (7)

where 𝑢 = 𝑢(𝑥, 𝑡) is the elevation of the free surface elevation at location 𝑥 and time 𝑡, the subscripts donate partial derivatives, 
𝑐0 =

√

𝑔ℎ0 is the linear phase speed in shallow water, 𝑔 is the gravitational acceleration, ℎ0 the water depth, 𝛼 = 3𝑐0∕2ℎ0 is the 
coefficient of the nonlinearity, 𝛽 = 𝑐0ℎ20∕6 is the coefficient of the dispersive term. The KdV equation is derived, as already mentioned 
earlier, under several assumptions: shallow water, unidirectionality, weak nonlinearity, and a flat bottom. In particular the first two 
assumptions are often violated for real-world measurements. While shallow water is commonly defined by 𝑘ℎ < 𝜋∕10, this is not 
a sharp cut-off. The KdV equation can be used with larger 𝑘ℎ, at the price of decreased accuracy. In the literature, various cut-off 
criteria for the applicability of the KdV equation have been used: 𝑘ℎ ≤ 1 [5], 𝑘ℎ ≤ 1.36 [36], and 𝑘ℎ ≤ 1.14 [11]. These criteria 
exceed the usual range of shallow water (𝑘ℎ < 𝜋∕10) and extend into the intermediate water range (𝜋∕10 < 𝑘ℎ < 𝜋). Figure 1b in [36] 
illustrates that 𝑘ℎ = 1.14 corresponds to a 6% mismatch between the shallow water dispersion relation and the dispersion relation 
of the KdV equation, while 𝑘ℎ = 1.36 corresponds to a mismatch of 14%. When the threshold 𝑘ℎ exceeds 1.363, the modulational 
instability arises [37,38], causing the underlying wave dynamics to be better described by the nonlinear Schrödinger equation.

We now consider the nonlinear Fourier transform with periodic boundary conditions. There is also a mathematically simpler 
variant for wave packets [3], but since the data generated by HOS-Ocean is truly periodic, we use the more complicated periodic 
NFT. In this way, we avoid glitches in the spectrum due to boundary mismatches that would make it harder to isolate the effects 
we are actually interested in. (For the same reason, we will consider space series instead of time series, as the time series created by 
HOS-Ocean are not periodic. In lab experiments, it was observed that the solitons detected from space series match those detected 
from time series very well [8].) The periodic KdV-NFT is defined for so-called finite genus solutions of the KdV equation. Finite genus 
solutions are linear superpositions of finitely many hyperelliptic functions 𝜇𝑖(𝑥, 𝑡), representing nonlinearly interacting nonlinear 
waves [4,5,39]: 

𝜆𝑢(𝑥, 𝑡) = −𝐸1 +
𝑁
∑

𝑖=1

[

2𝜇𝑖(𝑥, 𝑡) − 𝐸2𝑖 − 𝐸2𝑖+1
]

, (8)

where 𝜆 = 𝛼∕(6𝛽) and 𝛼 and 𝛽 are physical constants given in the spacial KdV equation. It is known that finite genus solutions can 
approximate arbitrary periodic solutions. For small-amplitude surface elevations, they turn into Fourier series. The NFT of a finite 
genus solution consists of several parts, of which will only need the constants 𝐸𝑖. These constitute the so-called main spectrum. For 
the computation of the main spectrum from a given spatial measurement 𝑢0(𝑥), the second-order Schrödinger eigenvalue problem 
has to be solved. The Schrödinger eigenvalue problem is given by [4] 

𝜓 + [𝜆𝑢(𝑥, 0) + 𝑘2]𝜓 = 0, 𝜓 = 𝜓(𝑥; 𝑘2), (9)
𝑥𝑥

3 
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where 𝑘 is the ‘‘nonlinear frequency’’ with 𝑘2 = 𝐸. The monodromy matrix 𝐌(𝑘2) is a matrix-valued solution of (9), which is obtained 
by using the 2 × 2 identity matrix as an initial condition at an arbitrary point, and propagating it over one period of the waveform. 
The trace 𝛥(𝐸) of the monodromy matrix 𝐌 is the Floquet discriminant 𝛥(𝐸) = 1

2𝑇 𝑟𝐌. The Floquet discriminant shows for which 
𝑘2 in Eq. (8) has quasi-periodic solutions [36,40]. The main spectrum can be calculated by finding the solutions of 𝛥(𝐸) = ±1. The 
constants 𝐸𝑖 in the main spectrum correspond to the 𝑘2 for which (9) has periodic (if 𝛥(𝐸) = +1) and anti-periodic (−1) solutions 𝜓 . 
Two adjacent eigenvalues determine an open band 𝐸2𝑖, 𝐸2𝑖+1 when |𝛥(𝐸)| > 1 for 𝐸2𝑖 < 𝐸 < 𝐸2𝑖+1. There is also an auxiliary spectrum 
(not shown), which consists of initial conditions 𝜇𝑖(𝑥0, 𝑡0) for the hyperelliptic modes. The nonlinear KdV spectrum is commonly 
decomposed into soliton and radiation components. The modulus 𝑚 of the hyperelliptic functions is employed to distinguish between 
soliton and radiation waves: 

𝑚𝑖 =
𝐸2𝑖+1 − 𝐸2𝑖
𝐸2𝑖+1 − 𝐸2𝑖−1

, 0 < 𝑚𝑖 < 1. (10)

A modulus 𝑚𝑖 < 0.99 indicates an oscillatory mode. For 𝑚𝑖 ≥ 0.99, we have solitons. The amplitude 𝑎𝑖 of an hyperelliptic oscillation 
mode can be expressed as 

𝑎𝑖 =
𝐸2𝑖+1 − 𝐸2𝑖

2𝜆
. (11)

The soliton amplitudes 𝜂𝑛 are given by 

𝐴𝑖 =
2(𝐸ref − 𝐸2𝑛)

𝜆
, 1 ≤ 𝑛 ≤ 𝑁sol. (12)

Here, the number of solitons 𝑁sol is the largest 𝑁 such that 𝑚𝑖 ≥ 0.99 for all 𝑖 = 1, 2,… , 𝑁 . The reference level 𝐸ref = 𝐸2𝑁sol+1
corresponds to the level at which the solitons travel in periodic theory [4,5,41].

To illustrate the periodic KdV-NFT, we now show one example from the HOS-Ocean model. Using basic settings of 𝐻𝑠 = 6
m, 𝑇𝑝 = 10 s and 𝛩 = 0, a unidirectional wave field is generated. The space series extracted from the middle of the wave field 
with respect to the 𝑦-direction is shown in Fig.  1(a). After applying the NFT on the space series, the associated Floquet spectrum 
shown in Fig.  1(b) is found. It consists of the Floquet discriminant 𝛥(𝐸) (blue line), main spectrum points (red dots), reference 
level 𝐸ref (pink line) and open bands (red lines). The main spectrum points are located at the intersections of 𝛥(𝐸) with ±1. The 
reference level is used to distinguish between the soliton components and the radiation components. Solitons are calculated by the 
Floquet discriminant to the left of reference level, while radiation waves are to the right of reference level. An open band refers to 
intervals of 𝐸 (as illustrated in Fig. 15.1 and 17.3–17.5 in Osborne’s book [4]). In Fig.  1(c), the hyperelliptic modes are described 
by their amplitude (blue line) and modulus (red line). One soliton can be found in spectrum with modulus larger than 0.99. The 
other components are oscillatory waves. A feature of the nonlinear Fourier spectrum is that it can be represented by the linear 
superposition of cnoidal waves and their interactions with each other [42]. Note that the calculated wave number of the soliton 
is negative by convention, to separate it from the oscillatory part. For a detailed interpretation of the nonlinear Fourier spectrum 
obtained from the periodic NFTs based on the KdV equation, see [4,6].

For this paper, the main spectrum part of the periodic KdV-NFT (i.e., the 𝐸𝑖) was computed using a development version 
of the open source software library FNFT (commit 7bd10db) [43], which has already been applied to various problem in the 
context of optical fiber [44–46] and hydrodynamics [13,47–49]. More information about FNFT can be obtained online at https:
//github.com/FastNFT/FNFT. The moduli, reference level and soliton amplitudes were computed from the main spectrum in a 
custom Matlab function, which implemented the formulas given above.

3. Simulation setup

The HOS-Ocean model utilizes a directional spectrum of the form 𝑆(𝜔, 𝜃) = 𝐹 (𝜔)𝐺(𝜃), where 𝐹 (𝜔) is a JONSWAP spectrum 
and 𝐺(𝜃) is a directional spreading function. The JONSWAP spectrum is a widely recognized empirical model extensively used 
for characterizing irregular waves [16]. It takes into account the significant wave height (𝐻𝑠), angular peak frequency (𝜔𝑝), peak 
enhancement factor (𝛾), and angular spreading parameter (𝛼): 

𝐹 (𝜔) = 𝛼𝐽𝐻
2
𝑠𝜔

4
𝑝𝜔

−5 exp

[

−5
4

(

𝜔
𝜔𝑝

)−4
]

𝛾
exp

(

−
(𝜔−𝜔𝑝 )2

2𝜎2𝜔2𝑝

)

(13)

with 𝜎 =

{

0.07 for 𝜔 < 𝜔𝑝
0.09 for 𝜔 ≥ 𝜔𝑝

, where 𝛼𝐽  is a constant to obtain the correct significant wave height. The directional spreading 

function 𝐺(𝜃) is defined as [16,50,51] 

𝐺(𝜃) = 1
𝛽

[

cos
(

𝜋𝜃
2𝛽

)]2
,

|

|

|

|

𝜋𝜃
2𝛽

|

|

|

|

≤ 𝜋
2
, (14)

where 𝛽 is a measure of the directional spreading. We introduce 𝛩 = 2𝛽 in degrees, which represents the range of the directional 
distribution. The parameter 𝛽 is suggested to be in the range [0, 0.6], where 𝛽 = 0.6 represents a short-crested sea state with very 
large spreading [25]. In this study, we set the parameter 𝛽 to 0, 0.0872, 0.1309, 0.1745, 0.2618, 0.5236, which corresponds to 
𝛩 = 0◦, 10◦, 15◦, 20◦, 30◦, and 60◦, respectively. Fig.  2(a) depicts the corresponding spreading functions.
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Fig. 1. (a) Example of simulated space series (b) The Floquet spectrum of simulated space series contains the Floquet discriminant 𝛥(𝐸) (blue line), main spectrum 
points (red dots), reference level 𝐸ref (pink line) and open bands (red lines). (c) The nonlinear Fourier spectrum of simulated space series. The nonlinear modes 
are represented by amplitudes (blue circle line) and modulus (red cross line).  (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

The HOS-Ocean model is unable to explicitly describe wave breaking. Guidelines for ensuring the applicability of the model for 
directional irregular sea states with different water depths have been developed in [25]. In this study, we consider a water depth 
of 20 m. The threshold for wave breaking in different water depths is, based on the Ref. [52], given by 

𝐻𝑏 = 𝜅𝜆𝑝 tanh(𝐾𝑝ℎ), (15)

where 𝐻𝑏 is the breaking wave height, 𝜅 is a coefficient, 𝜆𝑝 is the wave length based on the peak period, 𝑘𝑝 is the peak wave number, 
and ℎ is the water depth. The value of 𝜅 varies across locations, depending on the local water depth and environments [53–55]. We 
use 𝜅 ∈ [0.067; 0.076], which is considered suitable for the HOS-ocean model according to [25]. Fig.  2(b) shows the applicability range 
for the highest possible irregular wave field at different water depths. Under consideration of the non-breaking wave conditions, 
the wave fields are generated with significant wave heights of 𝐻𝑠 = 4, 5, 6 m and a peak period of 𝑇𝑝 = 10 s. The relative water 
depth 𝑘ℎ is equal to 1.036 in our case, which corresponds to an intermediate water depth (0.1𝜋 < 𝑘ℎ < 𝜋) [56,57]. It is nevertheless 
below the two KdV applicability thresholds discussed earlier, 𝑘ℎ < 1.14 [11] and 𝑘ℎ < 1.36 [36].

In this study, we have simulated the evolution of in total 36 wave fields corresponding to different input conditions, as shown 
in Table  1. We adopted a spatial discretization of 𝑁𝑥 = 256 and 𝑁𝑦 = 64 grid points for all simulations, with computational domain 
lengths of 𝐿𝑥 = 16𝜆𝑝 ≃ 1932.21 m and 𝐿𝑦 = 8𝜆𝑝 ≃ 954.74 m, where 𝜆𝑝 = 2𝜋∕𝑘𝑝 is the peak wavelength. The mesh resolution is 
𝛥𝑥 = 𝐿𝑥∕(𝑁𝑥 − 1) ≃ 7.58 m and 𝛥𝑦 = 𝐿𝑦∕(𝑁𝑦 − 1) ≃ 15.15 m. The nonlinear order 𝑀 is either 𝑀 = 2 or 𝑀 = 3. We point out that 
all simulations have been carried out at least once including third-order nonlinearities (M = 3). Furthermore, several simulations 
have been additionally been carried out using only second-order nonlinearities (M = 2). The motivation was to study the impact 
of third-order nonlinearities in our scenario. (We are considering an intermediate water depth, and it is known that the effects of 
5 
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Fig. 2. (a) Directional spreading function 𝐺(𝜃) of angle 𝜃 for different directional spreadings. (b) Applicability limits for HOS simulation with water depths of 
ℎ = 10 m (red lines), ℎ = 20 m (purple lines), ℎ = 35 m (blue lines) and ℎ = 150 m (black lines) with coefficient 𝜅 varying from local sites.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Input wave parameters of directional seas for the HOS-Ocean simulation.
 Case 𝐻𝑠 [m] 𝑇𝑝 [s] 𝛩 [◦] 𝑀 Case 𝐻𝑠 [m] 𝑇𝑝 [s] 𝛩 [◦] 𝑀 
 1 4.0 10.0 0◦ 2 19 4.0 10.0 0◦ 3  
 2 5.0 10.0 0◦ 2 20 5.0 10.0 0◦ 3  
 3 6.0 10.0 0◦ 2 21 6.0 10.0 0◦ 3  
 4 4.0 10.0 10◦ 2 22 4.0 10.0 10◦ 3  
 5 5.0 10.0 10◦ 2 23 5.0 10.0 10◦ 3  
 6 6.0 10.0 10◦ 2 24 6.0 10.0 10◦ 3  
 7 4.0 10.0 15◦ 2 25 4.0 10.0 15◦ 3  
 8 5.0 10.0 15◦ 2 26 5.0 10.0 15◦ 3  
 9 6.0 10.0 15◦ 2 27 6.0 10.0 15◦ 3  
 10 4.0 10.0 20◦ 2 28 4.0 10.0 20◦ 3  
 11 5.0 10.0 20◦ 2 29 5.0 10.0 20◦ 3  
 12 6.0 10.0 20◦ 2 30 6.0 10.0 20◦ 3  
 13 4.0 10.0 30◦ 2 31 4.0 10.0 30◦ 3  
 14 5.0 10.0 30◦ 2 32 5.0 10.0 30◦ 3  
 15 6.0 10.0 30◦ 2 33 6.0 10.0 30◦ 3  
 16 4.0 10.0 60◦ 2 34 4.0 10.0 60◦ 3  
 17 5.0 10.0 60◦ 2 35 5.0 10.0 60◦ 3  
 18 6.0 10.0 60◦ 2 36 6.0 10.0 60◦ 3  

third-order nonlinearity reduce close to shallow water conditions [58].) The input parameters for the JONSWAP spectrum are set to 
𝐻𝑠 = 4, 5, 6 m, 𝑇𝑝 = 10 s and 𝛾 = 3.3. The random phases were fixed by using the same initial seed for the random number generator. 
The wave fields are evolved for 1200 s. We show an example of nonlinear wave fields at 𝑡 = 201 s with the settings 𝐻𝑠 = 4 m, 
𝑇𝑝 = 10 s and M = 3 with 𝛩 = 0◦, 10◦, 15◦, 20◦, 30◦, 60◦ in Fig.  3. It should be noted that in HOS-Ocean simulation, the initial wave 
field is generated using linear solutions. An adjustment period is necessary to manage the transition from linear initial conditions to 
a nonlinear surface wave field [59,60]. The adjustment duration is recommended for the first 20 wave periods, which in our cases, 
with a peak wave period of 𝑇𝑝 = 10 s, amounts to 200 s.

In Fig.  4, we present the spectral evolution of the two-dimensional linear spectrum for a directional spreading of 60◦ (initial 
wave field in Fig.  3(f)). The proper wavenumber-domain bandwidth ensures accurate representation of the wave field and efficient 
numerical computation. The wavenumbers are distributed in the range between 𝑘min and 𝑘max. As suggested in [25,61], we select 
𝑘max = 8𝑘𝑝 with the peak wave number 𝑘𝑝 = 2𝜋∕𝜆𝑝 as the bandwidth of the reconstructed wave field.

4. Results

Utilizing the HOS-Ocean model with the aforementioned settings, we discuss the nonlinear spectral characteristics of the wave 
field under different directional spreading. We first present conventional statistical results for the simulated wave fields in Section 4.1 
to characterize the simulation setup, and contrast these results with a KdV-based evolution in Section 4.2. The temporal evolution 
of the nonlinear KdV-type soliton spectrum under the HOS model is presented in Section 4.3 to assess the impact of directional 
spreading and intermediate water conditions. In Section 4.4, we then quantify the impact of directional spreading on the KdV-NFT 
soliton spectra. Finally, in Section 4.5, the evolution of the largest soliton is compared to that of the largest linear mode.
6 
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Fig. 3. Simulated wave fields by HOS-Ocean model with conditions of 𝐻𝑠 = 4 m and 𝑇𝑝 = 10 s at 𝑡 = 201 s by HOS-Ocean model under different directional 
spreading conditions: (a) 𝛩 = 0◦ (b) 𝛩 = 10◦ (c) 𝛩 = 15◦ (d) 𝛩 = 20◦ (e) 𝛩 = 30◦ (f) 𝛩 = 60◦.

Fig. 4. Evolution of wave spectrum with 𝐻𝑠 = 4 m, 𝑇𝑝 = 10 s, and 𝛩 = 30◦ by the HOS-Ocean model during nonlinear propagation at (a) 𝑡 = 0 s (b) 𝑡 = 200 s 
(c) 𝑡 = 400 s (d) 𝑡 = 600 s (e) 𝑡 = 800 s (f) 𝑡 = 1000 s.

4.1. Statistical characteristics during nonlinear evolution

The simulated wave fields correspond to two conditions with nonlinear order 𝑀 : 𝑀 = 2 and 𝑀 = 3. Three parameters 
including maximum wave height, kurtosis, and skewness are used to represent spectral characteristics. Kurtosis measures wave 
height concentration around the mean, with high values indicating intense, steep waves and low values suggesting uniform 
distribution [62,63]. Skewness assesses distribution asymmetry, with positive values implying a prevalence of taller, sharper crests 
and shallower, more rounded troughs [62]. The skewness and kurtosis can be expressed as 

Skewness = 𝜂3

𝜎3
, (16)

Kurtosis = 𝜂4
, (17)
𝜎4
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Fig. 5. Statistical results of maximum wave height, kurtosis and skewness of wave fields with 𝐻𝑠 = 4 m, 𝑇𝑝 = 10 s, and M = 2 under nonlinear wave evolution 
with different directional spreadings. The results are presented with the maximum shown by the upper black line, the minimum by the lower black line, and 
the mean by the middle red line.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where 𝜎 is the standard deviation of the surface elevation 𝜂, and the overbar indicates the time average operator.
In Figs.  5 and 6, we show exemplary statistical results for the wave field with 𝐻𝑠 = 4 m and 𝑇𝑝 = 10 s for two conditions, 

where 𝑀 = 2 and 𝑀 = 3. We first focus on the 𝑀 = 2 case. For directional spreading 𝛩 = 0◦ (Fig.  5(a)–(c)), the wave field 
is long-crested and aligned in the 𝑥-direction. As mentioned in Section 3, the first 20 periods represent the transition from linear 
solutions to nonlinear behavior. The statistical and spectral wave characteristics become stationary after the transition stage. This 
characteristic can also be observed in both Figs.  5 and 6. The maximum wave height of the initial space series is 8 m. During the 
transition stage, the maximum wave height decreases and settles at around 5 m afterward. A similar trend can also be observed in 
the kurtosis, which starts at 6.6, decreases during the transition, and finally stabilizes at around 2.5. The skewness is also unstable 
during the first 20 periods, thereafter, it mostly maintains values above 0. The maximum value of skewness observed throughout 
the evolution is 0.53. A normal distribution has a kurtosis of 3, whereas our simulation’s kurtosis of 2.5 is slightly lower than that 
of a normal distribution, indicating that extreme values of wave elevation are slightly less common than in a normal distribution. 
Additionally, the positive skewness during the evolution suggests a noticeable asymmetry in our simulation.

When directionality is introduced to a long-crested wave field (starting from Fig.  5(d)), it leads to a transition to short-crested 
waves, which exhibit a more chaotic pattern. The wave energy is distributed spatially across a range of directions based on 
the directional spreading. The directionality alters the wave pattern along the 𝑦-direction. The statistical parameters such as the 
maximum (upper line), minimum (lower line), and mean (middle line) values are computed across all spatial series in the 𝑦-direction. 
The statistical parameters of the HOS wave fields under different directional spreading with 𝛩 = 10◦, 15◦, 20◦, 30◦, and 60◦ are 
depicted in Fig.  5(c)–(r). With increasing directional spreading, it is evident that the statistical parameters including maximum wave 
height, kurtosis, and skewness exhibit a wider variation range from minimum to maximum values. If we compare the maximum 
wave height under directional spreading with 𝛩 = 60◦ (Fig.  5(p)) with the unidirectional case (Fig.  5(a)) after the transition stage 
(𝑡 > 200) s, it is observed that as waves are distributed in the 𝑦-direction in the multi-directional case, the interaction among waves 
results in larger waves compared to the unidirectional case. The largest maximum wave height of 𝐻max = 8.42 m is detected at 
𝑡 = 930 s. Similar results are observed in kurtosis (Fig.  5(q)) and skewness (Fig.  5(r)). The largest kurtosis value is Kurtosis = 6.09
at 𝑡 = 225 s, while the largest skewness value is Skewness = 0.96 at 𝑡 = 582 s.

Subsequently, we compare the nonlinear orders 𝑀 = 2 (Fig.  5) and 𝑀 = 3 (Fig.  6). The overall results are very similar; 
however, there are more extreme values of the statistical parameters are observed in the 𝑀 = 3 cases. Considering that third-order 
nonlinearity is typically more pronounced in deep water conditions, and our simulations are conducted under intermediate water 
conditions, the third-order effects are not as prominent in our cases. Nonetheless, they still contribute slightly to enhancing the 
statistical parameters. The statistical results here are quite similar to the simulations of two-dimensional shallow water waves using 
the Kadomtsev–Petviashvili equation by Toffoli et al. (2008) [64], suggesting that the interaction of two crossing wave trains in 
shallow water may increase skewness and kurtosis under certain crossing angles.
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Fig. 6. Statistical results of maximum wave height, kurtosis and skewness of wave fields with 𝐻𝑠 = 4 m, 𝑇𝑝 = 10 s, and M = 3 under nonlinear wave evolution 
with different directional spreadings. The results are presented with the maximum shown by the upper black line, the minimum by the lower black line, and 
the mean by the middle red line.

4.2. Comparison with spectral characteristics obtained from KdV-dynamics

Similarly to the HOS model considered in the previous subsection, the nonlinear dynamics of random wave fields governed by 
the KdV equation exhibits different behavior compared to wave evolution by linear wave theory. As nonlinearity increases in the 
system, the wave fields deviate from a near-Gaussian distribution towards greater asymmetry, characterized by increased kurtosis 
and positive skewness [65]. This could occur under the interaction of two crossing wave trains in a two-dimensional wave field [64].

In the previous section, we showed the statistical results of the HOS simulation during temporal evolution. The question here 
is whether the temporal evolution of the HOS wave field under unidirectional conditions resembles that of the KdV equation. The 
statistical comparison of nonlinear wave fields under unidirectional conditions by the HOS-Ocean model and the KdV equation is 
illustrated in Fig.  7 for 𝑀 = 2 and 8 for 𝑀 = 3. For applying the HOS-Ocean model, the first 20 periods of the simulation should be 
neglected to avoid the transition stage as it becomes nonlinear (as mentioned in Section 3). The spatial series at 𝑡 = 201 s is chosen 
as the initial input for the Korteweg–de Vries (KdV) equation. The temporal evolution will be simulated for 1000 s to compare the 
statistics of the propagated waveform with the HOS-Ocean model. The temporal evolution using the KdV equation is performed 
using the spin command of the Matlab package Chebfun [66]. The numerical settings for Chebfun include 10,000 grid points 
and a time step of 𝑑𝑡 = 0.1 s. The propagation time is set as 1000 s with an interval of 1 s, which allows a comparison with the 
HOS-Ocean simulation. In Fig.  7(a) with the condition of 𝐻𝑠 = 4 m, it is observed that the maximum wave height 𝐻max of KdV 
evolution can exceed that of the HOS-Ocean model. Similar results can be found in Fig.  7(d) with 𝐻𝑠 = 5 m and (g) 𝐻𝑠 = 6 m. 
Similar to maximum wave height, kurtosis in the KdV evolution tend to be larger than those obtained from the HOS-Ocean model, 
as shown in Fig.  7(b,e,h). Regarding skewness, depicted in Fig.  7(c, f, i), the skewness has more positive and larger values in the 
HOS simulation than in the KdV equation during temporal evolution. This suggests that the HOS-Ocean model generates wave fields 
with greater asymmetry during evolution, whereas the KdV equation produces more symmetrical wave fields.

Considering the nonlinear order 𝑀 = 3, Fig.  8 depicts the temporal evolution of statistical parameters for the HOS wave field 
including third-order nonlinearity. We had observed that the evolution of maximum wave heights for the three different conditions 
with 𝑀 = 3 is slightly larger than the corresponding conditions for 𝑀 = 2. However, the KdV equation evolution does not exhibit 
this trend of 𝑀 = 3 cases exceeding the corresponding 𝑀 = 2 conditions. (The KdV equation itself is of course not influenced by 
the nonlinear order parameter 𝑀 of the HOS model. Only its initial conditions, which are extracted from the HOS model at 𝑡 = 201
s, change.) As shown in Fig.  8(g), the maximum wave height of the HOS-Ocean model can be larger than that of the KdV equation 
during evolution. Similar results are observed for kurtosis and skewness, where 𝑀 = 3 cases are larger than 𝑀 = 2, but this trend is 
not observed in the KdV evolution. Our results show that both methods exhibit different nonlinear evolution properties even under 
unidirectional conditions. This difference can be attributed to two main factors. First, the applicability of the KdV equation is more 
suitable for shallow water conditions, whereas the wave fields by HOS-ocean are modeled under intermediate water condition in 
this study. Second, the KdV equation is, in contrast to HOS-Ocean, only a weakly nonlinear model.
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Fig. 7. Comparison of the HOS-Ocean model with the KdV equation under unidirectional conditions. The nonlinear order M = 2 is used. The parameters 
maximum wave height, kurtosis, and skewness are examined for 𝐻𝑠 = 4 m, 𝐻𝑠 = 5 m, and 𝐻𝑠 = 6 m. The blue line represents the HOS-Ocean model, and the 
orange line represents the KdV evolution.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 8. Comparison of the HOS-Ocean model with the KdV equation under unidirectional conditions. The nonlinear order M = 3 is used. The parameters 
maximum wave height, kurtosis, and skewness are examined for 𝐻𝑠 = 4 m, 𝐻𝑠 = 5 m, and 𝐻𝑠 = 6 m. The blue line represents the HOS-Ocean model, and the 
orange line represents the KdV evolution.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

4.3. Change of the nonlinear KdV-soliton spectrum under HOS dynamics

In this section, we show the results of the nonlinear Fourier analysis of the wave fields simulated using the HOS-Ocean model. The 
space series required by the NFT are extracted from the wave fields by considering only the center with respect to the 𝑦-direction. By 
10 
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Fig. 9. The amplitudes of solitons in soliton spectra of HOS wave fields with M = 3 under the conditions of significant wave height 𝐻𝑠 = 6 m. Different 
directional spreadings are considered 𝛩 = 0◦, 𝛩 = 10◦, 𝛩 = 15◦, 𝛩 = 20◦, 𝛩 = 30◦, 𝛩 = 60◦ from (a) to (f), respectively. The amplitudes of the largest soliton 𝐴1
is represented by the blue line, second-largest soliton 𝐴2 by the red line, and third-largest soliton 𝐴3 by the yellow line.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

applying the NFT with periodic boundary conditions to a specific space series (i.e., for some fixed time 𝑡 = 𝑡0), the nonlinear Fourier 
spectra are obtained. In our simulations, the modulus of the first amplitude of hyperelliptic oscillation modes, 𝐴1, is consistently 
greater than 0.99, indicating the presence of a soliton. In the following, we call 𝐴1 the amplitude of the largest soliton. Similarly, 
when present, 𝐴2 and 𝐴3 denote the amplitudes of the second- and third-largest solitons, respectively.

Recall that soliton amplitudes are calculated using a reference level in the periodic KdV-NFT (12). As mentioned in Section 2.2, 
the reference level is considered to be the propagation level of solitons. Typically, it differs from the still water level [41]. In practice, 
it is found by checking when the modulus of the hyperelliptic modes drops below the threshold of 0.99. When applying the NFT to 
wave fields generated by the HOS-Ocean model, we encountered a critical issue: the soliton amplitudes regularly made implausible 
large jumps. The discontinuities arise from the use of a fixed threshold. Under non-KdV evolution, the moduli of the hyperelliptic 
change during propagation. When a modulus passes the threshold, the reference level jumps suddenly due to the way it is computed. 
To address this issue, we use the maximum reference level seen throughout the temporal evolution as the reference level for each 
individual space series. With this revision, we obtain soliton amplitudes that change continuously over time.

Based on the above revision of the reference level, we first show that the solution amplitudes evolve continuously in our simulated 
wave fields with 𝑀 = 3, 𝐻𝑠 = 6 m, in Fig.  9. In this case, there are in total three soliton components, where the amplitudes of the 
largest soliton 𝐴1 is represented by the blue line, second-largest soliton 𝐴2 by the red line, and third-largest soliton 𝐴3 by the yellow 
line. In unidirectional case with 𝛩 = 0◦ in Fig.  9(a), we can observe that amplitudes of the three soliton components are quite stable 
after the transition stage. This feature is also observed in the cases with directional spreading. Even at larger directional spreading 
(𝛩 = 60◦), 𝐴1 consistently maintains a higher amplitude than 𝐴2. Furthermore, there is no crossover between the amplitudes during 
temporal evolution, indicating that there is almost no energy exchange among them.

Subsequently, we focus on the amplitude of the largest soliton 𝐴1 as the dominant representative of the soliton spectrum. In 
Fig.  10, we show how the amplitude of the largest soliton 𝐴1 changes during temporal evolution of HOS-Ocean model with 𝑀 = 2
under various significant wave heights (𝐻𝑠 = 4, 5, and 6 m) and directional spreadings (𝛩 = 0◦, 10◦, 15◦, 20◦, 30◦, 60◦). In 
Fig.  10(a), it can be observed that 𝐴1 changes most slowly and remains quite stable under unidirectional spreading. In ideally 
KdV-governed wave fields, the soliton amplitude would remain constant during evolution. Our results thus show that the non-ideal 
evolution conditions (from a KdV perspective) in the HOS-ocean simulations only have minor effects on the soliton spectrum under 
uni-directional spreading. Variations in the amplitudes of the soliton increase with greater directional spreading. According to Fig. 
3, we see that wavelengths are quite short compared to the simulated wave fields in the 𝑦-direction, and thus wave groups can 
enter or leave the area where the space series is measured. When considering larger significant wave heights in Fig.  10(b) and (c), 
the variations of 𝐴1 also increase due to higher nonlinearity in the system, which increasingly deviates from the weakly nonlinear 
assumption of the KdV equation. Nevertheless, for cases with comparatively small directional spreadings (𝛩 ≤ 30◦), the variations 
of the soliton amplitudes hardly increases. Only for 𝛩 = 60◦, a noticeable increase in the variation of 𝐴1 is observed.

Fig.  11 shows the temporal evolution of the amplitude of the largest soliton 𝐴1 in a nonlinear wave field modeled by the HOS-
Ocean model with 𝑀 = 3. The temporal evolution of 𝐴1 is quite similar to the case 𝑀 = 2 in Fig.  10, but 𝐴1 in the 𝑀 = 3 case is 
slightly larger than in the 𝑀 = 2 case. This indicates that the third-order nonlinearity increases the amplitude of 𝐴1, and it is more 
pronounced in wave fields with larger significant wave height. It also leads to somewhat larger variations of 𝐴1 when the significant 
wave height is large (𝐻 = 6 m), compared to the cases with 𝑀 = 2.
𝑠
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Fig. 10. The amplitudes of the largest soliton 𝐴1 in soliton spectra of HOS wave fields with M = 2 under the conditions of significant wave height (a) 𝐻𝑠 = 4
m, (b) 𝐻𝑠 = 5 m and (c) 𝐻𝑠 = 6 m with directional spreadings 𝛩 = 0◦, 𝛩 = 10◦, 𝛩 = 15◦, 𝛩 = 20◦, 𝛩 = 30◦, 𝛩 = 60◦.

Fig. 11. The amplitudes of the largest soliton 𝐴1 in soliton spectra of HOS wave fields with M = 3 under the conditions of significant wave height (a) 𝐻𝑠 = 4
m, (b) 𝐻𝑠 = 5 m and (c) 𝐻𝑠 = 6 m with directional spreadings 𝛩 = 0◦, 𝛩 = 10◦, 𝛩 = 15◦, 𝛩 = 20◦, 𝛩 = 30◦, 𝛩 = 60◦.

4.4. Quantification of the impact of directional spreading on nonlinear KdV-soliton spectra in intermediate water conditions

We use the largest solitons as representatives of the nonlinear spectrum when describing the nonlinear evolution of shallow 
water waves. However, in the case of larger directional spreading, part of the soliton’s energy may travel into other regions that our 
selected space series does not capture, causing a larger variation in soliton amplitude. In order to quantify the impact of directional 
spreading on nonlinear soliton spectra during temporal evolution, we consider the Relative Error (RE) and the Relative Deviation 
of the Mean (RDM). Denoting the amplitude of largest soliton at time 𝑡 by 𝐴1(𝑡), the relative error (RE) is the relative change in 
𝐴1(𝑡) compared to its value at the end of the HOS-Ocean start-up phase after (i.e., at 𝑡 = 201 s): 

RE(𝑡) =
|𝐴1(𝑡) − 𝐴1(201)|

𝐴1(201)
. (18)

The second evaluation parameter, Relative Deviation of the Mean (RDM), focuses on the deviation of the average amplitude of the 
largest soliton over the time interval [201, 𝑡] from the initial value: 

RDM(𝑡) =

|

|

|

|

∑𝑡
201 𝐴1(𝑡)
𝑡−200 − 𝐴1(201)

|

|

|

|

𝐴1(201)
. (19)

Due to the averaging, the RDM results in smoother curves than the RE. We use these two evaluation indices to assess the impact of 
directional spreading on nonlinear soliton spectra, as shown in Fig.  12 for 𝑀 = 2 and Fig.  13 for 𝑀 = 3.

Fig.  12 shows the temporal evolution of the RE and RDM of the soliton amplitude 𝐴1(𝑡) for shallow water waves fields with 
𝑀 = 2 and significant wave heights of (a, d) 𝐻𝑠 = 4 m, (b, e) 𝐻𝑠 = 5 m, (c, f) 𝐻𝑠 = 6 m. We focus on the practically relevant initial 
stage and observe when the RE and RDM, respectively, hit fixed thresholds for the first time. (Under ideal propagation according 
to the periodic KdV equation, this would never happen as both indicators would stay zero forever.) We use the unidirectional case 
with 𝛩 = 0◦ as a baseline to determine these thresholds. In Fig.  12(a), we first focus on the unidirectional case of 𝛩 = 0◦ with 𝐻𝑠 = 4
m, where the RE reaches a first major maximum of RE = 0.15 after 236 s before, and the RDM reaches a first major maximum of 
RDM = 0.065 after 346 s. Under unidirectional conditions, the RE never exceeds 0.15 and the RDM never exceeds 0.071. In the 
following, we therefore use the more stringent thresholds RE = 0.10 and RDM = 0.05.

We then calculate the propagation times required for the RE to reach 0.1 and the RDM to reach 0.05 for all directional spreadings 
(𝛩 = 0◦, 10◦, 15◦, 20◦, 30◦, 60◦). The results show that the durations for these cases are 213 s, 202 s, 178 s, 112 s, 37 s and 16 s, 
12 
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Fig. 12. Evaluation of the amplitude of largest soliton 𝐴1 by relative error (RE) and relative deviation of the mean (RDM) based on the HOS wave fields with 
M = 2 under the conditions of significant wave heights 𝐻𝑠 = 4 m, 𝐻𝑠 = 5 m and 𝐻𝑠 = 6 m, and directional spreading 𝛩 = 0◦, 𝛩 = 10◦, 𝛩 = 15◦, 𝛩 = 20◦, 𝛩 = 30◦

and 𝛩 = 60◦.

respectively. We also evaluate the propagation time with the RDM shown in Fig.  12(d). When it reaches 0.05, we obtain results of 
268 s, 255 s, 246 s, 142 s, 24 s and 22 s for corresponding directional spreadings. The corresponding results for 𝐻𝑠 = 5 m (see Fig. 
12(b,e)) and 𝐻𝑠 = 6 m (shown in Fig.  12(c,f)) are provided in Table  2. It can be observed that under smaller directional spreading 
conditions (𝛩 ≤ 20◦), the representative propagating time can last more then 110 s. For larger directional spreading conditions 
(𝛩 ≥ 30◦), the RE and RDM deviate significantly faster, resulting in a reduced representative propagation time. This finding is 
consistent for all significant wave heights.

The evaluation of the impact of directional spreading on the soliton amplitude for 𝑀 = 3 is provided in Fig.  13 and Table  2. In 
Fig.  13, it can be observed that the RE and RDM with directional spreadings of 𝛩 = 0◦, 10◦ and 15◦ are almost the same. The RE 
and RDM start to increase when the directional spreading becomes larger (𝛩 ≥ 20◦). The general behavior of the errors in case of 
𝑀 = 3 is quite similar to the results for 𝑀 = 2. Based on Table  2, the representative propagation times for 𝑀 = 3 closely resemble 
the case for 𝑀 = 2.

To estimate a representative propagation distance for solitons, we consider a single solitary wave 𝑢(𝑥, 𝑡) = 𝐴sech2[(𝑥 − 𝑐𝑡)∕𝑙], 
where 𝑐 =

√

𝑔(ℎ + 𝐴) is the wave celerity and 𝑙 =
√

4ℎ3∕(3𝐴) is the characteristic length [4,67,68]. For a wave field with 𝑀 = 2, 
𝐻𝑠 = 4 m and ℎ = 20 m, a soliton amplitude of 0.4 m can be read off in Fig.  10(a). The corresponding wave celerity is calculated as 
14.15 m/s. For small directional spreading (𝛩 ≤ 15◦), propagation times of at least 𝑡prop = 178 s can result in propagation distances 
larger than 𝑐 × 𝑡prop = 14.15 m/s × 178 s ≈ 2519 m. Compared to the characteristic length of a soliton with amplitude 0.4 m, which 
equals 163.3 m, this propagation distance is about 15.4 times the characteristic length. In contrast, with large directional spreading 
(𝛩 = 60◦), a propagation time of 16 s yields a calculated propagation distance of only around 226 m. In this case, the nonlinear 
spectrum remains representative for approximately 1.4 times of characteristic lengths. This suggests that the NFT-based method can 
capture the nonlinear evolution of waves with directional spreading for limited propagation times or distances, which decrease with 
increasing directional spreading and significant wave height.

4.5. Comparison with linear Fourier modes

To compare our results with the linear Fourier method, we also calculated the RE of the dominant linear Fourier mode during 
temporal evolution. Based on the HOS wave fields with 𝑀 = 3 and 𝐻𝑠 = 6 m, we show the results in Fig.  14. The RE of the largest 
linear Fourier mode obtained by the fast Fourier transform (FFT) and is marked by a blue line. The largest nonlinear mode (soliton) 
obtained by the NFT is marked with a red line. The RE of the largest linear mode increases faster than the RE of the largest soliton 
in the practically important initial phase for all cases except 𝛩 = 60◦. For the cases with 𝛩 ≤ 20◦, the soliton RE even stays close 
to zero for a significant time, while the linear mode RE in contrast increases immediately. These results suggest that the nonlinear 
Fourier transform may be a more appropriate method for describing the nonlinear evolution of directional wave fields than the 
conventional linear FFT, even under non-ideal intermediate water and moderate directional spreading conditions.

5. Discussion and conclusions

This paper evaluated the impact of directional spreading and intermediate water conditions on soliton components detected 
using the nonlinear Fourier transform (NFT) for the Korteweg–de Vries (KdV) equation. Under ideal KdV propagation, the soliton 
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Fig. 13. Evaluation of the amplitude of largest soliton 𝐴1 by relative error (RE) and relative deviation of the mean (RDM) based on the HOS wave fields with 
M = 3 under the conditions of significant wave heights 𝐻𝑠 = 4 m, 𝐻𝑠 = 5 m and 𝐻𝑠 = 6 m, and directional spreading 𝛩 = 0◦, 𝛩 = 10◦, 𝛩 = 15◦, 𝛩 = 20◦, 𝛩 = 30◦

and 𝛩 = 60◦.

Fig. 14. Evaluation of the amplitudes of dominant linear Fourier modes by relative error (RE) based on the HOS wave fields with M = 3 under the conditions 
of significant wave heights 𝐻𝑠 = 6 m, and directional spreading 𝛩 = 0◦, 𝛩 = 10◦, 𝛩 = 15◦, 𝛩 = 20◦, 𝛩 = 30◦ and 𝛩 = 60◦ from (a) to (f), respectively.  (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

amplitudes would stay constant during propagation. Directional spreading and intermediate water conditions however violate 
the assumptions of the KdV equation, so that the soliton amplitudes are expected to change during propagation. We explored 
how long the soliton amplitudes remain representative for different directional spreading conditions. To this end, the nonlinear 
evolution of randomly generated wave fields was simulated using the HOS-Ocean model [16] for various directional spreadings 
under intermediate water conditions (𝑘ℎ = 1.036). 

The nonlinear temporal evolution of wave fields was simulated using the HOS-Ocean model for sea states with significant wave 
heights 𝐻𝑠 = 4 m, 𝐻𝑠 = 5 m and 𝐻𝑠 = 6 m, respectively. A statistical analysis of basic wave parameters during nonlinear evolution 
was then performed. The evolution of several statistical parameters was compared between the HOS-Ocean model and the KdV 
equation. This confirmed that the two methods exhibit different nonlinear evolution. Although the KdV equation has limitations in 
its applicability, we found that the soliton amplitudes obtained from the KdV-NFT nevertheless may vary only slightly during the 
nonlinear evolution of directional intermediate water waves for certain propagation times or distances, depending on the directional 
spreading conditions. Moreover, we observed that except for strong spreading conditions, the largest soliton is more stable than the 
largest linear Fourier mode.
14 
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Table 2
Representative propagation time for the nonlinear spectra under different directional spreading conditions.
 M = 2 M = 3
 𝐻𝑠 = 4 m 𝐻𝑠 = 5 m 𝐻𝑠 = 6 m 𝐻𝑠 = 4 m 𝐻𝑠 = 5 m 𝐻𝑠 = 6 m
 0◦ 213 s 268 s 215 s 289 s 216 s 247 s 212 s 265 s 201 s 271 s 200 s 281 s 
 10◦ 202 s 255 s 216 s 262 s 198 s 243 s 202 s 259 s 202 s 265 s 200 s 249 s 
 15◦ 178 s 246 s 161 s 239 s 161 s 241 s 182 s 267 s 184 s 283 s 201 s 266 s 
 20◦ 112 s 142 s 131 s 161 s 137 s 180 s 133 s 150 s 135 s 171 s 161 s 289 s 
 30◦ 37 s 24 s 75 s 27 s 75 s 27 s 35 s 15 s 77 s 15 s 86 s 15 s  
 60◦ 16 s 22 s 14 s 21 s 13 s 16 s 11 s 10 s 8 s 6 s 9 s 9 s  

We also observed that the soliton amplitude remains stable during temporal evolution in the unidirectional case although the 
wavefields were propagated using the HOS method instead of the KdV equation, and intermediate waters were considered. Under 
increasingly directional spreading conditions, the soliton amplitude exhibits larger and larger variations during temporal evolution. 
Using two evaluation metrics, the Relative Error (RE) and the Relative Deviation of the Mean (RDM), we determined representative 
propagation times for the soliton wave heights for various significant wave heights and directional spreading conditions (see Table 
2). Our results show that the largest soliton in the nonlinear spectrum is quite stable for the small directional spreading cases. 
However, even in cases with large directional spreading, the soliton amplitudes provided by the KdV-NFT can still retain their 
representative character for short propagation times or distances. These findings indicate that NFT-based analyses can be physically 
meaningful even under physical propagation conditions different from the integrable equation that is solved exactly by the NFT. 
Similar results have also been reported only recently for the deep water case, where the NFT for the nonlinear Schödinger equation 
is used [15].

From a practical point of view, this study provides the first attempt to quantify in particular of impact of directional spreading 
on nonlinear Fourier spectra obtained by applying the KdV-NFT to space series extracted from multidirectional seas. Such results 
are important to further interpret the results of real-world studies based on the KdV-NFT such as [10–14]. For the sea states with 
moderate directional spreading, the nonlinear soliton spectrum varied only moderately during evolution when considered for short 
enough periods of time. Since surface waves in shallow water regions are expected to experience reduced spreading compared 
to deep water locations due to the shallow water effects [11,69], this further enhances the potential of the KdV-NFT for field 
measurements. We finally remind the reader that these results are based on the nonlinear temporal evolution of JONSWAP wave 
fields by the HOS-Ocean model. While HOS-Ocean is a powerful model, numerical models cannot always describe the nonlinear 
evolution of realistic wave fields accurately. For example, the HOS-Ocean model only considers non-breaking waves propagating 
within a uniform water depth. Another limitation of our study is that only nonlinearities up to the third order have been considered. 
Furthermore, real-world wave spectra tend to be more complicated than JONSWAP spectra. Therefore, high-quality field data will 
be essential for future investigations into the practical applicability of the KdV-NFT.
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