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Abstract: Non-negative Matrix Factorization (NMF) has gained popularity due to its effec-
tiveness in clustering and feature selection tasks. It is particularly valuable for managing
high-dimensional data by reducing dimensionality and providing meaningful semantic
representations. However, traditional NMF methods may encounter challenges when
dealing with noisy data, outliers, or when the underlying manifold structure of the data is
overlooked. This paper introduces an innovative approach called SGRiT, which employs
Stiefel manifold optimization to enhance the extraction of latent features. These learned fea-
tures have been shown to be highly informative for clustering tasks. The method leverages
a spectral decomposition criterion to obtain a low-dimensional embedding that captures
the intrinsic geometric structure of the data. Additionally, this paper presents a solution
for addressing the Stiefel manifold problem and utilizes a Riemannian-based trust region
algorithm to optimize the loss function. The outcome of this optimization process is a
new representation of the data in a transformed space, which can subsequently serve as
input for the NMF algorithm. Furthermore, this paper incorporates a novel subspace
graph regularization term that considers high-order geometric information and introduces
a sparsity term for the factor matrices. These enhancements significantly improve the
discrimination capabilities of the learning process. This paper conducts an impartial anal-
ysis of several essential NMF algorithms. To demonstrate that the proposed approach
consistently outperforms other benchmark algorithms, four clustering evaluation indices
are employed.

Keywords: Non-negative Matrix Factorization; clustering; dimension reduction; Stiefel
manifold; Riemannian manifolds; subspace graph regularization

1. Introduction

Non-negative Matrix Factorization (NMF) is a clustering and dimension reduction
method that approximates a matrix as a product of two nonnegative components [1].
Unlike similar techniques, NMF allows only additive combinations, leading to a parts-
based representation. NMF has gained increasing attention due to its unique capability to
provide interpretable results that are nonnegative, distinguishing it from other conventional
subspace learning algorithms [2]. This characteristic enables NMF to effectively capture the
essence of intelligent data representation [2]. While other dimension-reduction techniques
like Singular Value Decomposition (SVD) [3], Principal Component Analysis (PCA) [4],
and Independent Component Analysis (ICA) [5] have been widely used, few of them offer
a clear physical interpretation of their decomposition results. Studies suggest that human
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perception relies on interpreting objects as compositions of their fundamental additive
parts [6], aligning with NMF’s approach. However, traditional NMF methods struggle in
the presence of noise, outliers, or when the underlying manifold structure of the data is
ignored [7].

To overcome the last problem, traditional linear subspace methods, such as PCA and
Linear Discriminant Analysis (LDA), rely on Euclidean distance to measure similarities
between samples. However, in datasets like the classic ‘Swiss roll’, Euclidean distance
fails to capture the intrinsic data structure, providing misleading ‘shortcuts” across the
manifold. Instead, geodesic distance, which measures the shortest path along the manifold
surface, offers a more accurate representation of pairwise relationships [8]. Nonlinear
techniques, like ISOMAP, Locally Linear Embedding (LLE), and Laplacian Eigenmap
(LE), which use geodesic distance, assume an Euclidean embedding, resulting in a better
similarity /distance calculation. Now consider a different curved manifold, the data placed
on the surface of a sphere. They must be stretched to map onto a plane. There are two
problems; first, we might still hope to find Euclidean embedding space, and, second, we can
never find a distortion-free Euclidean embedding (in the sense that the distances will always
have errors).

To address these limitations, researchers have integrated manifold learning into NMF
by encoding data samples using graph structures, leading to improved data represen-
tation [9]. Manifold learning assumes data exist within a complex structure, making
traditional linear subspace methods ineffective for highly nonlinear datasets. To capture
the local geometric information of the original data, Cai et al. [10] introduced a graph regu-
larization NMF (GNMF) approach. GNMF utilizes a nearest neighbor graph to represent
the data’s geometric structure in a lower dimensional space and constructs a Laplacian
graph to encode the local manifold structure of the data. This method has been used in
almost all NMF methods to identify the intrinsic geometry of manifolds [7,10,11].

Another constraint used in most NMF methods is the orthogonality of the basis
vectors [12]. This constraint also reduces redundancy [13], enhances interpretability [14],
and improves discrimination representation [15]. By imposing orthogonality on the basis
vector, they are more likely to capture distinct and independent patterns while minimizing
overlap in the information they represent. This results in learned components that are
distinct, non-redundant, and better suited for separating different classes or categories in
applications such as classification. Additionally, orthogonality provides a more compact
and efficient representation of the data, making them easier to understand and interpret
and useful for feature extraction or data compression.

Orthogonality constraints can also indirectly promote sparsity in the representation.
When combined with non-negativity, the resulting components tend to have sparse and
informative activations, leading to a more efficient and meaningful representation. How-
ever, the benefits of orthogonality constraints may vary depending on the specific problem
and dataset.

Recently, data clustering has shifted from traditional centroid-based methods [16]
to subspace clustering [17], where data points are grouped based on their tendency to
form subspace structures [18]. This approach is widely used in fields like computer vision,
pattern recognition [18], and bioinformatics [19]. The goal is to transform high-dimensional
data into a lower-dimensional space while preserving the maximum amount of information
present in the original dataset. Typically, input data are represented in the form of vectors,
matrices, or tensors. Subspace learning involves identifying an optimal transformation,
whether linear or nonlinear, to project the input data into a lower-dimensional space.

To model data on curved manifolds in high-dimensional space, Riemannian manifold
methods are used to capture complex nonlinear relationships. A Riemannian manifold is a
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differentiable manifold equipped with a Riemannian metric [18], which defines smoothly
varying inner products within the tangent spaces on the manifold. Therefore, in contrast to
Euclidean distance, the Riemannian distance considers the curved path (geodesic) on the
manifold itself, which depends on the Riemannian metric that defines the geometry of the
manifold [18,20-22]. Two key manifolds in this framework are the Stiefel manifold and the
Grassmann manifold. The Stiefel manifold St (D, d) consists of all Dxd matrices with or-
thonormal columns (U € RP*4 | UTU = 1) [23]. This orthogonality minimizes redundancy,
ensuring efficient subspace representation. The Stiefel manifold, as a Riemannian manifold,
is widely used in spectral clustering, matrix factorization, and neural network training;
preserving intrinsic high-dimensional data relationships is essential in various application
areas, such as social networks and recommender systems.

Riemannian optimization provides an effective framework for solving nonlinear prob-
lems with structural constraints. By embedding properties like orthonormality, low-rankness,
and positivity into the manifold’s geometry, it enables efficient enforcement of these con-
straints, which is difficult with classical methods. Unlike traditional optimization techniques
(e.g., Alternating Least Squares (ALS) [24], Multi-User Resource Scheduling (MURs) [16],
Alternating Direction Method of Multipliers (ADMM) [25]), which may become trapped in
local minima, Riemannian optimization offers better convergence guarantees.

Over the past two decades, various methods have been developed for manifold opti-
mization. A notable instance is the work presented in [23], which introduces a frame-
work for optimizing functions on different matrix manifolds. Commonly employed
algorithms include the Riemannian gradient descent and the Riemannian trust region.
The trust-region method can linearly approximate local solutions in the tangent space
at each iteration and, ultimately, converge to a globally nonlinear solution, often re-
sulting in superior performance compared to the traditional Euclidean-based methods.
These algorithms methods have been implemented in Python (version 3.11) as the “Py-
manopt” (https://pymanopt.org/) package and in MATLAB (R2015a) as the “ManOpt”
(https:/ /www.manopt.org/) toolbox.

In this paper, we aim to develop a better representation of the original data and use it
to infer a more accurate affinity /similarity matrix for the NMF decomposition algorithm.
To achieve this, a strategy is employed that involves the transformation of the data from
its original space to a Stiefel manifold space. By choosing this manifold, the basis vectors
in the new subspace become orthonormal. This transformation is subsequently subjected
to Riemannian manifold optimization. Naturally, Riemannian manifold optimization can
reveal the nonlinear geometric structures of the high-dimensional data. This approach
moves away from the traditional flat Euclidean space paradigm and instead formulates the
optimization problem directly on the intricate curved manifold.

Subsequently, this methodology is extended to address low-rank nonnegative matrix
factorization, leveraging the inherent low-rank structure of the transformed data. This
transformation results in the data being expressed through a Frobenius norm computed
from latent factors. Additionally, graph-based smoothness constraints are incorporated
into the coefficient matrix to enhance robustness. This novel approach optimizes data rep-
resentation on the Stiefel manifold, integrates low-rank structures, and reinforces stability
using graph-based constraints.

The main contributions of this work are summarized as follows:

1.  Learning improved representations of the original data and leveraging them to derive
a more accurate affinity or similarity matrix. This is achieved by transforming the
data from its original space into a Stiefel manifold orthonormal space and apply-
ing Riemannian manifold optimization to uncover the nonlinear geometric struc-


https://pymanopt.org/
https://www.manopt.org/

Mach. Learn. Knowl. Extr. 2025, 7,25 40f18

tures of the high-dimensional data that enable the extraction of more meaningful
structural relationships.

2. Using the transformed Euclidean data matrix under the new subspace to identify
the inherent geometric structure of the data, rather than deriving it directly from the
original data, for use in NMF decomposition.

3. Numerous experiments on different datasets demonstrate that this method can en-
hance the clustering efficiency compared to the traditional NMF-based method.

4. However, in addition to the contributions of the proposed approach, the exper-
iments indicate that it experiences a slightly longer execution time compared to
previous methods.

5. Since the proposed approach applies Subspace Graph Regularization and a Riemannian-
based trust region algorithm within the Non-negative Matrix Factorization framework,
we have selected the abbreviated name SGRiT for this approach throughout this ar-
ticle. The remainder of this paper is structured as follows: Section 2 provides a
summary of related works, Section 3 explains the SGRiT approach, Section 4 dis-
cusses the experimental results, and Section 5 presents conclusions and directions for
future research

2. Related Work

To significantly enhance the performance of traditional Non-negative Matrix Fac-
torization (NMF) methods, numerous algorithms have been proposed that incorporate
additional constraints into the objective function. To ensure accurate orthogonality,
Zhang et al. [26] leverage the sparsity of non-negative orthogonal solutions. They de-
compose the overall problem into a series of local optimizations, effectively simplifying
the process. Other algorithms, such as Orthogonal Non-negative Matrix Factorization
(ONMF) [27-29], reduce redundancy in data representation by imposing orthogonality
constraints on the factor matrices.

The orthogonality constraints effectively define a specific subset within a larger space
known as the Stiefel manifold. Choi et al. [30,31] utilize the natural gradient method within
this Stiefel submanifold to enhance computational efficiency in implementing ONME.
Robust NMF (RNMF), for example, operates under the assumption that corrupted data
entries are sparsely distributed and impose sparsity constraints on the residual matrix.
Building on RNMF, Févotte et al. [32] incorporate a group-sparse outlier residual term
to address potential nonlinear effects, resulting in Group Robust Non-negative Matrix
Factorization (GRNMF).

As the concept of Semi-NMF gains popularity, Zhang et al. [33] relax the non-negativity
constraints on the basis matrix. This leads to the development of an efficient orthogonal
Semi-NMF algorithm that continues to operate within the context of the Stiefel mani-
fold. A significant amount of research has been dedicated to enhancing clustering perfor-
mance through the derivation of improved data representations. One notable example is
Spectral Clustering [20], an influential technique that relies on spectral decomposition to
obtain a low-dimensional data embedding, which then serves as input for fundamental
clustering procedures.

Within the realm of spectral clustering methods, two prominent contenders for learn-
ing similarity or affinity matrices are Sparse Subspace Clustering (SSubC) [34] and Low-
Rank Representation (LRR) [24]. Both methods leverage the self-expressive property within
a linear space [34], where each data point in a union of subspaces can be efficiently ap-
proximated as a linear combination of other points in the dataset. While SSubC enhances
sparsity by independently exploiting the 11 Subspace Detection Property, the LRR model
adopts a more comprehensive approach by considering the intrinsic relationships among
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data objects through a low-rank constraint. Notably, the LRR method has demonstrated its
ability to uncover a union of multiple subspaces within a dataset, effectively facilitating
subspace clustering when such a structure is present [25]. The self-expressive property is
grounded in linear relationships among the data.

To extend these insights and exploit the nonlinear information inherent in manifold
structures, particularly in manifold-valued data, several researchers have begun leveraging
the self-expressive property within the context of manifold geometry. This has led to the
adaptation of LRR to accommodate manifold scenarios such as Stiefel manifolds [35], Grass-
mann manifolds [36], and positive definite manifolds [37]. Additionally, a second paradigm
is emerging, where researchers approach the problem as a means to learn informative
latent representations. A recent example is Sparse Spectral Clustering (SSC), introduced by
Lu et al. [38], which incorporates a sparsity-induced penalty to enhance the discovery of
cluster-favoring latent representations. The introduction of non-Frobenius norm constraints
in this context separates the solution from eigenvectors, allowing the latent representation
to be derived through a subsequent stage.

In reference [20], a direct solution is presented that involves resolving a novel Grass-
mann optimization problem. This approach incorporates the calculation of latent em-
beddings as part of manifold-based optimization. Importantly, the new features learned
through these methods not only significantly enhance clustering effectiveness but also
provide more intuitive and effective visualizations following dimensionality reduction.
In reference [3], a pioneering approach is introduced, presenting a novel low-rank Non-
negative Matrix Factorization learning method known as Low-rank Nonnegative Matrix
Factorization on the Stiefel Manifold (LNMFS). This method introduces three additional
constraints to the conventional NMF framework. Firstly, LNMFS incorporates a low-rank
constraint on the intrinsic data. This is achieved by penalizing the nuclear norm of the
intrinsic data matrix. To streamline the optimization process, the nuclear norm of the
intrinsic data matrix is transformed into a convex Frobenius norm of the latent factors,
leveraging a well-established theorem [39]. Secondly, with the aim of generating distinc-
tive patterns for simplified interpretation, LNMFS posits that the basis matrix resides
on a Stiefel manifold. This assumption ensures that different factors are orthogonal to
one another. Thirdly, LNMFS takes measures to enhance the data’s robustness within a
manifold structure. This is realized by integrating the graph smoothness constraint of the
coefficient matrix.

Many algorithms based on Euclidean discriminant analysis are prone to quickly con-
verging to misleading local minima, often lacking a definitive and unique solution [40].
It is essential to recognize that the trust-region approach can linearly approximate local
solutions in the tangent space throughout iterations, ultimately converging to a glob-
ally nonlinear solution [41]. To address this issue, a method called Riemannian-based
Discriminant Analysis (RDA) is introduced [18]. This method transforms conventional
Euclidean techniques into the framework of Riemannian manifold space. RDA utilizes
the second-order geometry inherent in trust-region methods to effectively learn the bases
for discrimination.

Addressing the issues of noise, outliers, and unaccounted manifold structures in data,
reference [7] introduces an innovative technique called correntropy-based hypergraph
regularized non-negative matrix factorization (CHNMF). In CHNMEF, the conventional
Euclidean norm in the loss term is replaced with correntropy, which enhances the algo-
rithm’s robustness. Additionally, the objective function is augmented with hypergraph
regularization, allowing for the exploration of high-order geometric information across
multiple sample points.
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However, the classical NMF algorithm primarily operates as an unsupervised learning
method, which may overlook the spatial structural information present in the original
data. This oversight can lead to suboptimal clustering performance within the subspace.
To address these challenges, reference [6] introduces a semi-supervised NMF algorithm
known as Semi-supervised Dual Graph Regularized NMF with Biorthogonal Constraints
(SDGNMF-BO). This innovative technique employs a three-factor decomposition model
based on a dual graph framework that encompasses both the data space and the feature
space of the original dataset. Such an approach significantly enhances the algorithm’s
learning capacity within the subspace. Furthermore, the integration of biorthogonal con-
straint conditions during the decomposition process improves local representation, notably
reducing the inconsistency between the original matrix and the fundamental vectors.

3. The SGRIiT Algorithm

In this work, we present a novel algorithm that introduces constraints to enhance the
standard NMF framework. This algorithm operates within the Stiefel manifold and an
orthogonal subspace by leveraging the Riemannian trust region algorithm. Our approach
combines a low-rank constraint on the transferred data, sparsity, and a graph smoothness
constraint on the coefficient matrix. The workflow of the SGRiT approach is illustrated in

Figure 1.
f Input Processing ]
‘ Input Data (X) }—I Graph Construction (K-NN)
( Manifold Transformation i
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Figure 1. Workflow process of the SGRiT algorithm.

Let the data matrix be denoted as X = [x1, X2, ..., XN] € Rnxm, where xj; > 0. The
widely used Spectral Clustering (SC) [20] technique involves the following steps to create a
new representation of data:

1. Construct a matrix W of pairwise similarities among N points based on algorithms
like K-NN.
2. The normalized graph Laplacian is as follows:

L=I1-D"?wD /2
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where D is the diagonal matrix with the following:
N
dii = X;‘-Zl W
3.  The optimization problem for computing Y € RN*4, d << M is as follows:
min < YYT, L> stYeRNV*d yTy —] (1)

where Y is the d-dimensional new representation in new subspace of M-dimensional
original data X in original subspace and < YYT,L > denotes the inner product which
generalizes the standard dot product to matrices. The definition of Stiefel manifold that
consist of all the orthogonal column matrix is as follows:

St(d,N) = {Y e RV*d|yyT — 1}. )

By comparing relations (1) and (2), it is clear that problem (1) is an unconstrained
manifold optimization problem on the Stiefel manifold S(d,N). Thus, the unconstrained
manifold optimization problem (1) on the Stiefel manifold can be written as follows:

min < YYT,L > stYeRY*4,Y e St(d,N) 3)

The Riemannian trust-region algorithm is employed on the Stiefel manifold optimiza-
tion Equation (3), yielding a new representation data matrix Y. This involves using the
pymanopt (https://pymanopt.org/) package in the python programming language to con-
vert the original data space to a new orthogonal subspace through the largest k eigenvectors
corresponding to the top k eigenvalues of W.

Subsequently, the nearest neighborhood graph is recreated from new representation
data matrix Y with the improved-weighted matrix W. This new matrix W and new subspace
representation of data is employed in the NMF process, incorporating the graph smoothness
and sparsity constraint to partition data into clusters.

The NMF decomposes each observed data point X into two nonnegative matrices
Ue R{E*d and Ve Ri*M. U acts as the coefficient matrix, and V serves as the basis matrix in
tasks like clustering. The core objective is to minimize the square of the Euclidean distance
under non-negativity constraints:

Op = ming y||X — UV| |2

stU>0,V>0

Orthogonal Non-negative Matrix Factorization (ONMF) models can impose orthogo-
nality on the basis matrices for parts-based interpretation.

minU,VHX—UVHI%

stU>0, V>0 VVI =1

When the SGRIT algorithm transfers original data into a subspace on Stiefel manifold
with orthogonal vectors, it disregards the orthogonality of basis matrix V and writes the
optimization equation accordingly.

minU/V‘ ’new_X — UV’ ’%
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stU>0,V>0

The algorithm enhances sparsity by introducing an independent penalty term, making
the basis vectors sparser:

miny,y|[new_X — UV|[§ + ||U] |}

stU>0,V>0

To maintain the local geometric structure of the data manifold, it incorporates the
graph smoothness regularization term into the objective function. However, instead of
using the Laplacian matrix, which is made from the similarity matrix of the original data,
it uses the Laplacian matrix, which is made from the transferred data under the Stiefel
manifold and with the help of Riemannian optimization. This ensures that the geometric
structure of the data is preserved better, leading to more accurate clustering results.

O = miny,y|Inew_X — UV} + oTr (UM Lnew_xU) + BI|U] |} @

stU>0,V>0

Finally, the parameters o and {3 control the weight of the graph smoothness and
sparsity regularization terms, respectively.

Optimization

To minimize the objective function presented in Equation (4), the algorithm calculates
the derivatives of this function with respect to U while keeping V fixed and with respect to
V while keeping U fixed in the Euclidean space.

E;((O(f)) — —2XVT + 2UVVT 4 2aDU — 2aWU + 28U
J(OF) T T
Sy = X +auTuy

where L is replaced withL =D — W.
Using the KKT condition and KKT complementary slackness, which is as follows:

J(OF)
U@T(U) =0
J(OF)

The symbols © and the fraction line (—) indicate element-wise matrix product and
division, respectively. According to the above equations, the multiplicative update rules
for U and V are given by the following:

XV{ + aWU;
UpViV] + aDU; + BU;

Uit < U O

UfX

Vi1 < Vi O
t+1 t U;I"Utvt
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Therefore, the whole above process can be implemented in the form of Algorithm 1.

The SGRiT method is expressed as an optimization problem that is resolved through an

iterative multiplicative algorithm.

Algorithm 1: The SGRiT Algorithm

Input:

e Nonnegative data matrix X

o k for K-Nearest-Neighbors algorithm

e Parameters o and f3

Output:

e Nonnegative factor matrix U as the clustering result

Steps:

Compute the (weighted) graph W using the k-Nearest-Neighbors approach
for normalized points in X.

Calculate the diagonal matrix D based on the graph W and normalized
graph Laplacian as follow:

L=1-D2wD"1/2

Utilize the pymanopt library to project the original data X onto a Stiefel
manifold subspace Y with Euclidean distances based of relation (3)
Compute the (weighted) graph W and the diagonal matrix D based on the
new data in the newly formed subspace.

repeat

YV{ + aWU;
UViVI + aDU; + BU;

U1 < Ut O

UlY
UL UV,

Vig1 < Vi O

t <= t + 1, until the convergence criterion is satisfied

apply kmeans to Ut+1
return Ut+1

4. Experiments and Analysis

In this section, a series of experiments have been conducted to validate and analyze the

algorithm’s performance across various dimensions. These experiments include algorithm

parameter selection analysis as well as clustering effect comparison. To ensure comprehen-

sive validation, the outcomes of the SGRiT algorithm have been compared against those of

other Non-negative Matrix Factorization (NMF) algorithms.

4.1. Datasets

Clustering experiments are executed on ten distinct datasets, for which the statistical

information is presented in Table 1.

Table 1. Dataset specification.

Dataset # Instances # Attribute # Clusters Subject Area Attribute Type
Breast 683 9 2 Life Integer (0-10)
Pendigit 477 16 3 Image Integer (0-100)
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Table 1. Cont.
Dataset # Instances # Attribute # Clusters Subject Area Attribute Type
Yale 165 1024 15 Image Integer (0-255)
Optdigits 5620 64 10 Image Integer (0-16)
Coil20 1440 1024 20 Image Real (0-1)
ORL 400 10304 40 Image Integer (0-255)
Ecoli 327 7 5 Gene exp. Real (0-1)
Isolet 6238 617 26 Speech Real (—1-1)
CNAE_9 1080 857 9 Business—text Real (0-1)
USPS 9298 256 10 Image Real (0-1)

4.2. Compared Algorithms

To ensure a fair and rigorous comparison of the SGRiT algorithm’s performance, it
has been benchmarked against six other classic NMF algorithms. Below, a comprehensive
description of each of these comparison algorithms is provided.

NME: The classic Non-negative Matrix Factorization algorithm that enforces non-
negativity constraints on the two factor matrices produced during decomposition.

SNME: The Sparse Non-negative Matrix Factorization (SNMF) algorithm incorporates
sparsity constraints into the standard NMF framework to improve parts-based learning.
These constraints significantly enhance the discriminative power of the learned components.
Additionally, SNMF introduces a more streamlined representation approach.

RNME: Robust Non-negative Matrix Factorization (RNMF) is a variant of the NMF
algorithm specifically designed to manage datasets that may contain outliers or noise.
RNMEF addresses these challenges by introducing sparsity constraints on the residual matrix.
The concept of sparsity in RNMF is grounded in the understanding that noise or outliers
are typically sparse and affect only a limited number of data points. By incorporating
these sparsity constraints, RNMF effectively separates the clean data components from the
corrupted ones, resulting in more accurate factorization outcomes.

PNME: Probabilistic Non-negative Matrix Factorization (PNMF) employs variational
Bayesian inference to achieve deterministic convergence to the solution of NMF, moving
away from dependence on random sampling.

ONME: Orthogonal Non-negative Matrix Factorization (ONMEF) is based on the prin-
ciples of standard NMF. Ref. [42] introduced ONMF models that incorporate orthogonality
constraints on both the basis and coefficient matrices.

GNME: Graph Regularized Non-negative Matrix Factorization (GNMF) constructs the
local geometric structure of the original data space and incorporates it into the classic NMF
algorithm as constraints, effectively utilizing it as a regularization term.

LNMFS: The Low-Rank NMF on the Stiefel Manifold (LNMFS) algorithm, as proposed
by [7], utilizes the low-rank structure of intrinsic data and represents it in a Frobenius norm
format using latent factors. Additionally, it maintains orthogonality among the factors by
ensuring that the basis matrix lies on a Stiefel manifold. Furthermore, it incorporates a
graph smoothness constraint on the coefficient matrix.

4.3. Parameter Analysis

In this analysis, specific parameters were evaluated to understand their influence on
the algorithm’s performance. Reference [7] demonstrated that an increase in embedding
dimension does not necessarily lead to improved clustering performance. Instead, opti-
mal or nearly optimal clustering performance is typically achieved when the embedding
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dimension aligns with the number of clusters. This observation can be attributed to the
fact that matching the embedding dimension with the rank of the intrinsic data allows for
the maximal utilization of the low-rank regularization term. Therefore, for each dataset,
the dimension of the matrix decomposition’s embedding was set as equal to the number
of clusters, ensuring that each dimension of the latent feature space corresponds to a
distinct cluster.

Three parameters in the algorithm under evaluation need to be adjusted. First, the
square root of the number of samples per cluster is used to define the parameter 'k’, which
is employed to calculate the graph of k-nearest neighbors within the k-NN algorithm. To
create a binary adjacency matrix that captures the relationships between data items based
on their shared nearest neighbors, 0/1 neighbor graphs are constructed. The adjacency
matrix is denoted as W, where each element wj; indicates the connection strength between
the ith and jth data points.

Given that the SGRIT algorithm and LNMFS operate under the assumption that the
basis vectors are orthogonal during the decomposition procedure, a specific initialization
strategy is employed. Specifically, the V matrix is initialized by generating a random
orthogonal matrix, while the U matrix is initialized using random values. This approach
allows for flexibility in the initial configuration of U while still adhering to the requirements
of the optimization process’s requirements. The orthogonal initialization of V and the
randomized initialization of U collectively enhance the algorithm’s capacity to converge
towards a solution that conforms to the orthogonal basis vector assumption and effectively
approximates the original data matrix.

The optimal values for the coefficients ‘o’ and ‘p’, which, respectively, represent
the weights of the geometric structure and sparsity terms in the objective function, were
identified through experimentation on diverse datasets. Values ranging from 10~ to 10*°

were examined in intervals of 1092

. The average purity attained for different ‘«” and ‘3’
values across various datasets was computed, and the maximum of these averages was
deemed the suitable ‘o’ and ‘" for the algorithm. For the LNMFS algorithm, the optimal
values were found to be a = 1 and B = 10%°, while, for the SGRiT algorithm, the values
were « = 0.1 and B = 10*>°. a and B are parameters that influence the smoothness and
sparsity of the data in relation to the value derived from the Frobenius norm. Our results
indicate that, although these parameters exhibit some dependence on the data, they can be
assigned values that produce acceptable outputs across all datasets. All datasets have been
normalized by dividing by the maximum of each column so that different features have the

same weight in the evaluation algorithms.

4.4. Evaluation Metrics

To evaluate the performance of the SGRiT algorithm in comparison to the other
selected algorithms, four key assessment criteria are utilized: Purity, Normalized Mutual
Information (NMI), Rand Index, and algorithm execution time.

Purity: Purity is a straightforward and transparent evaluation metric, especially in the
context of unsupervised machine learning. It involves assigning each cluster to the class
that is most prevalent within that cluster. The accuracy of this assignment is calculated
by dividing the number of correctly assigned objects by the total number of objects in the
dataset. High purity values indicate effective clustering, with perfect clustering achieving
a purity of 1, while poor clustering results in purity values close to 0. However, it is
important to note that high purity can be easily achieved when the number of clusters is
large; therefore, purity alone may not be the best metric for balancing clustering quality
against the number of clusters.
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The purity of a clustering result is calculated using the following equation:
1k
purity = NZ;maxj |CiNL|
1=

where:

N is the total number of data points.

K is the number of clusters in the clustering result.

Cj is the set of data points in cluster i.

L is the set of data points in class j according to the ground-truth labels.

The purity is calculated by summing over each cluster i and finding the maximum
overlap between that cluster and any class j based on ground-truth labels. The result is
normalized by dividing by the total number of data points N.

Normalized Mutual Information (NMI): NMI allows us to strike a balance between
clustering quality and the number of clusters, as it is independent of the cluster count. It
can be information-theoretically interpreted and quantifies the average mutual information
between each pair of clusters and classes, while also considering the normalization factors
to make it a value between 0 and 1.

The formula for NMl is as follows:

I(CL)

NMl = ———
FI(C).H(L)

where

I(C; L) is the mutual information between the clustering C and the reference labels L.

H(C) is the entropy of the clustering C.

H(L) is the entropy of the reference labels L.

Rand Index (RI): Rand Index (RI) is a metric used to measure the similarity between
two data clustering. It takes into account both false positive (FP) and false negative (FN)
decisions during clustering evaluation. It measures the percentage of decisions that are
correct (true positives + true negatives) out of the total decisions. It provides a value
between 0 and 1, where higher values indicate greater similarity between the clustering.

B TP + TN
~ TP+ FP+EN+TN

These evaluation criteria collectively provide a comprehensive understanding of
the performance of the SGRiT algorithm compared to other algorithms. In such cases,
optimizing for accuracy alone may not provide a clear picture of model performance, as a
classifier can achieve high accuracy by simply predicting the majority class for all instances.

4.5. Clustering Results Analysis

To evaluate the clustering results of NMF, SNMF, RNMF, PNMF, ONMF, GNMF,
LNMEFS, and the SGRIT algorithm, the five previously mentioned evaluation criteria have
been employed. The implementations of NMF, SNMF, RNMF, PNMF, and ONMF are
sourced from NMF library packages https://github.com/hiroyuki-kasai/NMFLibrary
(accessed on 10 March 2025), while the code for LNMFS and the SGRIT algorithm is
developed within the Python environment. To ensure reliable results, each algorithm
is executed ten times, and the average value of the criteria, along with their standard
deviation, is computed. Instances where an algorithm fails to produce clustering results
are indicated by NA.

The results presented in Table 2 clearly demonstrate that the SGRiT algorithm exhibits
the highest purity across most datasets when compared to various other algorithms. With
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the exception of the Ecoli dataset, which is ranked third, the SGRiT method consistently se-
cures the top position in all other instances. Ecoli is a relatively simple dataset characterized
by low dimensionality, a limited number of samples, and five classes. This simplicity makes
the dataset more amenable to less complex approaches, while the SGRiT method excels on
more complex datasets that feature higher dimensionality and a greater number of classes.
For instance, as illustrated in the results, the SGRiT approach significantly outperforms
other methods on high-dimensional datasets such as Yale, Coil24, and ORL. A similar trend
is observed in larger datasets with more instances and classes, including Isolet, CNAE, and
USPS. Notably, in the case of the Pendigit dataset, the performance difference between
SGRiT and the next-best algorithm reaches approximately 0.11. This indicates that the
SGRIiT algorithm achieves superior clustering performance in terms of the purity metric
across a variety of datasets.

Table 2. Comparison of NMF clustering algorithms using purity criterion.

Dataset NMF SNMF RNMF PNMF ONMF GNMF LNMFS SGRIiT
Breast 0.9487 0.9652 0.9387 0.9223 0.9580 0.9622 0.966325 0.972329
+0.0163 +0.0017 £0.0296 £0.0606 £0.0053 £0.00092 £0.00 40.00138

Pendieit 0.7544 0.6878 0.6990 0.7071 0.6853 0.6688 0.825996 0.931343
& £0.0922 +0.0861 +0.0967 +0.0580 +0.0859 +0.1082 +0.00 40.00091
Yale 0.4206 0.3764 0.4285 0.3206 0.4564 0.3970 0.47151 0.491516
+0.0373 +0.0163 +0.0259 +0.0288 +0.0406 +0.0261  £0.019601  £0.02072

Oobtdicit 0.7192 0.7010 0.7164 0.5041 0.7082 0.8177 0.81173 0.851761
pris £0.0376 £0.0260 £0.0268 +0.0597 £0.0290 +0.0317  £0.003058  40.04277
0il20 0.6506 0.6551 0.6542 0.4433 0.6445 0.6478 0.728125 0.767049
+0.0354 +0.0338 +0.0294 +0.0212 +0.0307 +0.0365  +0.018930 40.021013

ORL 0.6603 0.3912 0.4172 0.2393 0.6647 0.7215 0.77012 0.79825
+0.0337 +0.0185 +0.0085 £0.0150 £0.0321 +0.0349 +0.01558  40.01210

Ecoli 0.7803 0.7653 0.7659 0.5304 0.7888 0.7920 0.76514 0.78547
£0.0270 £0.0305 +0.0316 +0.0334 £0.0128 40.0129 £0.00183  +0.04113

Isolet 0.5817 0.2673 0.5695 0.1203 0.5069 0.4858 0.58994 0.59396
£0.0246 £0.0059 +0.0167 +0.0064 £0.0203 +0.0177 +0.01048  40.00916

USPS 0.6867 0.5994 0.6661 0.5433 0.6389 0.6953 0.72768 0.76886
+0.0247 +0.0266 +0.0228 +0.0266 +0.0237 +0.0511 £0.00029  40.03543

0.4951 0.3282 0.4575 0.5336 0.92324 0.97778

CNAE £0.0310 £0.0440 NA NA £0.0365 £0.0390 +0.03028  +0.03493

The standard deviations (SDs) of the experiments for the SGRiT approach are relatively
low, indicating a high probability of convergence. In contrast to the mean performance,
which was significantly better on more complex datasets, the SD is lower (i.e., nearly zero)
for simpler datasets such as Breat and Pendigit. This observation suggests that the approach
is both robust and stable; however, its stability diminishes as the complexity of the data
increases. The NMI criterion quantifies the amount of information shared between two
clustering results while accounting for random chance agreement. A higher NMI value
indicates that the clusters produced by the algorithm correspond more closely with the
true underlying structure or ground truth. The results of the tests concerning the NMI
criterion, as presented in Table 3, demonstrate the superiority of the SGRiT algorithm across
all selected datasets.
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Table 3. Comparison of NMF clustering algorithms using NMI criterion.

Dataset NMF SNMF RNMF PNMF ONMF GNMF LNMFS SGRIiT
Breast 0.7010 0.7695 0.6693 0.6335 0.7374 0.7563 0.77644 0.809281
+0.0578 +0.0084 +0.1014 +0.1773 +0.0241 £0.0043 +0 40.00783

Pendigit 0.5100 0.4877 0.4832 0.4194 0.4778 0.4984 0.57205 0.764918
& +0.0763 +0.0647 £0.0600 +0.0442 +0.0680 +0.0870 +0 +0.00386

ale 0.4706 0.4584 0.4726 0.3693 0.5349 0.4521 0.522265 0.535772
y £0.0372 £0.0192 £0.0199 £0.0243 £0.0343 +0.0164 +0.01462  +0.01564
optdigit 0.6410 0.6298 0.6484 0.4312 0.6442 0.8450 0.780463 0.861650
ptcig +0.0247 +0.0204 40.0181 40.0403 +0.0197 +0.0138 +0.00173  +0.02463
oil20 0.7407 0.7268 0.7447 0.5280 0.7547 0.7895 0.800294 0.837761
£0.0220 +0.0219 +0.0112 +0.0144 +0.0103 +0.0157 +0.01080  +£0.01058

ORL 0.8185 0.6070 0.6288 0.4783 0.8241 0.8514 0.87994 0.90363
+0.0146 +0.0132 £0.0053 +0.0133 +0.0153 +0.0173 £0.00715 £0.00552

Ecoli 0.5636 0.5811 0.5534 0.1442 0.6103 0.6026 0.53857 0.62357
+0.0377 +0.0347 +0.0544 +0.0464 +0.0176 £0.0233 £0.00045 +0.0544

Isolet 0.6941 0.3866 0.6874 0.1743 0.6356 0.6403 0.72796 0.73085
£0.0179 £0.0056 £0.0105 £0.0160 +0.0143 +0.0132 £0.00567 £0.00832

USPS 0.5908 0.4919 0.5805 0.4593 0.5259 0.7039 0.64093 0.74877
£0.0151 +0.0176 £0.0125 +0.0251 £0.0261 +0.0258 £0.00021 £0.02032

CNAE 0.4466 0.2508 } _ 0.4146 0.5498 0.88802 0.97892
+0.0226 +0.0368 £0.0332 +0.0287 £0.01470 +0.01862

The observations presented in Table 2 are reiterated here, with the notable exception
that the approach has excelled across all datasets. Table 2 indicates that SGRiT consistently
outperforms other algorithms, achieving the highest NMI scores across all datasets, such
as 0.809281 for the Breast dataset and 0.97892 for CNAE. In contrast, PNMF generally
exhibits the poorest performance, with significantly low scores. Most algorithms, including
GNMF and LNMFS, demonstrate competitive results, with GNMF particularly excelling
on datasets such as Optdigit (0.8450) and ORL (0.8514). Overall, SGRiT showcases superior
clustering accuracy and stability, as evidenced by its high NMI scores and relatively low
standard deviations.

As observed, the margin of performance improvement based on the NMI criterion
is notably higher in this context. For instance, on the Pendigit dataset, the improvement
margin is 0.19; on the Ecoli and CANE datasets, the NMI improves by 0.09; on the USPS
dataset, a 0.1 improvement is recorded. Referring to Table 1, both CANE and USPS are
classified as complex datasets, and this performance enhancement further underscores the
effectiveness of the SGRiT approach. The Rand Index (RI), a metric used to evaluate the
similarity between two clustering or partitioning results, quantifies the agreement between
the clustering assignments of elements within a dataset. It takes into account both pairs
of elements that are correctly grouped together and pairs that are accurately placed in
separate clusters.

As shown in Table 4, with the exception of the Isolet dataset, where the SGRiT algo-
rithm ranks lower (sixth place), the algorithm consistently achieves either first or second
place in the remaining cases. Notably, SGRiT attains the highest Rand Index scores, such
as 0.99123 for CNAE and 0.98473 for ORL, indicating superior clustering accuracy. In
contrast, PNMF generally performs the worst, with particularly low scores of 0.6661 for
Ecoli and 0.8630 for breast cancer. Most algorithms, including GNMF and LNMFS, yield
competitive results, with GNMF performing exceptionally well on datasets like Optdigit
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(0.9498) and ORL (0.9784). Overall, SGRiT demonstrates the best performance, with high
Rand Index values and relatively low standard deviations, underscoring its robustness
and effectiveness. This performance may be attributed to the presence of negative data in
the dataset. To align with the principles of the NMF algorithm, the SGRiT algorithm adds
the minimum value of the data to all entries, ensuring that the resulting matrix is positive
and suitable for NMF implementation. This observation suggests that, for the majority of
datasets, the proposed clustering algorithm exhibits satisfactory performance in terms of
the Rand Index criterion. Additionally, the standard deviation of the resulting Rand Index
reflects the stability and robustness of the approach across different learning subsets.

Table 4. Comparison of NMF clustering algorithms using Rand Index criterion.

Dataset NMF SNMF RNMF PNMF ONMF GNMF LNMFS SGRIiT
breastw 0.9030 0.9326 0.8862 0.8630 0.9194 0.9272 0.93482 0.946114
£0.0279 £0.0031 £0.0503 £0.0953 £0.0098 £0.0017 +0.0 40.00261

endieit 0.7433 0.7012 0.7043 0.7289 0.7049 0.6991 0.80197 0.91478
p & +0.0673 +0.0607 +0.0679 +0.0289 +0.0683 +0.0796 +0.0 40.00119
ale 0.8970 0.8837 0.9003 0.8799 0.9006 0.8953 0.902683 0.902687

y £0.0105 +0.0079 +0.0035 +0.0085 +0.0117 +0.0032 +0.00542  40.00583
ontdieit 0.9154 0.9137 0.9162 0.8692 0.9144 0.9498 0.9455 0.955102
ptaig £0.0089 £0.0083 £0.0063 £0.0095 £0.0074 £0.0080 +0.00044  +0.01102
coil20 0.9526 0.9503 0.9524 0.9201 0.9520 0.9499 0.963807 0.960247
£0.0049 £0.0044 +0.0021 +0.0097 +0.0024 +0.0076 40.00302  +0.00521

ORL 0.9752 0.9599 0.9609 0.9522 0.9768 0.9784 0.98293 0.98473
£0.0032 +0.0016 £0.007 +0.0016 +0.0024 £0.0041 +0.00122  +0.00146

Ecoli 0.8140 0.8131 0.8070 0.6661 0.8168 0.8309 0.7937 0.84265
£0.0322 £0.0289 +0.0318 £0.0158 £0.0251 £0.0340 £0.00056  +0.04616

Isolet 0.9576 0.9324 0.9565 0.9286 0.9511 0.9454 0.95985 0.94361
£0.0026 £0.0010 +0.0021 +0.0003 £0.0021 £0.0041 £0.00150  £0.00233

USPS 0.9026 0.8836 0.9001 0.8754 0.8892 0.8960 0.91500 0.92104
£0.0064 +0.0064 £0.0046 +0.0069 £0.0075 +0.0177 £0.00001  +0.00985

CNAE 0.7684 0.7550 } ; 0.7653 0.7911 0.96996 0.99123
+0.0479 +0.0366 £0.0330 +0.0153 +0.00766  +0.01106

Time complexity analysis in NMF is crucial, as the algorithms can be computationally
intensive, particularly when handling large datasets. Analyzing time complexity aids in
selecting or designing algorithms that can efficiently factorize matrices, thereby conserving
computational resources. Furthermore, understanding time complexity enables researchers
and practitioners to evaluate the scalability of NMF algorithms, which is essential when
working with large datasets or high-dimensional matrices. Therefore, a run-time analysis
is performed and reported in this section. Experiments involving SGRiT and LNMFS
algorithms were conducted using PyCharm version 2021.3.1 with Python version 3.11. For
the other methods, MATLAB R2015a was employed. The experiments were carried out on
a server equipped with an Intel Xeon E7530 processor operating at 1.87 GHz (56 proces-
sors) and 16 GB of RAM. To accurately measure the algorithm’s runtime, it was executed
10 times, and the average execution time for each algorithm was recorded in the table. As
seen in Table 5, the proposed algorithm takes a lot of time to transfer the data from the main
space to a subspace with smaller dimensions; this problem causes a significant increase in
the execution time of this algorithm compared to other algorithms, as in the practical test
of all the data.
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Table 5. Comparison of NMF clustering algorithms based on average runtime (seconds).

Dataset NMF SNMF RNMF PNMF ONMF GNMF LNMFS SGRIiT
Breast 0.0616 0.3155 0.0650 1.1529 0.0766 0.0519 0.286093 3.267077
Pendigit 0.3019 0.3842 0.4104 0.6889 0.3282 0.0859 0.286484 3.471461
Yale 1.3183 1.4770 2.2548 1.0631 1.2387 28.9914 0.466393 11.74773
Optdigit 2.2166 6.4239 4.3264 742212 2.3242 4.5397 2.878699 175.2087
coil20 5.8945 10.3548 12.4063 11.2105 6.1838 93.4495 6.102626 1013.291
ORL 16.7005 27.5007 32.1867 19.1119 20.3024 76.4009 2.476567 164.5794
Ecoli 0.2872 0.4023 0.3409 0.3219 0.1921 0.1417 0.323091 3.596105
Isolet 17.4518 68.4546 32.3020 154.4711 17.5103 29.9876 6.889409 564.1962
USPS 9.3402 50.6754 19.7059 234.0410 9.2002 10.8237 6.508134 281.3154
CNAE 3.9827 6.4396 - - 4.1527 42311 0.636361 9.70614

The experimental results clearly demonstrate that SGRiT consistently outperforms
seven representative NMF-based algorithms; however, it is less efficient in terms of execu-
tion time for clustering tasks across a diverse range of real-world datasets. While SGRiT
may exhibit longer execution times in certain scenarios, the additional computational cost
is warranted by our primary objective of enhancing clustering performance. For applica-
tions where accuracy is prioritized over speed, the SGRiT algorithm focuses on achieving
superior feature extraction and clustering quality. Moreover, NMF can be executed offline,
mitigating the impact of prolonged execution times. Additionally, optimizations such as
parallelization and approximation can be implemented to reduce computational costs when
runtime efficiency is critical.

5. Conclusions

In this article, a new method for clustering using Non-negative Matrix Factorization is
presented. This method transforms the primary data into a lower-dimensional subspace,
which maintains orthogonality and is referred to as the Stiefel manifold space, utilizing a
data transformation algorithm. To achieve this, the Riemannian trust region optimization
algorithm is employed. The reduced-dimensional data provide clustering algorithms
with enhanced insights into the hidden geometric structure of the data and its manifold.
Experiments conducted on ten different datasets demonstrate that the proposed SGRiT
algorithm outperforms traditional NMF-based algorithms in clustering performance in
most cases. Furthermore, the application of this algorithm in the field of co-clustering can
facilitate a more effective extraction of the structure and manifold of features, warranting
further exploration in future research. Additionally, to enhance reliability, strategies to
mitigate noise and outliers should also be addressed.
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