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Integrating Automated Electrochemistry and
High-Throughput Characterization with Machine Learning
to Explore Si—Ge—Sn Thin-Film Lithium Battery Anodes

Alexey Sanin,* Jackson K. Flowers, Tobias H. Piotrowiak, Frederic Felsen, Leon Merker,
Alfred Ludwig, Dominic Bresser, and Helge Soren Stein*

High-performance batteries need accelerated discovery and optimization of
new anode materials. Herein, we explore the Si—Ge—Sn ternary alloy system
as a candidate fast-charging anode materials system by utilizing a scanning
droplet cell (SDC) as an autonomous electrochemical characterization tool
with the goal of subsequent upscaling. As the SDC is performing experiments
sequentially, an exploration of the entire ternary space is unfeasible due to time
constraints. Thus, closed-loop optimization, guided by real-time data analysis
and sequential learning algorithms, is utilized to direct experiments. The

lead material identified is scaled up to a coin cell to validate the findings from
the autonomous millimeter-scale thin-film electrochemical experimentation.
Explainable machine learning (ML) models incorporating data from
high-throughput Raman spectroscopy and X-ray diffraction (XRD) are used to
elucidate the effect of short and long-range ordering on material performance.

storage systems.!?] Novel chemistries
and processing advancements in bat-
teries are essential for electric vehicles
and portable devices, as well as for
buffering electrical grid demand and
supply.’) However, significant improve-
ments in battery technology are required
to meet the growing requirements for
higher energy densities and faster charg-
ing times.[*]

High-performance, fast-charging an-
odes are at the forefront of advancements
in battery technology, playing a critical
role in achieving the high-power perfor-
mance needed to meet the growing en-
ergy demands of modern applications.[*]

1. Introduction

The electrification of transportation and the increasing demand
for digital technologies necessitate a transformation in energy

Among potential anode materials for Li-
storage, silicon (Si) stands out due to
its exceptionally high theoretical capacity of up to 3578 mAh g~!
at room temperature,[s] almost ten times higher than for con-
ventional graphite anodes. Pure Si still has major disadvantages,
such as an extreme volume expansion of 390%!°! and overall slow
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kinetics. Besides tailoring the nano- and microstructure of the
materials, tuning the chemical composition to improve kinet-
ics is an alternative route to improve the electrochemical perfor-
mance of Si-based anodes.”#] For this study, the Si—Ge—Sn alloy
was chosen as a model system due to its group IV elements ex-
hibiting similar properties and being known to alloy with Li.°!
While pure germanium (Ge) and tin (Sn) show lower specific ca-
pacities (up to 1624 and 993 mAh g™'), mixing these elements
may enhance the performance of anodes, as volume changes for
Ge and Sn are smaller (up to ~272 and 260%),°! the diffusivity
of Li in Ge and Sn at room temperature is a few orders of magni-
tudes higher than in Si (%1072 and 10°-10"7 vs 10~ cm? 57!,
respectively).'12] Ge and Sn also provide higher electronic con-
ductivity (10° and 10°-107 vs 103 S m™! for Si)[1>13] and, there-
fore, support operation at higher dis-/charge rates,!'% providing
not only high energy but also higher power densities.

Discovering and developing new materials for batteries is
time-intensive, and conventional battery cycling may take several
weeks to months. Alternative inexpensive methods are needed to
focus on electrochemical activity during the initial cycles when
materials typically exhibit a performance close to theoretical val-
ues. They may also provide reliable proxies for long-term perfor-
mance, serving as decision gates for further processing optimiza-
tion. This approach enables faster evaluation of battery electrode
electrochemical behavior within a shorter timeframe. The scan-
ning droplet cell (SDC) is a miniaturized electrochemical cell
designed for micro- and millimeter-scale electrochemical char-
acterization, enabling rapid, automated, localized analysis./'*1]
It is particularly well-suited for materials library characteriza-
tion with compositional gradients to systematically study the
effects of chemical variation.['®18] The three-electrode cell can
separate contributions of the material of interest from those of
the counter-electrode, simplifying comparative analysis. Full au-
tomation of the experimental process has been shown to re-
duce errors and increase reproducibility, leading to more reli-
able data.['®!°] Coupling autonomous experimentation with ac-
tive learning (AL) algorithms for the decision-making of the
next experiments could accelerate the discovery pace for explo-
ration and optimization tasks.?*?!l Although an infrastructural
framework for the SDC autonomous experimental orchestra-
tion using AL algorithms has been demonstrated,?!! it has not
been adapted and demonstrated for new battery materials ex-
ploration. Moreover, the question remains whether the insights
gained at the millimeter-scale through SDC testing can be suc-
cessfully transferred to larger scales, ultimately advancing the
technology readiness level (TRL) and paving the way for eventual
commercialization.

In this context, building efficient workflows — sequences
of interconnected and potentially accelerated research tasks or
processes(?2l — is essential for accelerating the discovery and op-
timization of energy storage materials over different TRLs. These
workflows can be designed as a part of self-driving laboratories,
which focus on autonomous, real-time feedback-driven experi-
mentation, and materials acceleration platforms,2>-?’] broader
collaborative infrastructures that integrate diverse methodolo-
gies. They can combine autonomous experimentation, compu-
tational tools, data analysis tools, quality control, and proper data
management to speed up materials discovery with minimal hu-
man interaction within a single laboratory and at interlabora-
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tory levels. Using high-throughput (HT) experimentation in the
experimental workflows enables the rapid exploration of mul-
tidimensional compositional and parameter spaces, facilitating
the identification of high-performance materials and generating
extensive datasets for ML-driven insights.[”) While HT meth-
ods are effective for broad exploration and unraveling trends
and correlations, they are resource-intensive and less efficient
for targeted optimization. In contrast, closed-loop data-driven au-
tonomous experimentation succeeds in optimization tasks, as it
iteratively uses feedback from experimental results to effectively
refine specific material properties.[?”l The trade-off between these
two methods can be addressed by combining the strengths of
both approaches in a single experimental workflow for different
tasks: using more exploitative closed-loop experimentation for
optimizing the target parameter while applying more explorative
HT methods to understand the physicochemical relationships.
Herein, we present the implementation of the comprehen-
sive experimental workflow for synthesis and data-driven closed-
loop autonomous electrochemical characterization to find high-
capacity Si-based materials suitable for high-energy and fast-
charging applications (Figure 1). The findings were upscaled for
approach verification. A systematic high-throughput investiga-
tion of the chemical, vibrational, and structural properties was
performed to find correlations and causations between different
properties and explain the differences in materials performance
using ML algorithms. This combined approach aims to signifi-
cantly accelerate the development of next-generation anode ma-
terials suitable for high-performance, fast-charging batteries.

2. Results and Discussion

2.1. Materials Library Synthesis

To demonstrate and validate the experimental approach, achiev-
ing a broad compositional distribution within the materials li-
brary is essential for effective system exploration. Given that Sn
has a higher deposition rate,*%) low-power radio-frequency (RF)
sputtering was used for Sn, while high-power direct current (DC)
sputtering was applied for Si. A high working gas pressure was
chosen for the deposition to enhance compositional variation
across the materials library. This approach reduces the mean free
path of sputtered atoms due to collisions with Ar atoms, leading
to higher deposition yields near the sputter target and lower rates
in distant regions. As a result, the synthesized materials libraries
span compositional ranges of ~#50% for all elements (Si,Ge Sn,,
x = 0.15-0.63, y = 0.15-0.68, z = 0.10-0.64) and thicknesses be-
tween 90-150 nm (Figure S3c, Supporting Information). To en-
sure that observed variations in electrochemical behavior were
primarily due to compositional differences rather than film thick-
ness, we maintained a uniform thickness range across the ma-
terials library. Thinner films in the 100-nm range help reduce
diffusion limitations and mechanical stresses that can arise in
thicker films,[3132] allowing for a more accurate assessment of
the intrinsic material properties. This approach minimizes vari-
ations in thickness as a variable in the design space to simplify
the analysis of near-intrinsic composition—structure—property re-
lationships. Additionally, the thin-film configuration could pro-
mote the investigation of the intrinsic behavior of the active ma-
terial, eliminating the effects of binders and conductive additives.
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Figure 1. The present experimental workflow consists of a synthesis unit (combinatorial magnetron sputtering); units for characterization of elemen-
tal composition (high-throughput micro-X-ray fluorescence (u-XRF)), local vibrational properties (high-throughput Raman), crystal structure (high-
throughput XRD), surface chemical analysis (X-ray photoelectron spectroscopy (XPS)), morphology (scanning electron microscopy (SEM)), surface
area measurements (optical microscopy); a closed-loop optimization unit (high-throughput SDC coupled with AL algorithms); upscaling unit (coin cell
assembly); and an explanation unit (explainable ML models) (a), more details are available in Figure S1 (Supporting Information). Materials of interest
undergo 3 dis-/charge cycles (chronopotentiometry (CP)), followed by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS)
measurements. Various information is extracted (charge and discharge specific capacity at each cycle), average voltage, energy density, Coulombic, en-
ergy, and voltage efficiencies (CE, EE, VE); additionally, for EIS, the spectra are fitted, and solution, charge transfer and solid electrolyte interphase (SEI)
resistances are calculated (Figure S2, Supporting Information). The next measurement point is selected based on the acquisition function (b).

2.2. Electrochemical Measurements Using SDC
2.2.1. Preliminary Tests

Before initiating the closed-loop experimentation, it was neces-
sary to verify the reproducibility of the SDC measurements and
select an appropriate charge/discharge procedure. In this study,
only three cycles of CP were applied per measurement spot.
This approach was chosen because significant changes in elec-
trochemical performance are expected after the first cycle due to
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the SEI formation. The differences between the second and third
cycles provide insight into the degradation trends of the electrode
materials. Additionally, since SDC is a sequential technique, min-
imizing the total measurement time was essential to enhance ex-
ploration efficiency.

We compared the performance of a non-optimized alloy cy-
cled with a formation procedure (lithiation at C/5, delithiation
at 1C) to that of cycling without formation (both lithiation and
delithiation at 1C). While the reversible capacity after the third
cycle was up to 10% higher when formation cycles were applied
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Energy density of Li-ion cells with Si-Ge-Sn anode
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Figure 2. Overview results from closed-loop sequential electrochemical experimentation: ternary plot of materials library, where the marker position
represents the chemical composition from u-XRF data, inner marker colors indicate the specific capacity based on experimentation and Gaussian Process
(GP) regressor prediction, outer (edge) marker colors denote the SDC experiment (measurement point) number (a), measured reversible specific
capacities for first (red), second (blue) and third (green) cycles, with dashed lines indicating the maximal figure of merit value over the experiment

number (b); calculated gravimetric energy density using the “semi-theoretica

|”

full cell concept assuming LNMO is used as a cathode material in

comparison with graphite anode (c); Coulombic (red), voltage (blue) and energy (green) efficiencies using the “semi-theoretical” full cell concept after
third cycle for all SDC experiments. The blue shaded area indicates the consistent voltage efficiencies over the iteration number, while the red and
green shaded areas represent declining regions for Coulombic and energy efficiencies, respectively (d). Asterisks indicate that the specific capacities and
gravimetric energy densities were calculated based on the assumption of a constant reaction area throughout the experiments (see Research limitation

section).

(Figure S4a,b, Supporting Information), we opted to proceed
without formation cycles in subsequent tests to increase exper-
iment speed. We acknowledge that formation cycles can improve
electrode performance, but for the purposes of rapid exploration
with the SDC, the benefits were outweighed by the additional
time required. Additionally, the comparative low-frequency re-
sistances observed in EIS (Figure S4d, Supporting Information)
suggest that SEI formation is similar at both C/5 and 1C rates.

Cycling at higher C rates was conducted to evaluate the high-
rate performance of the alloys. The decrease in specific capacity
with increasing C rate can be attributed to larger overpotentials
and diffusion limitations. While capacities at 0.5 C and 1 C rates
remained stable and close to the theoretical values over the cy-
cle number, degradation effects became apparent starting from
2C, likely indicating diffusion limitation or material degradation
(Figure S5a, Supporting Information). Balancing accuracy, re-
producibility, and experiment time, we selected a C rate of 1 C
for further tests and performed multiple measurements on the
same composition to ensure results reproducibility. The uncer-
tainty in specific capacity across all cycles remained within 2—
3% (Figure S6a, Supporting Information) despite variations in
reaction area across different spots (Figure S6b, Supporting In-
formation). This suggests that the primary contribution to re-
versible capacity originates from the area directly under the SDC
tip, allowing reliable comparisons between different spots and
compositions.

Adv. Energy Mater. 2025, 15, 2404961 2404961 (4 0f15)

2.2.2. Closed-Loop Experimentation

The closed-loop autonomous experimentation was performed to
efficiently explore the Si—Ge—Sn alloy compositions with the
highest specific capacity. This approach integrates autonomous
electrochemical measurements using the SDC with on-the-fly
data analysis and an AL algorithm to guide sequential decision-
making after each measurement point on the materials library
(Figure 1b). This work employs Bayesian optimization with the
Gaussian Process (GP) as a surrogate model in an AL algorithm.
GP was chosen for its straightforward uncertainty calculations
for unexplored areas and better performance in low-to-medium
dataset sizes and dimensionality spaces,?%! which aligns with the
requirements of the optimization task.

During the experimental procedure, the optimizer dynami-
cally guided the selection of upcoming measurement points from
the compositional space, as illustrated in Figure 2a. Starting from
an initial random point, the optimizer iteratively determined the
next point to be measured based on real-time feedback from the
electrochemical experiments after each completed iteration. In
the early iterations, the optimizer explored diverse regions of the
compositional space, directing measurements toward Ge-rich,
Sn-rich, and Si-rich edge regions. After only three iterations,
the measurement point with the highest theoretical capacity
was identified, demonstrating the optimizer’s ability to locate
the global maximum in systems with composition-dependent

© 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH

85US017 SUOWILLIOD 3A1IID) 3|edl|dde 8Ly Ag pausenoh a8 saolfe YO ‘SN 0 S3|nI 0 A%Iq1T8UIUO /8|1 UO (SUORIPUOD-PUR-SLLBIWI0D" AB | IM ARG 1 RU1IUO//SARY) SUORIPUOD PUe SWHB L 83U} 89S *[5202/2T/6T] Uo ARiqIT aulluo A8 |1M ‘T96K0F202 WUSR/Z00T OT/I0p/W00" A3 | 1M Al 1 Ul JUO"PeoURADe//SO1Y W1y papeojumoq ‘TT ‘5202 ‘0v89rTIT


http://www.advancedsciencenews.com
http://www.advenergymat.de

ADVANCED
SCIENCE NEWS

ADVANCED
ENERGY
MATERIALS

www.advancedsciencenews.com

theoretical capacities. The optimizer then gradually switched
from exploration to exploitation mode, as the iteration-dependent
hyperparameter of the acquisition function increasingly
weighted the predicted capacity over the uncertainty, focusing on
the high-capacity Si-Ge-rich region. After a total of 14 iterations,
the optimizer identified the material (Si, ;,Ge,5,Sn,,,) with the
highest measured specific capacity (Figure 2b).

The discrepancy between the samples with the highest theo-
retical and measured capacities could be likely attributed to high
uncertainties, particularly at the edges of the materials library
(Figure S3, Supporting Information), especially due to potential
differences between the materials library used for the SDC and
u-XRF measurements. Unlike previous studies that used offline
microscopy for area-dependent corrections, this was not possi-
ble in this autonomous experiment, as the SDC lacks an inte-
grated microscope. Still, post-experimental microscopy showed
consistency in reaction areas over all 30 measurement points
(Figure S7, Supporting Information). The excessive capacities
observed in the second and third cycles of the 26th experiment
are likely outliers because of a significant increase in capacity
after the first cycle by almost 20% (Figure 2b,c), significantly
exceeding theoretical capacities. This could result from a mis-
match between the XRF-measured and the actual mass loading,
as the measured spot was located near the edge of the materials
library.

SEM images indicated that feature sizes across the materials
library were generally below 100 nm (Figure S8, Supporting In-
formation). While smaller sizes are beneficial for minimizing ki-
netic limitations by enhancing Li* diffusion and mechanical sta-
bility, the variation in grain size was not considered a factor in
this study due to limited statistical data. SEM images indicate
thin films are dense, compact, and free of visible voids or discon-
tinuities. Consistent thickness trends from XRF measurements
(Figure S3c, Supporting Information) indicate minimal surface
variations.

The best-performing thin-film electrodes exhibited significant
improvement in specific capacities compared to a graphite an-
ode, which was used as an internal benchmark for relative capac-
ity trends rather than a direct performance evaluation, given the
differences in electrode design (Figure 2b). A “semi-theoretical”
full-cell approach!®* was used for calculating gravimetric energy
densities. These calculations were derived from half-cell mea-
surements with a Si—Ge—Sn anode and projected onto a hypo-
thetical full-cell configuration comprising of a Si—Ge—Sn anode
paired with a LiMn, ;Ni; sO, (LNMO) cathode operating at a volt-
age of 4.7 Vvs Li* /Li. The mass of the cathode active material was
adjusted to ensure capacity balance (1:1 ratio) with the anode. Cal-
culated energy densities were 30-35% higher than those of cells
with graphite anodes (Figure 2c). For the third cycle, voltage ef-
ficiencies (VE) remained consistent across all materials at 90—
91%, while Coulombic (CE) and energy efficiencies (EE) ranged
from 82-88% and 74-80%, respectively (Figure 2d). Lower ef-
ficiency values may be due to ongoing SEI formation, signifi-
cant volume changes, and charge-discharge hysteresis, which
are characteristic of alloy anode materials. The slight decline of
CE and EE values over the iteration number (Figure 2d) could
suggest a gradual deterioration of the SDC components over the
extended measurement time, as the sequential electrochemical
testing of 30 points on a single materials library took over 227

Adv. Energy Mater. 2025, 15, 2404961 2404961 (5 Of15)

www.advenergymat.de

out of a total of 231 h (98.5% of the total experimental time, as
shown in Figure S9, Supporting Information).

The differential capacity (dQ/dV) plots derived from the CP
measurements by the SDC provide valuable information into
the lithiation and delithiation processes for different composi-
tions, supported by literature from Si-, Ge-, and Sn-based an-
odes (Figure S10, Table S1, Supporting Information). Two dis-
tinct oxidation and reduction peaks were observed across all
cycles and compositions, suggesting a two-step electrochemi-
cal process.’**1 All peaks appeared broader and less distin-
guishable for Sn-rich alloys, reflecting compositional influence
on the electrochemical profiles.!'?%] In the first cycle, addi-
tional reduction peaks between 0.8-0.5 V could be attributed
to the SEI formation,?*3#] and a minor reduction peak at
~0.5-0.4 V is likely related to the lithiation of surface silicon
oxide.l33]

XPS analysis (Figure S11, Table S2, Supporting Informa-
tion) showed that the alloy surfaces were covered with a non-
stoichiometric oxide layer, with average oxidation states of Si**,
Ge?*, and Sn**, but signals from elemental Si°, Ge°, and Sn°
were detected as well.l“*3] Despite not being exposed to air
post-deposition, the oxidation occurred, likely due to trace oxy-
gen exposure during sputter chamber venting, inert transport
to the XPS, or inside the glovebox. This oxide layer may en-
hance capacity retention, as glassy oxide coatings are often used
to prevent material disintegration and fracture during volume
changes.[***] However, Si oxides irreversibly form lithium sil-
icate during lithiation,***”] while Ge and Sn oxides undergo a
partially reversible lithiation, forming lithium oxide and lithium
intermetallic compounds.[**#%] The irreversible high capacity loss
in high Si-content thin films, also observed previously for a Si—Sn
binary,*% could also depend on the thickness of the oxide layer>!]
and may explain the discrepancy between theoretical and mea-
sured reversible capacities.

2.3. Material Upscaling in the Coin Cell Format

Based on the closed-loop SDC discovery, the material exhibiting
the best specific capacity (Si, s, Ge, 3,51, 4) Was upscaled to coin
cell electrode size, which corresponds to a ~400-fold increase
in area and 233-fold increase in total capacity. Upscaling was
achieved by synthesizing a uniform thin film with the identified
best composition on Cu foil using a combinatorial sputtering ap-
proach. Three deposition steps were required to achieve a devia-
tion of less than 5 at. % per element from the target composition,
and six depositions were needed to reduce the deviation to less
than 1 at. % (Figure S12, Supporting Information). Assembled
coin cells were cycled at a 1 C rate, both with and without three
formation cycles at C/20. During the first formation cycle, the
SEI formation started ~1.2-0.8 V versus Li* /Li (Figure 3a; Figure
S1la, Supporting Information).®? In contrast, when formation
cycles were not applied, this process took place at ~0.5-0.4 V
(Figure 3b; Figure S11b, Supporting Information), likely due
to the overpotential caused by the energy-intensive SEI forma-
tion process and the initial nucleation of the alloy with Li occur-
ring without controlled conditions. Despite this difference, there
was no significant impact on long-term cycling performance be-
tween cells with and without formation cycles (Figure 3c). This
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Figure 3. Upscaling to a coin cell format and comparison with the SDC measurements for the optimized composition: dis-/charge profiles of
Sig 54Geg 325N 14//Li half-cell coin cells with 3 formation cycles at C/20, followed by galvanostatic cycling at 1 C rate (a), without formation, cycled
at 1 C rate (b), comparison of specific capacity change over the cycle number for coin cells with and without formation cycles (c), first three cycles of

Sip54Geg 32SNng 14 Using the SDC at 1 C rate without formation (d).

suggests that even at 1 C rate, the current densities are gener-
ally still low (~0.1-0.2 mA cm™2), as the thickness of the an-
odes is ~#100 nm. In both cases, Coulombic efficiencies reach
a maximum of ~98.7% after 5-7 cycles, followed by a contin-
uous decline. Additionally, the increasing overpotential in the
charge—discharge profiles over multiple cycles, particularly after
the 50th cycle (Figure 3a,b), indicates accelerated electrode degra-
dation, likely due to active material pulverization, loss of elec-
trical contact, and continuous SEI growth, due to large volume
changes during lithiation and delithiation.>*! While these poten-
tial degradation mechanisms are primarily intrinsic to the ma-
terial, the thin-film configuration may further exacerbate these
effects due to the absence of binders and conductive additives,
potentially leading to the loss of structural integrity and electrical
connectivity.

The performance of the optimized Si,;,Ge,s,Sn,, alloy an-
odes was compared to that of pure Si anodes with similar thick-
ness. Although the Si anodes initially exhibited higher specific
capacities, they degraded much more rapidly than the Si—Ge—Sn
anodes, consistent with previous reports comparing the cycle
life of pure Si anodes versus Si—Ge and Si—Sn anodes.[>*5%]
The cells with the Si anode reached an 80% state-of-health af-
ter 25-29 cycles, compared to 48-59 cycles for the alloy (Figure

Adv. Energy Mater. 2025, 15, 2404961 2404961 (6 0f15)

S14a, Supporting Information). Despite a rapid decay in semi-
theoretical energy density over cycling, the energy density re-
mained higher than the theoretical value for a semi-theoretical
cell with a graphite anode. This advantage was maintained for
55-59 cycles for the alloy, compared to 20-24 cycles for the Si
anode (Figure S15d, Supporting Information). These values are
typical for Si-based thin-film fast-charging applications (1C and
higher rates)>®! and demonstrate the advantage of the alloy ma-
terial — not only due to lower volume changes but also likely to
better mechanical properties, such as higher fracture resistance
or higher ductility.?”] Si anodes exhibit similar electrochemical
behavior with the voltage drop spike at the beginning of the first
lithiation profile and similar degradation behavior with Coulom-
bic efficiencies decrease after the fourth to fifth cycle (Figure
S14b, Supporting Information). dQ/dV plots for the coin cells
with a Si anode have two sharp reduction and oxidation peaks,
while for Si,,Ge,;,Sn, 4, the observed peaks are broader and
slightly shifted toward higher potentials. A similar behavior was
observed for anodes with increased Ge and Sn content using
the SDC (Figure S10b—d, Supporting Information). Nevertheless,
compared to highly optimized graphite anodes, the performance
of the Si—Ge—Sn anode requires further improvement, which
could be enhanced by using fluorinated additives,*® adjusting
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the cycling voltage window,® and implementing microstruc-
tural engineering.®)

The specific capacities of the coin cells were significantly lower
than those measured using the SDC, with only up to a five-
fold increase compared to graphite (Figure 3d). This discrep-
ancy could be due to the fixed amount of active material in
the coin cells, constrained by the electrode diameter, whereas
in the SDC, the reaction area is less defined, and contributions
from the outer SDC tip area are likely present.!'®] Compared to
the third cycle of the SDC experiment, the coin cells demon-
strated much higher Coulombic and energy efficiencies, with
similar voltage efficiencies (92-93%), suggesting that the varia-
tion arises from cell geometry rather than from the anode ma-
terial itself (Figure 2d; Figure S15a—c, Supporting Information).
Semi-theoretical energy densities were also ~30% higher than
those of cells with a graphite anode during the initial cycles, con-
sistent with the SDC results (Figure S15d, Supporting Informa-
tion). The semi-theoretical energy densities of the optimized al-
loy material for the third cycle were slightly higher in the coin
cells (565-595 Wh kg™!) compared to the SDC measurement
(562 Wh g!).

2.4. High-Throughput Characterization
2.4.1. Raman Spectroscopy Results

Raman spectroscopy performed on the whole materials library
(Figure S16a, Supporting Information) provided insights into the
vibrational modes present in the Si—Ge—Sn thin films. Raman
bands corresponding to Si-Si, Ge—-Ge, and Sn—Sn vibrations and
bands associated with Si—Ge, Si—Sn, and Ge—Sn bonds (Table
S3, Supporting Information) were identified based on Figure S17
(Supporting Information). Compared with previously reported
Raman analysis of binaries®*?] and ternaries,[®*°!] multiple un-
known Sn-based bands have been observed, some of which have
not been reported before, especially in the Raman shift range of
100-240 cm™!. Some of these bands can be related to the E—O
(E = Si, Ge, Sn) bands based on the oxide layer from XPS re-
sults (Figure S11, Supporting Information). Overlapping bands
(e.g., Ge—Ge disorder-activated model®?! at 280-285 cm~! and
Ge—Ge band at 290-295 cm™'; Si—Sn and Si—Ge modes!®! at
387-394 cm™') and lack of reference data complicate the high-
throughput analysis, making results less robust and reliable.

2.4.2. XRD Results

XRD profiles revealed broad reflections corresponding to the
diamond-type cubic solid-solution phase of Si—Ge—Sn and re-
flections associated with the tetragonal f-Sn phase (Figure S16b,
Supporting Information). No intermetallic compounds were ob-
served in this ternary system, which aligns with expectations
from the literature data.[*] The formation of a secondary f-Sn
phase is expected in this ternary system due to the extremely lim-
ited solubility of Sn in Sil® (<0.1 at.9) and Gel®! (<0.5 at.%)
at room temperature. However, the solubility of Sn in the syn-
thesized materials library is much higher (<55 at.%, Figure S18,
Supporting Information). For previously reported sputtered bina-
ries, no crystalline phase was found for <28 at.% of Sn in Si,[%!
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and <42 at.% in Ge.l” %8 This is not an unexpected result, as mag-
netron sputtering is a non-equilibrium synthesis technique.[*]

The qualitative interpretation of the XRD data is challenging
due to its low signal-to-noise ratio, low thin-film crystallinity,
and limited number of distinguishable reflections. The observed
(111) reflection shifts with varying compositions, indicating solid
solution behavior with a unit cell parameter variation of almost
10% (Figure S19, Supporting Information). This degree of struc-
tural change suggests that thin films are better described as
nanocrystalline rather than purely amorphous. As Si atoms are
smaller than Ge and especially Sn, it can be assumed that the
unit cell parameter is increasing by incorporating Ge and Sn
into the cubic phase, following empirical Vegard’s law. The ob-
served deviation between the theoretical and fitted unit cell pa-
rameters can be attributed to the high fit uncertainty and po-
tential peak shifts due to microstrain present in the thin film,
which could affect peak position and was not taken into account.
Using Scherrer’s equation, assuming no strain contribution to
peak broadening, the estimated crystallite sizes are in the range
of 1-4 nm for cubic Si—Ge—Sn and 5-10 nm for tetragonal -
Sn. These values correspond to the coherence length of the crys-
talline domains, indicating a nanocrystalline nature of the thin
films.

2.5. Data-Driven Analysis
2.5.1. Principal Component Analysis (PCA)

PCA can serve as a rapid method for cluster identification and
correlation detection by providing low-dimensional representa-
tions of multidimensional datasets ready for visual inspection,!”!
as well as a featurization method for ML modeling. The analysis
was conducted on raw background-subtracted Raman and XRD
single-domain datasets.

PCA captured smooth transitions in vibrational and structural
features correlated with chemical composition. PCA based solely
on Raman spectra (Figure 4a) revealed three classes correspond-
ing to Si-rich, Ge-rich, and Sn-rich compositions, with transition
in between. The three first principal components (PCs) capture
a substantial portion of the variance — 97.8% of the variance,
with individual contributions of 87.9, 7.6, and 2.3% for each PC,
respectively. The first PC (Figure 4c) does not exhibit any spe-
cific feature besides a peak at 280-290 cm™?, corresponding to
the Ge—Ge band, which helps to differentiate between Si-rich.
The second PC resembles the features from Sn-rich spectra at
100-150 cm™, as well as the peak at %260 cm™!, corresponding
to the Ge—Sn band. The third PC has some Ge-rich spectra fea-
tures (e.g., Ge—Ge and Si—Ge bands).

In contrast, PCA based on XRD patterns (Figure 4b) identi-
fied two main clusters: one corresponding to the cubic phase,
which shows a clear trend in the unit cell parameter change with
composition, and another associated with the presence of a sec-
ondary phase. This indicates a smooth property transition over
the broad compositional space, characteristic of solid-state solu-
tions, whereas some Sn-rich compositions exhibit distinct and
well-defined features. However, the three first PCs accounted for
merely 19.2% of the total variance (14.1, 3.6, and 1.5% for each
PC). The minimal variance the leading principal components

© 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH

85US017 SUOWILLIOD 3A1IID) 3|edl|dde 8Ly Ag pausenoh a8 saolfe YO ‘SN 0 S3|nI 0 A%Iq1T8UIUO /8|1 UO (SUORIPUOD-PUR-SLLBIWI0D" AB | IM ARG 1 RU1IUO//SARY) SUORIPUOD PUe SWHB L 83U} 89S *[5202/2T/6T] Uo ARiqIT aulluo A8 |1M ‘T96K0F202 WUSR/Z00T OT/I0p/W00" A3 | 1M Al 1 Ul JUO"PeoURADe//SO1Y W1y papeojumoq ‘TT ‘5202 ‘0v89rTIT


http://www.advancedsciencenews.com
http://www.advenergymat.de

ADVANCED
SCIENCE NEWS

ADVAN(Q,ED
ENERGY
MATERIALS

www.advancedsciencenews.com

a. PCA on Raman data C.

Intensity, a.u.

0.05

0.00

(% S’V €0d

Intensity, a.u.

-0.05

-0.10

www.advenergymat.de

Raman Principal Components

—— PC1(87.9%)
—— PC2(7.6 %)
—— PC3(2.3 %)

200 300 400 500 600 700
. -1
Raman shift, cm

XRD Principal Components

— PC1(14.1%)
— PC2(36%)
—— PC3(1.5%)

20 30 40 50 60 70 80
20,°

Figure 4. PCA analysis: 3D scores plot of 3 PCs from PCA based on Raman data (a): three clusters were qualitatively identified for Raman PCs, indicated
by red, green, and blue ellipses. 3D scores plot of 3 PCs from PCA based on XRD data (b): two clusters were qualitatively identified for XRD data, indicated
by red-green-blue and black ellipses. Percentages on the axes indicate explained variability for specific PC. The colors of the markers indicate the chemical
composition of each spot from the u-XRF: Si content corresponds to R-value, Ge — to G-value, Sn — to B-value of RGB color value. PCA loadings plots:

the first three PC for Raman data (c), for XRD data (d).

captured could indicate a low peak-to-noise ratio within the data
(Figure 4d).

2.5.2. Regression Models and Feature Importance Analysis

To explore the composition—structure—property relationships, ex-
plainable ML models were built, using chemical composition and
thin-film thickness derived from mass loadings (from u-XRF),
local vibrational properties (from Raman), and crystal structure
(from XRD) of the materials libraries as input features. The elec-
trochemical performance (from SDC experiments) served as a
target variable. A Random Forest (RF) regressor was employed,
given its robustness to noise and invariance to feature scaling.!”!!
To achieve explainability, feature importance analysis and SHAP
(Shapley additive explanations) were applied to the trained ML
models to identify how the individual features impacted the
predicted electrochemical performance and obtain insides into
the underlying physicochemical properties. These ML models
aim to predict specific capacity values while identifying critical
features contributing to performance. By linking these features
to desirable properties, the models could facilitate rapid capac-
ity estimation using non-destructive measurement techniques,
potentially reducing reliance on time-intensive electrochemical
measurements.

The multidomain ML model based on Raman and XRD raw
data achieved R? values of 0.869 + 0.012 for the train and 0.871
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for the test datasets (Figure 5a), indicating good predictive perfor-
mance and generalization. However, the model underperforms at
the extreme capacity values, likely due to the presence of outliers
in the high-capacity region and limited experimental data points
in the low-capacity region (Figure 5b). While excluding the com-
positional data from u-XRF reduced the model’s predictive power
(Table S4, Supporting Information), this model was selected for
detailed discussion to focus on structural and vibrational features
directly related to material properties. Using a lower dimensional
representation of the raw data — in the form of the fitted features
or PCs could slightly improve the performance of the multido-
main models: R? values for the test dataset are 0.882 and 0.895,
respectively.

Feature importance analysis (using SHAP and traditional
methods) of the ML model based on Raman and XRD raw data
revealed the specific regions in Raman and XRD data signifi-
cantly impacted the model’s prediction. In Raman spectra, re-
gions at 120-130 and 225-240 cm™! contributed the most to the
model’s output (Figure 5c; Figure S20a, Supporting Informa-
tion). The low Raman shift region negatively impacts the pre-
dicted capacity and could be attributed to Sn—Sn vibrations in
B-Snl”?l and Sn—O vibrations in tin oxides.[”>7#] The high Raman
shift region contributes positively to the capacity and is more
challenging to interpret due to the lack of literature data. XRD re-
flections related to the g-Sn phase (30.0°-32.0° and 43.0°—45.5°)
showed high importance and contributed negatively to the model
output (Figure 5d; Figure S20b, Supporting Information). The

© 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH

85US017 SUOWILLIOD 3A1IID) 3|edl|dde 8Ly Ag pausenoh a8 saolfe YO ‘SN 0 S3|nI 0 A%Iq1T8UIUO /8|1 UO (SUORIPUOD-PUR-SLLBIWI0D" AB | IM ARG 1 RU1IUO//SARY) SUORIPUOD PUe SWHB L 83U} 89S *[5202/2T/6T] Uo ARiqIT aulluo A8 |1M ‘T96K0F202 WUSR/Z00T OT/I0p/W00" A3 | 1M Al 1 Ul JUO"PeoURADe//SO1Y W1y papeojumoq ‘TT ‘5202 ‘0v89rTIT


http://www.advancedsciencenews.com
http://www.advenergymat.de

ADVANCED
SCIENCE NEWS

ADVANgED
ENERGY
MATERIALS

www.advancedsciencenews.com

www.advenergymat.de

a C
" M r 1 (Raman spectra and XRD patterns) .80 SHAP-based Feature Importance of the multidomain model (Raman) "
30001 Model: Random Forest Regressor, 5-fold CV
Train: R* = 0.869 + 0.012, MAE =663+ 3.1, RMSE =963 +32
Test: R* = 0.871, MAE = 72.2, RMSE = 101.5 70 —
D 2800 / %
g e =S <]
a © 60
£ 2600 © e e e, E E
"3 o Hoo © )
o .. oo > 50 £
% 2400 o o o o
8 <40 S
3 L - 5 g
o
8 22001 ol . g 2
- ., i 30 =
g 5.5 g 2
B 20001 o P, 1 R S =
S o
3 ® '%k B = 20 <
x 18001 * ° Q
o /
/4 10 (8]
7 o Train (n=207)
16004 7 o Test(n=52) N L o !
1600 1800 2000 2200 2400 2600 2800 3000 100 200 300 400 500 600 700
Actual capacities, mAh/g Raman shift cm—1
b s
Density of predicted vs actual ies (Test dataset) 3.0 SHAP-based Feature Importance of the multidomain model (XRD) i
—— KDE Actual ’
—— KDE Predicted
Histogram Actual @
= Histogram Predicted o 25 -
— (<]
S £
®20 @
> £
o o
s =
o 10 c
(28 i)
B 5
€10 el
s T
= c
0.5 8
0.0

1600 1800 2000 2200 2400 2600 2800 3000
Specific capacities, mAh/g

30 40 50 60 70 80
20,°

Figure 5. Multidomain analysis based on the combined dataset consisting of Raman spectra and XRD patterns: RF regression model performance,
comparing actual (from the SDC and GP regression experiment) versus predicted specific capacities (a). b) The distribution of actual versus predicted
capacities for the test dataset: the density plot combines a kernel density estimate (KDE, solid line) with a histogram (bars). SHAP feature importances
from the mean absolute SHAP values for the regression model, shown for (c) Raman spectra and (d) XRD patterns. SHAP values represent the impact of
each feature on the model, with colors indicating the contribution sign. For instance, high SHAP values paired with a blue color suggest that a selected

feature significantly decreases the specific capacity.

contribution related to the (111) broad reflection of the cubic
Si—Ge—Sn phase changes sign ~27.5°, corresponding to chemi-
cal composition variation.

The single-domain ML model built solely on raw Raman
data performs comparably to the multidomain model. In con-
trast, the XRD-based single-domain model performed signifi-
cantly worse (Table S4, Supporting Information). The perfor-
mance of the feature-based models from the fitting and wavelet
transformation!”>) of Raman is comparable to that of those built
on raw data, suggesting that the extracted features captured in-
formation similar to the raw data without offering additional in-
sights (Figures S21-S23, Supporting Information).

Given that the theoretical capacity for the ternary system is
a function of composition, we built additional models using
only compositional inputs, with and without thickness data.
Both models performed well, achieving R? values above 0.94
for both test and train datasets (Figure S24, Supporting In-
formation). This suggests that the composition alone is suffi-
cient to explain most of the observed variations in predicted
capacities.

Based on the performances of the single- and multidomain ML
models (Table S4, Supporting Information), the relationship be-
tween composition, structure, and properties appears to be se-
quential, with composition determining short-range local coordi-
nation, which significantly affects electrochemical performance.
In contrast, long-range structural properties have minimal im-
pact in polycrystalline materials, emphasizing the relative impor-
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tance of short-range interactions and local atomic environments
as the key contributors to capacity changes.

2.5.3. Correlations Interpretation

Pearson correlation heatmaps were constructed based on both
raw (Figure 6a; Figure S25, Supporting Information) and feature-
engineered data (Figure S26, Supporting Information) to identify
highly correlated features and trends. Regions corresponding to
XRD peaks show the strongest correlations over almost the whole
Raman spectra range. Additionally, correlations for features iden-
tified via feature importance analysis of ML models were also
plotted, showing how vibrational and crystallographic features
co-evolve with composition (Figure 6b—g).

The increase in the lattice constant of the cubic phase is pri-
marily driven by compositional changes (Figure 6b), which could
be supported by Figure 6¢, as specific capacity shows an almost
linear relationship with Sn content.

Sn-rich compositions exhibit distinct features, such as Sn—Sn
and Sn—O0 Raman bands, which serve as strong indicators of poor
capacity performance. Sn—Sn Raman bands associated with the
f-Sn phase are observable even for the material without the sec-
ondary phases, according to XRD (Figure 6a,d). -Sn nanocrys-
tallites as a secondary phase could also lead to inhomogeneous
expansion and sources of localized stress in the alloy, potentially
leading to their delamination from the matrix.l”¢!
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Figure 6. Correlation matrix section from Raman spectra and XRD patterns between 26 angles of 24° and 32°. Positive Pearson correlation coefficients
between intensities at specific Raman shift values and corresponding 26 values are shown in red, while negative correlations are in blue (a). Correlation
plots for key features versus specific capacity. These features include unit cell parameter of the cubic phase and 26 values of (111) reflections (b), Sn
content (in at. %, c), the intensity of Sn—Sn Raman band (~125-135 cm™'), d), FWHM (e) and Raman shift position (f) for Ge—Ge Raman band, Raman
intensity at 234.1cm™" (g). Additional correlation plots from selected Raman and XRD raw data are shown in panels (h-j).

The Ge—Ge Raman band appears to be another surro-
gate for capacity prediction. The peak width is narrower for
Ge-rich compositions but broadens for Si-rich compositions
due to the disorder and compressive strain introduced by Si
atoms (Figure 6e). Due to the same reasons, this Raman band
shifts toward the high-frequency range for Si-rich compositions,
while the opposite shift is observed for Sn-rich compositions!®?!
(Figure 6f). The correlation heatmap also reveals the same trends
for the widths, as the high-correlation region in the Raman
spectra (275-290 cm™!) broadens for Si-rich compositions at
higher 26 values (27.5°-28.5°), indicating increased Si content
(Figure 6a).

The intensity at 234.1 cm™', which corresponds to high fea-
ture importance and SHAP values (Figure 5c) positively corre-
lates with Ge- and Si-rich compositions, while inverse correla-
tions appear in the Sn-rich region (Figure 6g). This may result
from two overlapping peaks, supported by Figure S17 (Support-
ing Information): a sharp peak associated with Sn vibrations and
a broader low-frequency shoulder potentially related to Ge—Sn or
Si—Ge vibrations in the oxide matrix. The broad peak may also be
an artifact from background subtraction.

The XRD patterns, which at 26 of ~27.0° have high intensity
and are associated with the Ge-rich materials, can help to iden-
tify additional Raman bands, such as the second-order Ge—Ge
band at ~540 cm™! (Figure 6h), which has quite low intensity.
The Raman shift range of 385-395 cm™' is more indicative of
the Si—Sn band than the Si—Ge band, with low intensity ob-
served for Ge-rich compositions at 385.8 cm™! (Figure 6j). On
the other side, the Si—Ge band is likely shifted toward higher
frequencies in this region (Figure 6i). Although the two phases
suggest metallic tin segregation from the ternary alloy, the inten-
sity of the Si—Sn band is higher for two-phase materials than for
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single-phase ones. The increase in Raman intensity in materials
with a secondary phase requires further investigation but may
stem from a higher amount of Si—Sn bonds at the phase bound-
aries. Notably, for 260 values corresponding to f-Sn reflections,
the correlation coefficient for the Raman shift regions related to
the Sn—Sn band of f-Sn is lower than for the Si—Sn band region.

2.6. Research Limitations

The SDC offers high precision but low accuracy for minutes- and
hours-long electrochemical experimentation in non-aqueous me-
dia. The low accuracy in exploratory SDC measurements is non-
negligible. To apply a consistent C rate across all materials for
better comparability, the reaction volume must be calculated as
the product of the measurement area and mass loading, each of
which is measured by independent instrumentation with its own
uncertainties. In particular, the exposed working electrode area
under the SDC tip is challenging to define precisely, as poten-
tial leakage might alter the actual reaction area during measure-
ments. While suitable for comparing materials within single or
multiple materials libraries, the SDC might not be well-suited for
quantitative comparisons with fully assembled coin cells, which
typically offer both high precision and accuracy for extensive (e.g.,
mass- or area-dependent) properties (Figure S27, Supporting In-
formation). However, different cell geometries for the same bat-
tery chemistry can show significant variations when, for instance,
longevity is studied,’”) indicating that coin cells may not always
Dbe the best choice for upscaling.

Adjusting the reaction area variations after the electrochemical
measurement in real-time was impossible, as no optical micro-
scope integrated with the SDC, further affecting the AL algorithm
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decisions and experimental outcomes. The SDC is valuable for
understanding electrochemical reactivity, particularly for novel
and metastable materials synthesized at the thin-film scale, and
for drawing preliminary conclusions on material performance.
However, it is not ideal for evaluating long-term performance due
to longer experimental times.

While this research utilized GP regression to predict some of
the specific capacity values, a complete high-throughput screen-
ing of the entire materials library or a fully exploratory mode of
Bayesian optimization would have been preferable for explana-
tory purposes. GP regression predictions can introduce bias, and
in this study, the experimental dataset was unbalanced, with most
measurements concentrated in the Si- and Ge-rich regions, while
the Sn-rich region remained largely unexplored. This imbalance
in the target values may have affected the performance of the RF
models.

Despite maintaining near identical anode thicknesses in the
current study to ensure consistency between the SDC and coin
cell electrochemical performance, the scaling to thicker elec-
trodes with realistic loadings with a few mAh cm~2 requires fur-
ther investigation. Future studies should systematically explore
the influence of film thickness on the composition-structure—
property relationships, facilitating the potential commercializa-
tion of the optimized materials.

Magnetron sputtering enabled the exploration of material
compositions and phases far from equilibrium, but its scalabil-
ity for producing thick electrodes is limited. Future work will fo-
cus on translating these insights to scalable synthesis techniques
while optimizing electrode architectures and processing condi-
tions to bridge the gap between material discovery and practical
applications.

3. Conclusion

This study demonstrates a transformative approach that in-
tegrates high-throughput experimental characterization, au-
tonomous data-driven robotics, and ML approaches to accelerate
the exploration, discovery, and understanding of advanced bat-
tery materials. Specifically, this work represents the successful
implementation of the SDC for the autonomous exploration of
state-of-the-art electrode materials for non-aqueous batteries. In-
tegrating this setup with an on-the-fly analysis server and sequen-
tial learning algorithms enabled dynamic, real-time data-driven
experimentation that rapidly identified high-capacity Si—Ge—Sn
alloy anodes. The optimized compositions were upscaled to the
coin cell format, enabling long-term cycle life evaluation. While
still using thin films, this intermediate step bridged millimeter-
scale discovery with validation in standardized battery formats,
advancing toward practical electrode designs. Upscaled to coin
cells, the optimized anodes exhibited almost a fivefold increase in
specific capacity and a 30% improvement in gravimetric energy
density over conventional graphite anodes. Furthermore, these
alloys showed a longer cycle life than pure Sianodes, highlighting
the potential for practical applications, commercialization, and
impactful advancements in battery technology.

ML analysis identified key Raman and XRD features that di-
rectly and indirectly correlate with the material electrochemical
performance. Correlations analysis revealed how compositional
variations drive systematic changes in both local bonding envi-
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ronments and crystallographic structures, highlighting the inter-
play between short- and long-range order. XPS analysis also in-
dicated that surface oxides could contribute to capacity discrep-
ancies, providing further insights into the performance of these
anode materials.

Integrating the ML predictions based on different modalities
of material properties directly into the closed-loop experimental
process could further enhance workflow efficiency, leading to im-
proved decision-making and accelerating materials discovery.

This research contributes to advancing materials discovery and
optimization, presenting a data-driven experimental framework
that accelerates the discovery process while ensuring comprehen-
sive characterization. This work addresses current challenges in
sustainable energy storage and offers a blueprint for accelerated
discovery and optimization across various domains in materials
science.

4. Experimental Section

Materials Library Synthesis:  Thin-film materials libraries of Si—Ge—Sn
alloys were synthesized by magnetron co-sputtering in an Ar (5N pu-
rity, MTI IndustrieGase AG, Germany) atmosphere at room temperature
(RT). The sputter chamber (Creamet 400 multi3, Creavac, Germany) with
sputter-up configuration had three confocal 2” cathodes (one operatable
in DC mode and two operatable in RF mode) located on a horizontal cir-
cle with circular arcs of 120° between them and one 4” cathode (RF) lo-
cated in the center of this circle. The sputter chamber was integrated in-
side an argon glovebox (<0.1 ppm H,0, <1.0 ppm O,; SylaTech, Ger-
many). Si wafers (CZ-Si wafer, 4” diameter, 525 + 25 um thickness, (100)-
plane, 1-side polished, p-type (B-doped), 1-10 Ohm, MicroChemicals,
Germany) were used as substrates for materials libraries used for elec-
trochemical characterization, XRD and XPS, while sapphire wafers (4" di-
ameter, 650 + 25 um thickness, C(0001)-plane, 1-side polished, Siegert
Wafer, Germany) were used as substrates for materials libraries used for
u-XRF and Raman characterization. An RF bias was applied to the sub-
strate before sputtering to clean the surface (P=75 W, DC mode, t =600,
p(Ar) =6.1x 1073 mbar). A thin film layer of Cu was sputtered (P = 200 W,
t=1800's, DC mode, p(Ar) = 4.3 x 1073 mbar) as a current collector layer
from Cu target (4 N purity, 100 mm diameter, 5 mm thickness, EvoChem,
Germany). For co-sputtering, Si (P = 80 W, DC mode), Ge (P = 40 W,
RF mode), and Sn (P = 20 W, RF mode) were sputtered (¢ = 9000 s,
p(Ar) = 4.0 1072 mbar) from Si (SN purity, polycrystalline, p-type (B-
doped), 50 mm diameter, 3 mm thickness, In-bonded to Cu, EvoChem,
Germany), Ge (5N purity, polycrystalline, p-type (B-doped), 50 mm diame-
ter, 3 mm thickness, In-bonded to Cu, EvoChem, Germany), Sn (4 N purity,
50 mm diameter, 5 mm thickness, Robeko, Germany) targets. The sub-
strate used for the preliminary SDC tests was rotated during co-sputtering
at a speed of 90° s~ to obtain uniform thickness and elemental distri-
bution. The co-sputter time was longer (¢ = 10 h) for the sample used in
the XRD measurement to be able to collect enough signal despite likely
low coherence length. Additionally, for this sample, a layer of Cu was not
deposited, and a thin layer of Cr was sputtered (P = 50 W, RF mode,
p(Ar) = 4.4 X 1073 mbar, t = 240 s) from Cr target (3 N5 purity, 50 mm di-
ameter, 5 mm thickness, EvoChem, Germany) to avoid alloy oxidation due
to longer transportation times. The overview of all synthesized materials
libraries is shown in Table S5 (Supporting Information).

Electrochemical Experimentation Using SDC:  SDC setup inside an ar-
gon glovebox (<0.5 ppm H,0, <0.5 ppm O,; MBraun UNIlab Pro) was
used to run autonomous electrochemical experimentation. The sputtered
materials library was used as a working electrode (WE), Li on Pt wire as a
counter electrode (CE), and Li on Cu wire as a quasi-reference electrode
(RE). Li as a CE was used in excess to ensure it would not limit the elec-
trochemical reactions at the working electrode. CE and RE were located
and screwed into the Teflon SDC cell body, with a minimal distance be-
tween WE, CE, and RE. All electrochemical procedures were run using an
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Autolab PGSTAT302N potentiostat galvanostat (Metrohm Autolab, the
Netherlands). A photograph of the SDC setup during an experiment is
shown in Figure S28 (Supporting Information). A more detailed descrip-
tion of the SDC setup, the cell design, and CE and RE preparation proce-
dures could be found elsewhere.["®] Prior to closed-loop experimentation,
reproducibility tests and selection of the C rate (from C/5 to 10C) were per-
formed on the same Si—Ge—Sn anode material. The selected sequence of
electrochemical experiments included three cycles of open circuit poten-
tial (OCP) — electrochemical impedance spectroscopy (EIS) — chronopo-
tentiometry (dis-/charge, CP) — OCP — EIS. The OCP was measured for
90 s immediately after touchdown contact with the substrate and for 300 s
after the CP procedure. EIS was acquired at the OCP potential at 1 MHz to
0.1 Hz frequency range with 10 mV root mean square (RMS) amplitude.
CP was performed at 1C dis-/charge rate with a cut-off potential of 0.01
and 2.00 V versus Lit/Li. The calculation of the C rate at every measure-
ment point was based on the atomic fractions of elements and not weight
fractions, resulting in an actual applied C rate between 1.2 C-1.5 C in-
stead of 1 C, which was deemed within the margin of error that originates
from other sources of uncertainties. All extensive figures of merit (specific
capacities and areal resistances) were calculated based on the SDC tip
area (Figure S5b, Supporting Information). The theoretical capacities and
1 C rate currents were calculated based on composition and mass loading
data from u-XRF for each point of the materials library and for optimized
materials sputtered on a Cu foil.

Closed-Loop Sequential Experimentation: The experimental sequence
of experiments was orchestrated using the Hierarchical Experimental Lab-
oratory Automation and Orchestration (HELAO) framework.I?'l The se-
quential experiments on 30 measurement points were performed for a
single materials library. The Bayesian Optimization with Gaussian Process
(GP) regressor as a surrogate model from the “sklearn” package imple-
mented in the HELAO framework was used to predict the specific capacity
on a grid with 259 compositions based on the measurement results af-
ter each experimental sequence and selected the next measurement point
based on the maximal value of the acquisition function. The input values
for the optimizer were atomic concentrations of Si, Ge, and Sn from u-
XRF. GP used a combination of Constant, Matérn, and White Kernels, and
the function minimization using the limited-memory Broyden—Fletcher—
Goldfarb-Shanno with Box constraints (FMIN- L-BFGS-B) optimizer. Au-
tomatic outlier detection was implemented in order to exclude outliers
from the sequential learning model if the capacity exceeded the theoretical
one by more than 25% or was less than 25%. The exploration—exploitation
trade-off of the acquisition function a(c;) = (1 — B) X u(c;) + B X o(c),
where y — mean, o — variance from GP regression, ¢; — concentrations
of Si, Ge, and Sn) was driven by the iteration-dependent hyperparameter
p =0.6 X exp(—0.06 X n) + 0.2, where n is the number of the experiment
(iteration).

The analysis action server of HELAO was programmed to be capable
of on-the-fly extraction and calculation of figures of merits at the end of
the electrochemical procedures on each measurement point, for exam-
ple, gravimetric dis-/charge capacity, energy, voltage and Coulombic effi-
ciencies, gravimetric energy density using “semi-theoretical” full cell con-
cept with LiNiysMn; 50, (LNMO) as a counter electrode (assuming av-
erage de-/lithiation potential of 4.7 V versus Li*/Li and specific capacity
of 140 mAh g, Q./Q, = 1/1 ratio and based on the mass of anode thin
film and LNMO only)[33] from CP for each cycle; averaged OCP and stan-
dard deviation after 5 min of relaxation after each cycle. Fitting of the EIS
spectra was implemented as well based on the impedance.py package;!”8]
the selection of the equivalent circuit was performed on the fly based on
the number of local maxima in Nyquist plots and y?-values of the fits (see
Figure S2, Supporting Information). The uncertainties for all resistance el-
ements (R), constant phase elements (CPEs), and Warburg elements (W)
were calculated as well.

Upscaling: A thin film with an optimized chemical composition, as
determined from the SDC experiment, was deposited onto a copper foil
substrate (10 mm in diameter) using magnetron sputtering. The chemi-
cal composition of the thin films was analyzed after each deposition using
micro-X-ray fluorescence (u-XRF). Sputtering conditions, specifically the
power rates of the targets, were sequentially adjusted to achieve an atomic

Adv. Energy Mater. 2025, 15, 2404961 2404961 (12 Of'|5)

www.advenergymat.de

composition error of <1% per element (Figure S12, Supporting Informa-
tion). Prior to sputtering, the substrate surface was cleaned by applying
an RF bias (P =75 W, DC mode, t = 600 s, p(Ar) = 6.1 102 mbar). The
optimized deposition conditions involved co-sputtering of Si (P = 87 W,
DC mode), Ge (P = 27 W, RF mode), and Sn (P = 14 W, RF mode) were
co-sputtered (p(Ar) = 4.4 x 1073 mbar, t = 1800 s). The substrate was ro-
tated at a speed of 90° s~! to obtain uniform thickness and elemental dis-
tribution. For comparison, Si thin films were sputtered on Cu foil using the
abovementioned procedure (P=87 W, DC mode, p(Ar) = 4.4 x 1073 mbar,
t = 2220 s), sputter time was adjusted to get the comparable thin-film
thickness as for alloy thin films.

The cut electrodes were transferred to another glovebox using a gas-
tight transport chamber for cell assembly. Prior to assembly, the stainless
steel CR2032 coin cell parts (Pi-KEM, UK) were washed in an ultrasonic
bath filled with isopropanol. Cleaned coin cell parts and polypropylene
(PP)-polyethylene (PE)-polypropylene (PP) 3-layered separators (Celgard
2325, China) were dried in an oven at 80 °C overnight. Half-cell coin cells
were assembled inside an argon-filled glovebox (<1.0 ppm H, 0, <1.0 ppm
O,; MBraun UNlIlab Pro, Germany) using a copper foil with the sputtered
alloy thin film (15 mm diameter), cut thick lithium ribbon metal disks to
ensure an excess lithium supply and avoid capacity limitations during cy-
cling (16 mm diameter, 0.5 mm thickness, 99.9% trace metal basis, Sigma-
Aldrich, Germany), separators (18 mm diameter). Fifty microliters of 1 m
LiPFg in a mixture of ethylene carbonate and ethyl methyl carbonate (EC:
EMC, 30:70 wt.%) electrolyte (E-lyte, Germany) was added to each coin cell
to soak the separators. After manual stacking, the coin cells were pressed
together using an electric crimper machine (MSK-160E, MTI Corporation,
China). The cells rested for at least 6 hours before electrochemical cycling
to ensure proper wetting. For each electrochemical procedure, 3 coin cells
were cycling for the proper statistical distribution.

Charge-discharge electrochemical cycling of the assembled coin cells
in a temperature-controlled chamber at 20 °C was performed using a bat-
tery cycler unit (LBT21084-5, Arbin Instruments, United States). Assem-
bled coin cells were cycled for 500 cycles between 0.01 and 2.00 V at 1 C
rate for charge and discharge, with and without 3 cycles of formation at
C/20 rate for charge and discharge.

Materials Library Characterization and Analysis—High-Throughput u-
XRF: The chemical compositions and areal mass loadings were ana-
lyzed using a HORIBA XGF-900 micro—X-ray Fluorescence Analytical Mi-
croscope (u-XRF, Horiba Scientific, Japan). As it was impossible to distin-
guish Si from thin film and substrate, the materials libraries for the anal-
ysis were sputtered on sapphire wafers. The XRF spectra were acquired
on defined grid positions for 300 s using 50 kV X-Ray energy (Rh source),
100 um polycapillary optics, without an energy filter. The multilayer FPM
function was used to determine the parameters. Calculations were per-
formed based on the intensity of the K -lines of Si and Ge and the L,-lines
of Sn as a first layer, K,-lines of Cu as a second layer, and K,-lines of Al as
a bulk layer.

Materials Library Characterization and Analysis—High-Throughput Ra-
man: Raman spectra were recorded using a confocal Raman microscope
(InVia QONTOR, Renishaw, United Kingdom) equipped with a Renishaw
Centers 1AY680 detector. A green laser with a wavelength of 532 nm and
nominal power of 50 mW was employed, using a 50x objective lens (Le-
ica, Germany) in back-scatter configuration. To minimize thin-film dam-
age, the laser power was set to 5%. Spectra were recorded on defined grid
positions using batch measurement mode with the UseLiveTrack option
for focus tracking before each measurement. The spectral range was from
100 to 700 cm™", and ten accumulations were made to increase the signal-
to-noise ratio. The WiRE 5.5 in-built software automatically removed the
cosmic rays from the spectra.

Materials Library Characterization and Analysis—High-Throughput XRD:
XRD patterns were recorded using a Bruker D8 Discover X-Ray Diffrac-
tometer equipped with a Vantec-500 2D detector (Bruker AXS, Germany) in
Bragg—Brentano geometry. A microfocus X-ray source (Incoatec lus High
Brilliance) with Cu K, X-ray radiation (4 = 0.15418 nm) was employed,
operating at 50 kV and 1 mA, generating 50 W of tube power. At each
measurement area of the grid, three 2D-images (frames) were taken at
the 6/26 positions 10°/25°, 20°/45°, and 30°/65°, with a fixed angular
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increment of 10°/20°. A 2.5° offset on 6 was applied to avoid single-crystal
Si-substrate peaks. 1D diffraction patterns with an angular 20 range from
~13.2°to 84.2° were integrated from these frames using Bruker DiffracEVA
software.

Materials Library Characterization and Analysis—X-Ray Photoelectron
Spectroscopy (XPS): X-ray Photoelectron spectroscopy (XPS) measure-
ments were performed for 4 selected points on a materials library using
a near ambient pressure (NAP)-XPS (Specs EnviroESCA, Germany), con-
nected to the nitrogen-filled glovebox via the transfer chamber (GS Glove-
box Systemtechnik GmbH, Germany). Spectra were taken with a commer-
cial UHV system (SPECS) with a base pressure of 2 X 1070 mbar using
a monochromatized X-ray source (SPECS XR50 M, Al K, and Ag K,, FO-
CUS 500 X-ray monochromator) and a hemispherical analyzer (SPECS,
DLSEGD- Phoibos-Has3500). Fine spectra were acquired 10 times to cap-
ture the Cls, OTs, Si2p, Ge3p, and Sn3d;, lines. CasaXPS software (ver-
sion 2.3.23, Japan)!”®! was used to fit the data for all XPS spectra.

Materials Library Characterization and Analysis—Scanning Electron Mi-
croscopy (SEM):  The morphologies of deposited thin films were investi-
gated using a scanning electron microscope (SEM) Apreo 2S HiVac (Ther-
moScientific, Germany). The materials library was fixed on a 4” EM-Tec
W4 wafer holder (Micro to Nano BV, Netherlands). An accelerating volt-
age of 2.0 kV, a specimen current in the range of 50-400 pA, a working
distance of 10.0 mm, magnification of 25 000x, a chamber pressure of
<2 X 107 mbar, an Everhart-Thornley detector in secondary electrons
(SE) mode and the OptiPlan use case were used to acquire SEM images.

Materials Library Characterization and Analysis—Optical Microscopy:
Prior to imaging, the reaction areas were locally washed 3 times using
the SDC with EC: EMC electrolyte with a ratio of 30:70 wt.% (Elyte, Ger-
many) for 5 min followed by drying inside the argon glovebox to remove
the dried LiPFg salt excess. Optical images of the reaction area of the mea-
surement points on materials libraries were captured using the Keyence
VHX 7000 optical microscope (Keyence, Germany) at 500x magnification
with the Stitching 3D Imaging option in HDR mode. To assess the reaction
area of the working electrode the “maximum area” measurement function
supplied by Keyence VHX software was used. Additionally, the optical im-
ages from the u-XRF microscope were also recorded for some materials
libraries.

Data Analysis and ML Methods—Feature Extraction from Raman Spec-
tra:  Raman spectra were preprocessed using PRISMA software.[®] The
background removal procedure was performed by applying the asymmet-
ric least squares baseline correction (log(p) = —3.0, log(4) = 3.0). Spectra
were fitted using Gaussian peak lineshapes, assuming the presence of 19
peaks based on the literature data and appearance of the spectra (Table
S3, Supporting Information). A total of 76 features were calculated, includ-
ing peak positions, FWHM, intensities at half maximum, and peak areas
for each Gaussian. For wavelet decomposition, the “pywt” Python pack-
age was used, and decomposition was performed across 6 levels, which
resulted in 82 features.

Data Analysis and ML Methods—Feature Extraction from XRD Patterns:
Fitting and data analysis of the XRD patterns were performed using the
“curve_fit” function from the “scipy-optimize” Python package, with a
maximum of 20 000 iterations until convergence. Peaks were fitted us-
ing a pseudo-Voigt function under physical constraints, assuming a con-
stant full width at half maximum (FWHM) for all peaks of the same phase.
The fitting process initially assumed the presence of a diamond—ype cubic
solid solution of Si—Ge—Sn and a tetragonal Sn phase based on prelim-
inary analysis and diffraction patterns from the Materials Project dataset
(mp-149 and mp-84).[81] If the fitted values fell outside the selected range
or if the uncertainties exceeded acceptable limits (>2.5% for the cubic
phase and >1.0% for the tetragonal phase), one or both phases were ex-
cluded from further analysis. The fitting process was repeated in cases
where phases were removed. As a result, 12 features were extracted: unit
cell parameters, FWHM, and peak intensities for each phase for each
phase, as phase presence were extracted.

Data Analysis and ML Methods—Principal Component Analysis (PCA):
PCA of 3 first components was performed using “decomposition. PCA”
module of the “sklearn” Python package based on the raw Raman spectra
and XRD patterns for dimensionality reduction of the features for ML, clus-
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ter identification, and initial exploration of trends and correlations. Raw
data with a corrected background was centered by subtracting the mean
and normalized on a per-sample basis using a min-max normalization.

Data Analysis and ML Methods—Random Forest (RF) Regression:
Single- and multidomain ML models based on a Random Forest (RF) re-
gressor were built using a “sklearn” library. As target values, reversible
specific capacities from the SDC experiment after the third cycle (Qj3,
mAh g~') were taken (both experimental and GP-predicted) for the whole
materials library. These models incorporated various input data, includ-
ing Raman spectra (raw, fitted, and PCA features, wavelet decomposition),
XRD profiles (raw, fitted, and PCA features), thin-film thicknesses, and
chemical composition (Si, Ge, and Sn atomic concentrations from u-XRF).
Missing XRD features were imputed, and model hyperparameters (depth
of the trees, max number of features, min samples leaf and split, number
of tree estimators) were optimized for each data subset via grid search.
The model’s tree depth is set below 20 to prevent overfitting. An 80/20
train-test split and fivefold cross-validation were used. The coefficient of
determination (R?), mean absolute error (MAE), and root mean squared
error (RMSE) were selected as performance metrics for estimating model
performances.

Data Analysis and ML Methods—Feature Importance and SHAP Analysis:
Feature importance scores were extracted from the “feature_importances”
attribute of the selected RF regression models, implemented using the
“sklearn” library in Python. SHAP values, representing the contribu-
tion of each feature to the prediction, were computed using the SHAP
package.[®2] SHAP coefficients were derived from the “TreeExplainer”
method applied to the selected RF regression models. SHAP-based fea-
ture importance analysis was done by calculating the mean of absolute
SHAP values for all features, and a sign of the contribution was calculated
from the sign and the value of the Pearson correlation coefficients between
SHAP values and feature values.

Data Analysis and ML Methods—Correlation Analysis: A correlation
analysis examined the relationships between the raw and fitted Raman
and XRD data. A correlation matrix was computed to determine pairwise
Pearson correlation coefficients between all features using the “df.corr”
function of Python’s “pandas” package. The matrix was visualized as a
heatmap using the “seaborn” package. Areas with the highest absolute
coefficients, representing the strongest correlations, were further analyzed
to explore feature dependencies.
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the author.
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