KIT | KIT-Bibliothek | Impressum | Datenschutz

Are Deep Learning Models in Hydrology Entity Aware?

Heudorfer, Benedikt 1; Gupta, Hoshin V.; Loritz, Ralf 2
1 Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF), Karlsruher Institut für Technologie (KIT)
2 Institut für Wasser und Umwelt (IWU), Karlsruher Institut für Technologie (KIT)

Abstract:

Hydrology is experiencing a shift from process-based toward deep learning (DL) models. Entity-aware (EA) DL models with static features (predominantly physiographic proxies) merged to dynamic forcing features show significant performance improvements. However, recent studies challenge the notion that combining dynamic forcings with static attributes make such models entity aware, suggesting that static features are not effectively leveraged for generalization. We examine entity awareness using state-of-the-art Long-Short Term Memory (LSTM) networks and the CAMELS-US data set. We compare EA models provided with physiographic static features to ablated variants not provided with static inputs. Findings suggest that the superior performance of EA models is primarily driven by information provided by meteorological data, with limited contributions from physiographic static features, particularly when tested out-of-sample. These results challenge previously held assumptions regarding how physiographic proxies contribute to generalization ability in EA Models, highlighting the need for new approaches for robust generalization in DL models.


Verlagsausgabe §
DOI: 10.5445/IR/1000181068
Veröffentlicht am 24.11.2025
Originalveröffentlichung
DOI: 10.1029/2024GL113036
Scopus
Zitationen: 7
Web of Science
Zitationen: 8
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung (IMK)
Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Wasser und Umwelt (IWU)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 28.03.2025
Sprache Englisch
Identifikator ISSN: 0094-8276, 1944-8007
KITopen-ID: 1000181068
HGF-Programm 12.11.25 (POF IV, LK 01) Atmospheric composition and circulation changes
Erschienen in Geophysical Research Letters
Verlag John Wiley and Sons
Band 52
Heft 6
Seiten e2024GL113036
Vorab online veröffentlicht am 22.03.2025
Nachgewiesen in Web of Science
OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page