KIT | KIT-Bibliothek | Impressum | Datenschutz

Density-based Geometric Convergence of NeRFs at Training Time: Insights from Spatio-temporal Discretization

Haitz, Dennis 1; Kıvılcım, Berk 1; Ulrich, Markus ORCID iD icon 1; Weinmann, Martin 1; Weinmann, Michael
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Whereas emerging learning-based scene representations are predominantly evaluated based on image quality metrics such as PSNR, SSIM or LPIPS, only a few investigations focus on the evaluation of geometric accuracy of the underlying model. In contrast to only demonstrating the geometric deviations of models for the fully optimized scene model, our work aims at investigating the geometric convergence behavior during the optimization. For this purpose, we analyze the geometric convergence of discretized density fields by leveraging respectively derived point cloud representations for different training steps during the optimization of the scene representation and their comparison based on established point cloud metrics, thereby allowing insights regarding which scene parts are already represented well within the scene representation at a certain time during the optimization. By demonstrating that certain regions reach convergence earlier than other regions in the scene, we provide the motivation regarding future developments on locally-guided optimization approaches to shift the computational burden to the adjustment of regions that still need to converge while leaving converged regions unchanged which might help to further reduce training time and improve the achieved quality.


Verlagsausgabe §
DOI: 10.5445/IR/1000181114
Veröffentlicht am 16.04.2025
Originalveröffentlichung
DOI: 10.5194/isprs-archives-XLVIII-2-W7-2024-49-2024
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2194-9034
KITopen-ID: 1000181114
Erschienen in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Verlag Copernicus Publications
Band XLVIII-2/W7-2024
Seiten 49–56
Vorab online veröffentlicht am 13.12.2024
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page