KIT | KIT-Bibliothek | Impressum | Datenschutz

ChatGPT’s Potential for Quantitative Content Analysis: Categorizing Actors in German News Articles

Hohenwalde, Clarissa ORCID iD icon 1; Leidecker-Sandmann, Melanie ORCID iD icon 1; Promies, Nikolai 1; Lehmkuhl, Markus 1
1 Institut für Technikzukünfte (ITZ), Karlsruher Institut für Technologie (KIT)

Abstract:

We assessed ChatGPT’s ability to identify and categorize actors in German news media
articles into societal groups. Through three experiments, we evaluated various models and
prompting strategies. In experiment 1, we found that providing ChatGPT with codebooks
designed for manual content analysis was insufficient. However, combining Named Entity
Recognition with an optimized prompt for actor Classification (NERC pipeline) yielded
acceptable results. In experiment 2, we compared the performance of gpt-3.5-turbo, gpt-4o,
and gpt-4-turbo, with the latter performing best, though challenges remained in classifying
... mehr

Abstract (englisch):

We assessed ChatGPT's ability to identify and categorize actors in German news media articles into societal groups. Through three experiments, we evaluated various models and prompting strategies. In experiment 1, we found that providing ChatGPT with codebooks designed for manual content analysis was insufficient. However, combining Named Entity Recognition with an optimized prompt for actor Classification (NERC pipeline) yielded acceptable results. In experiment 2, we compared the performance of gpt-3.5-turbo, gpt-4o, and gpt-4-turbo, with the latter performing best, though challenges remained in classifying nuanced actor categories. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181151
Veröffentlicht am 17.04.2025
Originalveröffentlichung
DOI: 10.22323/2.24020201
Scopus
Zitationen: 2
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technikzukünfte (ITZ)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 14.04.2025
Sprache Englisch
Identifikator ISSN: 1824-2049
KITopen-ID: 1000181151
Erschienen in Journal of Science Communication
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Band 24
Heft 2
Seiten Art.-Nr.: A01
Bemerkung zur Veröffentlichung Science Communication in the Age of Artificial Intelligence (Science Communication & AI)
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page