KIT | KIT-Bibliothek | Impressum | Datenschutz

Elliptic operators with non-local Wentzel– Robin boundary conditions

Kunze, Markus ; Mui, Jonathan ; Ploss, David 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

In this article, we study strictly elliptic, second-order differential operators on a bounded Lipschitz domain in $\mathbb{R}^d$ subject to certain non-local Wentzell–Robin boundary conditions. We prove that such operators generate strongly continuous semigroups on $L^2$-spaces and on spaces of continuous functions. We also provide a characterization of positivity and (sub-)Markovianity of these semigroups. Moreover, based on spectral analysis of these operators, we discuss further properties of the semigroup such as asymptotic behavior and, in the case of a non-positive semigroup, the weaker notion of eventual positivity of the semigroup.


Volltext §
DOI: 10.5445/IR/1000181153
Veröffentlicht am 17.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 04.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000181153
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 33 S.
Serie CRC 1173 Preprint ; 2025/16
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter non-local boundary condition, Lipschitz boundary, Wentzell–Robin boundary conditions, analytic semigroup, (eventual) positivity, (sub)-Markovian semigroup
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page