KIT | KIT-Bibliothek | Impressum | Datenschutz

Simultaneous improvement of mechanical strength and electrical conductivity in Al-2.5 wt% Fe alloy rods with high thermal stability by high-pressure torsion extrusion

Xu, Rui 1,2; Lu, Yemao ORCID iD icon 1,2; Dai, Yuting 1,2; Debastiani, Rafaela ORCID iD icon 1,2; Hahn, Horst 1; Ivanisenko, Yulia 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

The high-pressure torsion extrusion (HPTE), a severe plastic deformation (SPD) method, was applied to process rods of as-cast Al-2.5 wt% Fe alloy (Al-2.5 Fe). This technique effectively overcomes the typical trade-off between mechanical strength and electrical conductivity (EC) commonly observed in Al-alloys. Through the HPTE process, the yield strength increased from 110 MPa to 268 MPa, while the EC increased from 37.3 % IACS to 44.7 % IACS. Furthermore, the ultrafine-grained structure of the HPTE-processed Al-2.5 Fe exhibits remarkable thermal stability, maintaining its strength following annealing for 1 h at 230 °C. The effects of the HPTE-induced deformation and subsequent annealing on the microstructure were thoroughly studied using automated crystal orientation mapping (ACOM), STEM-EDX, and X-ray tomography (NanoCT). In terms of the Al matrix, grain refinement resulted in grains with an average size of 300 nm. Additionally, the previously continuous Al13Fe4 phase network fragmented into micrometer- and nanometer-sized particles. A theoretical analysis has shown a correlation between microstructural characteristics, mechanical strength, and EC, identifying the mechanisms responsible for the strengthening effect and the changes in EC. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181180
Veröffentlicht am 25.04.2025
Originalveröffentlichung
DOI: 10.1016/j.matchar.2025.114956
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 1044-5803, 1873-4189
KITopen-ID: 1000181180
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Materials Characterization
Verlag Elsevier
Band 224
Seiten Art.-Nr. 114956
Vorab online veröffentlicht am 28.03.2025
Schlagwörter TEM, FIB, nanoCT, 2021-027-031180
Nachgewiesen in Dimensions
Scopus
OpenAlex
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page