KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Material Networks for Fiber Suspensions With Infinite Material Contrast

Sterr, Benedikt ORCID iD icon 1; Gajek, Sebastian 1; Hrymak, Andrew; Schneider, Matti; Böhlke, Thomas ORCID iD icon 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

We extend the laminate based framework of direct deep material networks (DMNs) to treat suspensions of rigid fibers in a non-Newtonian solvent. To do so, we derive two-phase homogenization blocks that are capable of treating incompressible fluid phases and infinite material contrast. In particular, we leverage existing results for linear elastic laminates to identify closed form expressions for the linear homogenization functions of two-phase layered emulsions. To treat infinite material contrast, we rely on the repeated layering of two-phase layered emulsions in the form of coated layered materials. We derive necessary and sufficient conditions which ensure that the effective properties of coated layered materials with incompressible phases are non-singular, even if one of the phases is rigid. With the derived homogenization blocks and non-singularity conditions at hand, we present a novel DMN architecture, which we name the flexible DMN (FDMN) architecture. We build and train FDMNs to predict the effective stress response of shear-thinning fiber suspensions with a Cross-type matrix material. For 31 fiber orientation states, six load cases, and over a wide range of shear rates relevant to engineering processes, the FDMNs achieve validation errors below 4.31% when compared to direct numerical simulations with fast-Fourier-transform based computational techniques. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181182
Veröffentlicht am 28.04.2025
Originalveröffentlichung
DOI: 10.1002/nme.70014
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.04.2025
Sprache Englisch
Identifikator ISSN: 0029-5981, 1097-0207
KITopen-ID: 1000181182
Erschienen in International Journal for Numerical Methods in Engineering
Verlag John Wiley and Sons
Band 126
Heft 7
Seiten Art.-Nr.: e70014
Vorab online veröffentlicht am 02.04.2025
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page