KIT | KIT-Bibliothek | Impressum | Datenschutz

Repeatability of radiomic features from brain T1-W MRI after image intensity normalization: Implications for longitudinal studies on structural neurodegeneration

Pisani, Noemi ; Destito, Michela ; Ricciardi, Carlo ; Pellecchia, Maria Teresa ; Cesarelli, Mario ; Esposito, Fabrizio ; Spadea, Maria Francesca 1; Amato, Francesco
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Background and Objective: Radiomics extracts quantitative features from magnetic resonance images (MRI)
and is especially useful in the presence of subtle pathological changes within human soft tissues. This scenario,
however, may not cover the effects of intrinsic, e.g., aging-related, (physiological) neurodegeneration of normal
brain tissue. The aim of the work was to study the repeatability of radiomic features extracted from an
apparently normal area in longitudinally acquired T1-weighted MR brain images using three different intensity
normalization approaches typically used in radiomics: Z-score, WhiteStripe and Nyul.
Methods: Fifty-nine images of hearing impaired, yet cognitively intact, patients were repeatedly acquired in
two different time points within six months. Ninety-one radiomic features were obtained from an area within
the pons region, considered to be a healthy brain tissue according to previous analyses and reports. The
Intraclass Correlation Coefficient (ICC) and the Concordance Correlation Coefficient (CCC) in the repeatability
study were used as metrics.
Results: Features extracted from the MRI normalized with Z-score showed results comparable in both ICC
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181192
Veröffentlicht am 25.04.2025
Originalveröffentlichung
DOI: 10.1016/j.cmpb.2025.108738
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 0169-2607, 1872-7565
KITopen-ID: 1000181192
Erschienen in Computer Methods and Programs in Biomedicine
Verlag Elsevier
Band 265
Seiten 108738
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page