KIT | KIT-Bibliothek | Impressum | Datenschutz

Drag prediction of rough-wall turbulent flow using data-driven regression

Shi, Zhaoyu; Habibi Khorasani, Seyed Morteza; Shin, Heesoo; Yang, Jiasheng ORCID iD icon 1; Lee, Sangseung; Bagheri, Shervin
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

Efficient tools for predicting the drag of rough walls in turbulent flows would have a tremendous impact. However, accurate methods for drag prediction rely on experiments or numerical simulations which are costly and time consuming. Data-driven regression methods have the potential to provide a prediction that is accurate and fast. We assess the performance and limitations of linear regression, kernel methods and neural networks for drag prediction using a database of 1000 homogeneous rough surfaces. Model performance is evaluated using the roughness function obtained at a friction Reynolds number Re$_𝜏$ of 500. With two trainable parameters, the kernel method can fully account for nonlinear relations between the roughness function ΔU$^+$ and surface statistics (roughness height, effective slope, skewness, etc.). In contrast, linear regression cannot account for nonlinear correlations and displays large errors and high uncertainty. Multilayer perceptron and convolutional neural networks demonstrate performance on par with the kernel method but have orders of magnitude more trainable parameters. For the current database size, the networks’ capacity cannot be fully exploited, resulting in reduced generalizability and reliability. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181197
Veröffentlicht am 28.04.2025
Originalveröffentlichung
DOI: 10.1017/flo.2024.33
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2633-4259
KITopen-ID: 1000181197
Erschienen in Flow
Verlag Cambridge University Press (CUP)
Band 5
Seiten Art.-Nr.: E5
Vorab online veröffentlicht am 19.02.2025
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page