KIT | KIT-Bibliothek | Impressum | Datenschutz

Scene to Scenario: Data-driven Pipeline for Extracting and Re-Simulation of Test Scenarios for Highly Automated Driving Functions

Zipfl, Maximilian ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

The development of highly automated driving has made remarkable progress in recent years. Numerous technical challenges have been solved, allowing the first partly autonomous vehicles to drive on public roads. However, the safeguarding process of Highly Automated Vehicles (HAVs) remains a significant challenge. The verification and validation of a corresponding system play a crucial role for manufacturers, as they ensure that their own systems are free of faults. Furthermore, verification carried out by testing institutions is relevant in order to allow new systems on public roads without posing a safety risk to traffic participants.
The highly complex nature of HAVs makes validation utilizing statistical tests considerably more difficult. In this context, scenario-based testing in a simulation opens up promising perspectives for the validation.

This dissertation presents and discusses a concept for the creation and evaluation of test scenarios for Highly Automated Driving Functions (HADFs).
An essential aspect in the creation of a test scenario is the mutual consideration of the behavior of all traffic participants within the simulation.
... mehr

Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Hochschulschrift
Publikationsdatum 23.04.2025
Sprache Englisch
Identifikator KITopen-ID: 1000181214
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xvii, 167 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Wirtschaftswissenschaften (WIWI)
Institut Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Prüfungsdatum 05.03.2025
Schlagwörter verification and validation, autonomous driving, graph neural network, scenario based testing
Referent/Betreuer Zöllner, Johann Marius
Schaefer, Ina

Volltext §
DOI: 10.5445/IR/1000181214
Veröffentlicht am 23.04.2025
Seitenaufrufe: 28
seit 23.04.2025
Downloads: 10
seit 23.04.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page