KIT | KIT-Bibliothek | Impressum | Datenschutz

Constraining uncertainty in projected precipitation over land with causal discovery

Debeire, Kevin ; Bock, Lisa; Nowack, Peer ORCID iD icon 1,2,3; Runge, Jakob; Eyring, Veronika
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF), Karlsruher Institut für Technologie (KIT)
3 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurately projecting future precipitation patterns over land is crucial for understanding climate change and developing effective mitigation and adaptation strategies. However, projections of precipitation changes in state-of-the-art climate models still exhibit considerable uncertainty, in particular over vulnerable and populated land areas. This study aims to address this challenge by introducing a novel methodology for constraining climate model precipitation projections with causal discovery. Our approach involves a multistep procedure that integrates dimension reduction, causal network estimation, causal network evaluation, and a causal weighting scheme which is based on the historical performance (the distance of the causal network of a model to the causal network of a reanalysis dataset) and the interdependence of Coupled Model Intercomparison Project Phase 6 (CMIP6) models (the distance of the causal network of a model to the causal network of other climate models). To uncover the significant causal pathways crucial for understanding dynamical interactions in the climate models and reanalysis datasets, we estimate the time-lagged causal relationships using the Peter–Clark momentary conditional independence (PCMCI) causal discovery algorithm. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181272
Veröffentlicht am 24.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung (IMK)
Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2190-4987
KITopen-ID: 1000181272
HGF-Programm 12.11.32 (POF IV, LK 01) Advancing atmospheric and Earth system models
Weitere HGF-Programme 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Earth System Dynamics
Verlag Copernicus Publications
Band 16
Heft 2
Seiten 607–630
Vorab online veröffentlicht am 24.04.2025
Schlagwörter Causal discovery, climate modeling, climate change uncertainty, machine learning, precipitation
Nachgewiesen in Web of Science
OpenAlex
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page