KIT | KIT-Bibliothek | Impressum | Datenschutz

AutoPQ: Automating quantile estimation from point forecasts in the context of sustainability

Meisenbacher, Stefan 1; Phipps, Kaleb ORCID iD icon 2,3; Taubert, Oskar ORCID iD icon 3; Weiel, Marie ORCID iD icon 3; Götz, Markus ORCID iD icon 3; Mikut, Ralf ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
3 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Optimizing smart grid operations relies on critical decision-making informed by uncertainty quantification, making probabilistic forecasting a vital tool. However, designing such forecasting models presents three key challenges: achieving accurate and unbiased uncertainty quantification, reducing the workload for data scientists during the design process, and minimizing the environmental impact of model training. In order to address these challenges, we introduce AutoPQ, a novel method that fully automates and optimizes probabilistic forecasting for smart grid applications. AutoPQ enhances forecast uncertainty quantification by generating high-quality quantile forecasts from an existing point forecast by using a conditional Invertible Neural Network (cINN). Furthermore, AutoPQ automates the selection of the optimal point forecasting method and fine-tunes hyperparameters, ensuring the best-possible model and configuration for each application. For flexible adaptation to various performance needs and available computing power, AutoPQ comes with a default and an advanced configuration, making it suitable for a wide range of smart grid applications. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181305
Veröffentlicht am 28.04.2025
Originalveröffentlichung
DOI: 10.1016/j.apenergy.2025.125931
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Programmstrukturen und Datenorganisation (IPD)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2025
Sprache Englisch
Identifikator ISSN: 0306-2619
KITopen-ID: 1000181305
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Applied Energy
Verlag Elsevier
Band 392
Seiten 125931
Schlagwörter Probabilistic time series forecastingUncertainty quantificationAutoMLEnergy consumption
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 12 – Nachhaltiger Konsum und Produktion
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page