KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural Two‐Level Monte Carlo Real‐Time Rendering

Dereviannykh, Mikhail 1; Klepikov, Dmitrii 1; Hanika, Johannes 2; Dachsbacher, Carsten 1
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Visualisierung und Datenanalyse (IVD), Karlsruher Institut für Technologie (KIT)

Abstract:

We introduce an efficient Two-Level Monte Carlo (subset of Multi-Level Monte Carlo, MLMC) estimator for real-time rendering of scenes with global illumination. Using MLMC we split the shading integral into two parts: the radiance cache integral and the residual error integral that compensates for the bias of the first one. For the first part, we developed the Neural Incident Radiance Cache (NIRC) leveraging the power of tiny neural networks [MRNK21] as a building block, which is trained on the fly. The cache is designed to provide a fast and reasonable approximation of the incident radiance: an evaluation takes 2–25 × less compute time than a path tracing sample. This enables us to estimate the radiance cache integral with a high number of samples and by this achieve faster convergence. For the residual error integral, we compute the difference between the NIRC predictions and the unbiased path tracing simulation. Our method makes no assumptions about the geometry, materials, or lighting of a scene and has only few intuitive hyper-parameters. We provide a comprehensive comparative analysis in different experimental scenarios. Since the algorithm is trained in an on-line fashion, it demonstrates significant noise level reduction even for dynamic scenes and can easily be combined with other noise reduction techniques.


Verlagsausgabe §
DOI: 10.5445/IR/1000181325
Veröffentlicht am 28.04.2025
Originalveröffentlichung
DOI: 10.1111/cgf.70050
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Visualisierung und Datenanalyse (IVD)
KIT-Bibliothek (BIB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 0167-7055, 1467-8659
KITopen-ID: 1000181325
Erschienen in Computer Graphics Forum
Verlag John Wiley and Sons
Band 44
Heft 2
Seiten Art.-Nr.: e70050
Vorab online veröffentlicht am 18.04.2025
Nachgewiesen in OpenAlex
Scopus
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page