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Abstract
In this paper a robust and effective 4–node shell element for the structural analysis of thin structures is described. A Hu–
Washizu functionalwith independent displacements, stress resultants and shell strains is the variational basis of the formulation.
With application of three basic assumptions within the FE formulation a stabilized one point integrated element comes out
automatically. Besides static computations it can be used for dynamic problems with explicit or implicit time integration
without further adaptions. The element possesses the correct rank and fulfills the membrane and bending patch test. The
stabilization terms can be integrated analytically and do not require an input of problem dependent control parameters.
In contrast to several approaches the results are not path dependent for hyperelastic material behavior. This unphysical
behavior follows when the material matrix of the last load increment is used in the stabilization matrix to preserve quadratic
convergence in the Newton-Raphson iteration. The element possesses the well-known robustness of Hu–Washizu elements
with the possibility of very large load steps in nonlinear applications. Another essential advantage of present development
is the application to FE2 computations where the computing times are dominated by the solution of the micro problems at
the shell integration points. Depending on the used interpolation for the shell strains the new element is approximately by a
factor 4 or 9 faster than the corresponding version with full integration.

Keywords Reissner–Mindlin shell theory · Hu–Washizu variational principle · One point integration and physical hourglass
stabilization · High accuracy for coarse and distorted meshes · Possibility of very large load steps · Fast stiffness computation

1 Introduction

Nonlinear structural analysis of thin structures requires
effective and robust element formulations. Especially the
possibility of large solution steps and high accuracy when
using reasonable unstructured meshes are desired properties.

To bypass the difficulties caused by C1–requirements of
theKirchhoff–Love theorymany of the shellmodels consider
transverse shear deformations within a Reissner–Mindlin
theory. Low order elements like quadrilaterals using a stan-
dard displacement interpolation are characterized by locking
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phenomena and lead to unacceptable stiff results when rea-
sonable refined finite elementmeshes are employed. In shells
two types of locking occur: transverse shear locking in which
bending modes are excluded and nearly all energy is stored
in transverse shear terms, and membrane locking in which
bending energy is restrained and energy is stored in mem-
brane terms. In the following only 4-node Reissner–Mindlin
shell elements are discussed.

An effective method to avoid transverse shear locking
is based on assumed shear strains first proposed in Ref.
[1], and subsequently extended among others in [2–4]. The
assumed strain method has also been applied to approxi-
mate the membrane strains, e.g. [5–7]. The basis for these
methods are multi-field variational principles. Especially for
linear elasticity the Hellinger–Reissner functional is ade-
quate as variational foundation for mixed elements, e.g. [8,
9]. In case of nonlinear material laws a local iteration for
the determination of the physical strains is necessary. Hence,
a Hu–Washizu functional with independent displacements,
stresses and strains seems to be more appropriate, e.g. [10–

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-025-02616-2&domain=pdf
http://orcid.org/0000-0001-7274-869X
http://orcid.org/0000-0001-5809-4538


Computational Mechanics

18]. Within the so–called enhanced strain formulation the
assumed stresses are eliminated from the set of equations
using orthogonality conditions and a two field formula-
tion remains, [19, 20]. This approach has been successfully
applied for shell problems in a multiplicity of publications.

One point quadrature of 4-node shell elements have been
first developed by Belytschko et al. [21, 22]. These type of
elements have to be stabilized to avoid so–called hourglass
modes. In [23] a resultant-stress degenerated shell element
is presented. The approach permits use of three-dimensional
constitutive equations. The kinematics are improved such
that the element [24] is accurate for warped configurations.
A nodal projection is added and as a result the element
passes the quadratic transverse-deflection patch test. The
application of empirical problem dependent parameters was
abandoned in [25] with the construction of a physical stabi-
lization control. Some correction terms lead to coupling of
the membrane strains with the rotations. Without the correc-
tion the element undergoes artificial membrane strains due
to rigid body rotations in case of warped configurations. Fur-
thermore, the interpolation functions [4] are incorporated
to approximate the transverse shear strain. For nonlinear
explicit dynamics two further assumptions are made. Based
on above publications the authors of [26] include so-called
drilling rotations into the formulation. This allows the assem-
bly with spatial beams or the discretization of intersecting
shells. In [27] an unidimensional tangent modulus is used
in order to compute the stabilization forces for non-linear
material behavior.

A general purpose shell element for nonlinear applica-
tions including sheet metal forming simulation is developed
based on reduced integration with one point quadrature in
[28]. The rigid body projection is introduced to treat rigid
body rotations effectively. Through-thickness deformation
is included in [29] leading to a 7-parameter theory. Thereby
thickness change and also a linear variation of thickness
stretch is accounted for. The formulation [30] takes coupling
between the hourglass field and enhanced assumed strain
variables into consideration. With improvement of the mem-
brane formulation the elements passes the patch tests [31].
The Hellinger-Reissner principle is the variational founda-
tion of the one point integrated shell element [32]. A reduced
integrated and stabilized version of theMITC4+ element [33,
34] is recently proposed in [35]. The developed degener-
ated shell element is implemented into an implicit static and
explicit dynamic finite element code.

In most of the above discussed papers the underlying Hu–
Washizu variational functional is applied in a special form.
The assumed stress field is chosen orthogonal to the differ-
ence between the interpolated strain and the standard strain
and a two-field variational formulation as in the enhanced
strain method remains [19, 20].

Another possibility to analyze shell structures is the use of
one point integrated solid elements with hourglass stabiliza-
tion [36–38]. In [39] the Taylor expansion of the Second
Piola-Kirchhoff stress tensor is performed. For inelastic
problems a secantmodulus is used to define an artificial hour-
glass shear modulus.

The essential features and new aspects of present formu-
lation are as follows:

(i) We apply the kinematic assumptions of the nonlinear
Reissner–Mindlin shell theory. The variational for-
mulation is based on a Hu–Washizu functional with
independent displacements, stress resultants and shell
strains. In contrast to existing approaches the assumed
stress resultants are not eliminated using some orthog-
onality conditions.

(ii) The finite element formulation for 4–node elements is
specified, where the ansatz functions for the indepen-
dent quantities are taken fromour previous publications
[11–13]. The element has the standard 5 or 6 degrees
of freedom at the nodes, possesses the correct rank and
fulfills the membrane and bending patch test. It can
be applied to linear and nonlinear shell problems with
kinks or intersections. The element is free of locking,
thus shows a high accuracy for coarse and distorted
meshes.

(iii) The application of three basic assumptions leads
directly to an element formulation with one point
quadrature and hourglass stabilization. The input of
problemdependent control parameters is not necessary.
In contrast to existing approaches no additional projec-
tions of some element matrices have to be applied in
case of warped elements. In several existing formu-
lations the constant material matrix of the last load
increment is used to preserve quadratic convergence
in the Newton–Raphson iteration. This leads to a path
dependency even for hyperelastic material behavior. In
present approach the actual matrix can be used which
avoids this unphysical feature.

(iv) The stabilization terms can be integrated analytically.
Thereby a series expansion of the geometrical shell
strains as well as the associated variation and lineariza-
tion is performed. The element formulation inherits
the well-known robustness of Hu–Washizu elements
in nonlinear problems with large deformations. Very
large load steps can be applied in comparison with
standard displacement elements or enhanced strain ele-
ments. The element formulation can be applied to large
strain problems. Without further adaptions dynamic
shell problems along with explicit or implicit time inte-
gration methods can be computed.

(v) With present one point integrated element the com-
puting times can be significantly reduced. This holds
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especially for FE2 computations where the computing
times are dominated by the solution of the micro prob-
lems associated with the integration points of the shell.

2 Hu–Washizu variational formulation

Let B be the three–dimensional Euclidean space occupied
by the shell of thickness h in the reference configuration.
With ξ i we denote a convected coordinate system of the
body. The coordinate in thickness direction ξ3 is bounded
by h− ≤ ξ3 ≤ h+, where h− and h+ are the coordinates of
the outer surfaces. Thus, the reference surface can arbitrarily
be chosen. For below computed examples we used the mid
surface. In the following the summation convention is used
for repeated indices, where Latin indices range from 1 to 3
and Greek indices range from 1 to 2. Commas denote partial
differentiation with respect to the coordinates ξα . The coor-
dinate on the boundary � = �u ∪ �σ of the initial reference
surface � is denoted by s.

The position vectors of the initial and current shell ref-
erence surface are denoted as X(ξ1, ξ2) and x(ξ1, ξ2),
respectively. Hence, the displacement vector of the refer-
ence surface is defined with u = x − X. A vector field
D(ξ1, ξ2) with |D(ξ1, ξ2)| = 1, associated with the initial
configuration, is introduced. The unit directord of the current
configuration is obtained by an orthogonal transformation of
the initial vector D. With x,α ·d �= 0 shear deformations are
accounted for within the Reissner–Mindlin theory.

The shell is loaded statically by surface loads p̄ on � as
well as by boundary loads t̄ on the boundary �σ . The loads
are assumed to be independent of the displacements. Hence,
the variational foundation using the Hu–Washizu functional
reads

�(v, σ , ε) =
∫

�

[W (ε) + σ T (εg(v) − ε) − uT p̄] dA

−
∫

�σ

uT t̄ ds → stat. (1)

with v = [u,d]T , dA = j dξ1 dξ2 and j = |X,1 ×X,2 |.
The geometric shell strains are derived inserting the kine-
matic assumptions into the covariant components of the
Green-Lagrange strain tensor. They are organized in the vec-
tor

εg(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T , (2)

where the membrane strains εαβ , curvatures καβ and trans-
verse shear strains γα read

εαβ = 1

2
(x,α ·x,β −X,α ·X,β )

καβ = 1

2
(x,α ·d,β +x,β ·d,α −X,α ·D,β −X,β ·D,α )

γα = x,α ·d − X,α ·D . (3)

The strain energy densityW is a function of the independent
shell strains ε with components in a sequence as in Eq. (2).
In case of linear elasticity it holdsW (ε) = 1

2ε
TC ε where C

is the constant elasticity matrix. The vector of independent
stress resultants

σ = [n11, n22, n12,m11,m22,m12, q1, q2]T (4)

is defined with membrane forces nαβ = nβα , bending
moments mαβ = mβα and shear forces qα .

Introducing θ := [v, σ , ε]T and admissible variations
δθ := [δv, δσ , δε]T the stationary condition associated with
functional (1) reads

δ� := g(θ, δθ) =
∫

�

[δεT (∂εW − σ ) + δσ T (εg − ε)

+δεTg σ ] dA + gext = 0

gext = −
∫

�

δuT p̄ dA −
∫

�σ

δuT t̄ ds . (5)

With integration by parts and application of standard argu-
ments of variational calculus one obtains the associated
Euler–Lagrange equations. These are the static field equa-
tions, the geometric field equations and the constitutive
equations in �, as well as the static boundary conditions
on �σ , see [11].

The associated finite element equations are iteratively
solved applying a Newton–Raphson iteration. For this pur-
pose the linearizationof the stationary condition (5) is derived
with C = ∂2εW as

L [g(θ, δθ),�θ ] := g(θ, δθ) + Dg · �θ

= gext +
∫

�

�δεTg σ dA +
∫

�

⎡
⎢⎣

δεg

δσ

δε

⎤
⎥⎦
T

⎧⎪⎨
⎪⎩

⎡
⎢⎣

σ

εg − ε

∂εW − σ

⎤
⎥⎦ +

⎡
⎢⎣

0 18 0
18 0 −18
0 −18 C

⎤
⎥⎦

⎡
⎢⎣

�εg

�σ

�ε

⎤
⎥⎦

⎫⎪⎬
⎪⎭ dA ,

(6)

where 1n denotes a unit matrix of order n. The geometric
boundary conditions v = v̄ on �u have to be fulfilled as
constraints.

Remark It is important to note that for inelastic material
behavior Eq. (1) does not hold, whereas the successive ones
are applicable.We keep the notation ∂εW for the stress resul-
tants computed from thematerial law. They are obtainedwith
the respective inelastic material law for the stresses and a
thickness integration [11, 40].
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3 Finite element equations

The isoparametric concept for 4-node elements using bilinear
functions NI (ξ, η) = 1

4 (1 + ξI ξ) (1 + ηI η) is applied. For
the coordinates of the unit square holds −1 ≤ {ξ, η} ≤ 1
and ξI ∈ {−1, 1, 1,−1}, ηI ∈ {−1,−1, 1, 1}. The con-
stant orthonormal element coordinate system is denoted by
[t1, t2, t3], see [13].Hence, the JacobianmatrixJ is expressed
as

J =
[
J11 J12
J21 J22

]
=

⎡
⎣Xh,ξ ·t1 Xh,ξ ·t2
Xh,η ·t1 Xh,η ·t2

⎤
⎦

.

(7)

The superscript h refers to the finite element approximation
of the particular quantity, and commas denote partial deriva-
tives with respect to ξ or η. It holds

Xh,ξ = G0
ξ + ηG1 G0

ξ = 1

4

4∑
I=1

ξI XI

Xh,η = G0
η + ξ G1 G0

η = 1

4

4∑
I=1

ηI XI

G1 = 1

4

4∑
I=1

ξI ηI XI ,

(8)

where XI denote the nodal position vectors.
The matrix

T =
⎡
⎣T0 0 0

0 T0 0
0 0 T̃0

⎤
⎦

with

T0 =

⎡
⎢⎢⎣

J 011 J
0
11 J 021 J

0
21 a J 011 J

0
21

J 012 J
0
12 J 022 J

0
22 a J 012 J

0
22

b J 011 J
0
12b J 021 J

0
22 J

0
11 J

0
22 + J 012 J

0
21

⎤
⎥⎥⎦

and

T̃0 =
[
J 011 J 021
J 012 J 022

]

(9)

causes a transformation of contravariant tensor components
to the constant element base system ti . The entries J 0αβ are the
components of J evaluated at the element center. The factors
a and b are specified below. Detailed investigations on the
use of ansatz functions for contravariant stress and strain
components in the framework of a Hu–Washizu functional
are contained in Ref. [15].

The finite element approximation of the shell strains reads

εhg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 (xh,1 ·xh,1 −Xh,1 ·Xh,1 )

1
2 (xh,2 ·xh,2 −Xh,2 ·Xh,2 )

xh,1 ·xh,2 −Xh,1 ·Xh,2

xh,1 ·dh,1 −Xh,1 ·Dh,1

xh,2 ·dh,2 −Xh,2 ·Dh,2

xh,1 ·dh,2 +xh,2 ·dh,1 −Xh,1 ·Dh,2 −Xh,2 ·Dh,1

J−1

{ 1
2 [(1 − η) γ B

ξ + (1 + η) γ D
ξ

1
2 [(1 − ξ) γ A

η + (1 + ξ) γ C
η ]

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

With incorporation of the assumed transverse shear strain
interpolation [4] using the shear strains of the midside nodes
γ A
η , γ B

ξ , γ C
η , γ D

ξ the bending patch test can be fulfilled [11].
Furthermore, it holds

xh,α =
4∑

I=1

NI ,α (XI + uI ) α = 1, 2

dh,α =
4∑

I=1

NI ,α dI

(11)

with the shape function derivatives NI ,α and the nodal vec-
tors XI ,uI ,dI . The nodal director vector dI is computed
with the initial director DI and rotational parameters ϕ I by
orthogonal transformations. The analogues relations hold for
Xh,α and Dh,α .

The finite element approximation of the vector δθh :=
[δεhg, δσ h, δεh]T can be written as
⎡
⎣

δεhg

δσ h

δεh

⎤
⎦ =

⎡
⎣B 0 0
0 Nσ 0
0 0 Nε

⎤
⎦

⎡
⎣ δv̂

δσ̂

δε̂

⎤
⎦

δθh = Nθ δθ̂ .

(12)

The matrix B with assumed strain interpolation [4] is spec-
ified in [11]. The matrix Nσ for the interpolation of σ h =
Nσ σ̂ is chosen as

Nσ = [N1
σ ,N2

σ ] N1
σ = 18 N2

σ = Tσ Mσ

with

Mσ =
⎡
⎣Mm

σ 0 0
0 Mb

σ 0
0 0 Ms

σ

⎤
⎦ (13)

and

Mm
σ = Mb

σ =
⎡
⎣η − η̄ 0

0 ξ − ξ̄

0 0

⎤
⎦ , Ms

σ =
[

η − η̄ 0
0 ξ − ξ̄

]
,

where Tσ = T with a = 2 and b = 1.

123



Computational Mechanics

The constants ξ̄ = ∫
�e

ξ dA/Ae and η̄ = ∫
�e

η dA/Ae

are the coordinates of the center of gravity of an element with
area Ae = ∫

�e
dA and fulfill

∫

�e

(ξ − ξ̄ ) dA = 0
∫

�e

(η − η̄) dA = 0 . (14)

These constants are important to obtain decoupled matrices
for the one point quadrature. For rectangular elements holds
ξ̄ = η̄ = 0. The parameter vector σ̂ = [σ̂ 1, σ̂ 2]T contains
8 parameters for the constant part and 6 parameters for the
varying part of the stress resultants. The interpolation of the
membrane forces and bending moments corresponds to the
membrane part in Ref. [41]. The original approach for plane
stress problems was published with ξ̄ = η̄ = 0 in Ref. [42].

The matrix Nε for the interpolation of the independent
strains εh = Nε ε̂, where ε̂ = [ε̂1, ε̂2, ε̂3]T , ε̂1 ∈ R

8, ε̂2 ∈
R
6, ε̂3 ∈ R

n , is chosen as

Nε = [
N1

ε,N
2
ε,N

3
ε

]
N1

ε = 18 N2
ε = Tε M2

ε N3
ε = Tε M3

ε ,
(15)

whereTε = Twith a = 1, b = 2. The interpolation matrices
are chosen as

M2
ε = Mσ M3

ε =
⎡
⎣M3m

εn
0
0

⎤
⎦
8×n

M3m
εn =

⎡
⎣ ξ 0 0 0 ξ η 0 0 η̂ 0 ξ̂ 0 0 0
0 η 0 0 0 ξ η 0 0 ξ̂ 0 η̂ 0 0
0 0 ξ η 0 0 ξ η 0 0 0 0 η̂ ξ̂

⎤
⎦

,

(16)

where ξ̂ := ξ (η2 − c), η̂ := η (ξ2 − c). The shape fac-
tor c considers the deviation of the element geometry from
a square [43]. The index n ∈ {0, 2, 4, 7, 9, 11, 13} has the
meaning that optionally the first n columns are taken. With
n = 0 the matrix N3

ε and the related parameter vector ε̂3 are
omitted.

The finite element approximation of the virtual work of p̄
and t̄ leads to

ghext = −
numel∑
e=1

δv̂T fa . (17)

Here, numel denotes the total number of finite shell elements
to discretize the problem and fa corresponds to the load vec-
tor of a standard displacement element. Furthermore, it holds

∫

�

�δεhTg σ h dA =
numel∑
e=1

δv̂TKg�v̂ Kg =
∫

�e

Kσ dA ,

(18)

where Kσ is specified in detail in Ref. [11].
We now insert δθh = Nθ δθ̂ according to Eqs. (12) and the

corresponding equation �θh = Nθ �θ̂ along with Eqs. (17)
and (18) into the linearized variational equation (6), which
now reads

L [g(θh, δθh),�θh]=
numel∑
e=1

⎡
⎣ δv̂

δσ̂

δε̂

⎤
⎦
T

e

⎧⎨
⎩

⎡
⎣ f i − fa

fs

fe

⎤
⎦ +

⎡
⎣Kg GT 0

G 0 FT

0 F H

⎤
⎦

⎡
⎣ �v̂

�σ̂

�ε̂

⎤
⎦

⎫⎬
⎭

e

(19)

with

f i =
∫

�e

BT σ h dA = GT σ̂ F = −
∫

�e

NT
ε Nσ dA

fs =
∫

�e

NT
σ εhg dA + FT ε̂ G =

∫

�e

NT
σ B dA

fe =
∫

�e

NT
ε ∂εW dA + F σ̂ H =

∫

�e

NT
ε CNε dA .

(20)

Let L[g(θh, δθh),�θh] = 0 with δθ̂e = [δv̂, δσ̂ , δε̂]Te
�= 0. One obtains for each element the set of equations

⎡
⎣Kg GT 0

G 0 FT

0 F H

⎤
⎦

⎡
⎣ �v̂

�σ̂

�ε̂

⎤
⎦ +

⎡
⎣ f i − fa

fs

fe

⎤
⎦ =

⎡
⎣ r
0
0

⎤
⎦

.

(21)

At equilibrium states holds fs = fe = 0. The vector of
element nodal forces r cancels out with the assembly.

4 One point quadrature and stabilization

One key aspect of the one point quadrature is the vector fe =
[fe1 , fe2 , fe3 ]T according to Eq. (20). Three basic assumptions
are made:

1. fei = 0, i = 2, 3 within each iteration step

2. ∂εW = constant within an element

3.
∫
�e

εhg dA = Ae εg0 εg0 = εhg(ξ = η = 0)

(22)

From (22)3 follow the corresponding equations for the virtual
strains δεhg = B δv̂, the linearized strains �εhg = B�v̂ and
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the expression �δεhTg σ h = δv̂TKσ �v̂ for the linearized
virtual strains. Thus, it holds

∫

�e

B dA = Ae B0 B0 = B(ξ = η = 0)

∫

�e

Kσ dA = Ae Kσ0 Kσ0 = Kσ (ξ = η = 0) . (23)

From (22)2 follows C = ∂2εW = constant within an
element. The assumption (22)1 and C = constant lead
with Eq. (14) to decoupling in the matrix H = HT , thus
H12 = H13 = 0. Concerning the structure of F we refer to
the discussion in [13].

The vectors andmatrices (18)2 and (20) are now expressed
with (13–16) and (22–23)

F =
⎡
⎣F11 0

0 F22
0 0

⎤
⎦

F11 = −Ae 18

F22 = −
∫

�e

N2T
ε N2

σ dA

H =
⎡
⎣H11 0 0

0 H22 H23
0 H32 H33

⎤
⎦

H11 = Ae C

Hi j =
∫

�e

NiT
ε CN j

ε dA i, j = 2, 3

G =
[
G1
G2

] G1 = Ae B0

G2 =
∫

�e

N2T
σ B dA

Kg = Kg1 + Kg2

Kg1 = Ae Kσ0

Kg2 =
∫

�e

Kσ (σ h) dA

σ h = N2
σ σ̂ 2

f i =
[
f i1
f i2

] f i1 = Ae BT
0 σ̂ 1

f i2 = GT
2 σ̂ 2

fe =
⎡
⎣ fe1
fe2
fe3

⎤
⎦ fe1 = Ae (∂εW − σ̂ 1)

fe2 = 0
fe3 = 0

fs =
[
fs1
fs2

] fs1 = Ae(εg0 − ε̂1)

fs2 =
∫

�e

N2T
σ εhg dA + FT22 ε̂2 .

(24)

The integrals in (24) can be integrated analytically, see
Appendix A. For this purpose the series expansion of the

geometrical membrane strains and curvatures up to linear
terms in ξ and η is derived. Hence, positive whole-number
powers of the coordinates ξ and η appear in the integrands.
With the associated variation and linearization this is done
in an analogues way for the corresponding submatrices in
B and Kσ . The alternative is a numerical Gauss integration.
Depending on the number of interpolation functions n in Eq.
(16) a 2× 2 or 3× 3 integration is necessary. In this case the
series expansion is not necessary.

The incremental strains �ε̂3 are eliminated from F�σ̂ +
H�ε̂ + fe = 0 by static condensation

⎡
⎣F11 0

0 F22

0 0

⎤
⎦

[
�σ̂ 1

�σ̂ 2

]
+

⎡
⎣H11 0 0

0 H22 H23

0 H32 H33

⎤
⎦

⎡
⎣�ε̂1

�ε̂2
�ε̂3

⎤
⎦ +

⎡
⎣ fe1

0
0

⎤
⎦ =

⎡
⎣0
0
0

⎤
⎦

(25)

which leads with

�ε̂3 = −H−1
33 H32 �ε̂2 (26)

and H̄22 = H22 − H23H
−1
33 H32 to

F1 �σ̂ + H1 �ε̄ + f̄e1 = 0

F1 =
[
F11 0
0 F22

]
, H1 =

[
H11 0
0 H̄22

]
,

�σ̂ =
[

�σ̂ 1

�σ̂ 2

]
, �ε̄ =

[
�ε̂1
�ε̂2

]
, f̄e1 =

[
fe1
0

]
(27)

Hence, Eq. (21) becomes

⎡
⎣Kg GT 0

G 0 FT
1

0 F1 H1

⎤
⎦

⎡
⎣ �v̂

�σ̂

�ε̄

⎤
⎦ +

⎡
⎣ f i − fa

fs

f̄e1

⎤
⎦ =

⎡
⎣ r
0
0

⎤
⎦

.

(28)

Since the stresses and strains are interpolated discontinuously
across the element boundaries the parameters�ε̄ and�σ̂ can
be eliminated from the set of equations

�σ̂ = −F−1
1 (H1 �ε̄ + f̄e1)

�ε̄ = −F−T
1 (G�v̂ + fs) .

(29)

Due to the special structure of F1 the inverse matrix can
easily be computed. Only submatrices of order two have to
be inverted. Equations (29) are inserted into (28) to obtain

123



Computational Mechanics

Ke
T �v̂ + f̂ = r. With

Ĥ = F−1
1 H1 F

−T
1 =

[
Ĥ11 0
0 Ĥ22

]

Ĥ11 = F−1
11 H11 F

−T
11 = 1

Ae
C

Ĥ22 = F−1
22 H̄22 F

−T
22

(30)

one gets the tangential element stiffness matrix

Ke
T = GT Ĥ G + Kg

= GT
1 Ĥ11G1 + GT

2 Ĥ22G2 + Kg

= Ae BT
0 CB0 + Kstab + Kg

(31)

as sum of the one point integrated part Ae BT
0 CB0, the sta-

bilization matrix Kstab = GT
2 Ĥ22G2 and the geometrical

matrix Kg = Kg1 + Kg2. The sum Ae BT
0 CB0 + Kg1

corresponds to the tangential element stiffness matrix of a
displacement element computed by one point quadrature.
Without the stabilization the element stiffness matrix holds
12 zero eigenvalues. With stabilization the matrix possesses
with six zero eigenvalues the correct rank, see Sect. 5.1.

The element residual vector yields

f̂ = GT (σ̂ + Ĥ fs − F−1
1 f̄e1) − fa

= GT
1 (σ̂ 1 + Ĥ11 fs1 − F−1

11 fe1) + GT
2 (σ̂ 2 + Ĥ22 fs2) − fa

= Ae BT
0 [σ̂ 1 + C (εg0 − ε̂1) + (∂εW − σ̂ 1)]

+GT
2 (σ̂ 2 + Ĥ22 fs2) − fa

= Ae BT
0 [∂εW + C (εg0 − ε̂1)] + GT

2 Ĥ22 fs2 + fstab − fa

(32)

The sum Ae BT
0 ∂εW − fa corresponds to the element resid-

ual vector of a one point integrated displacement element.
The terms C (εg0 − ε̂1) and GT

2 Ĥ22 fs2 vanish at an equi-
librium configuration. Within the Newton iteration they lead
along with the associated parts ofKe

T to the superior conver-
gence behavior of aHu–Washizu element with the possibility
of very large load steps in comparison with a displacement
element or an enhanced strain element. In this context we
refer to the detailed investigations in Refs. [11, 12]. It should
be noted that in this respect also measures can be taken to
improve the robustness of displacement based elements and
enhanced strain elements [44, 45]. The vector fstab = GT

2 σ̂ 2

is crucial for the element stabilization at equilibrium states.
For implicit time integration methods in dynamic compu-
tations Ke

T and f̂ are unaltered used to setup the effective
stiffness matrix and the effective right hand side. For explicit
time integrationmethods only f̂ is exploited for each element.

The update of the parameters σ̂ ⇐ σ̂ + �σ̂ and ε̂ ⇐
ε̂+�ε̂with�σ̂ = [�σ̂ 1,�σ̂ 2]T ,�ε̂ = [�ε̂1,�ε̂2,�ε̂3]T
is performed using Eqs. (29) and (26). For this purpose the

Table 1 Used element labels

DISP-FI Displacement element with full integration

DISP-RI Displacement element with one point integration

without stabilization

HW-FI Hu–Washizu element with full integration

HW-RI Hu–Washizu element with one point integration

and stabilization

necessary matrices for it have to be stored or to be recom-
puted. The shell elements possess ndf = 5 or 6 degrees of
freedom (dofs) at the nodes. At nodes on kinks or intersec-
tions 6 dofs (3 global displacements and 3 global rotations)
and at the remaining nodes 5 dofs (3 global displacements
and 2 local rotations) are present.

Remark In the publications of Belytschko et al. [21–25] the
so-called gamma stabilization technique has been used to
setup Kstab and fstab. From our knowledge it is not possi-
ble to establish a connection to present representation of the
stabilization terms.

5 Examples

The derived element formulation is implemented in an
extended version of the general purpose finite element pro-
gram FEAP [46]. If not explicitly stated, the computations
are carried out with n = 13, thus the complete matrix N3

ε

according to Eqs. (15) and (16) is considered. For all exam-
ples with homogeneous material the shear correction factor
κ = 5/6 is used. In below presented diagrams the solu-
tions are labeled with the abbreviations according to Table 1,
where for the Hu–Washizu element full integration means a
2×2 integration for n ≤ 7 and a 3×3 integration for n > 7.
All element versions use the transverse shear approximations
[4]. The displacement element DISP-FI corresponds to the
MITC4 element.

5.1 Eigenvalue analysis of the element stiffness
matrix

At first, we compute the eigenvalues of the linear element
stiffness matrix. Following Ref. [17] we examine a square
element and a distorted (warped) element with a = 2, h =
0.02, E = 108, ν = 0.3, see Fig. 1.

The element stiffness matrix is of order 20. Both versions
–the one point integrated and the fully integrated element–
lead to six zero eigenvalues corresponding to the six rigid
body modes. The remaining 14 nonzero eigenvalues are
depicted in Fig. 2.
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Fig. 1 Element shapes for the eigenvalue analysis
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Fig. 2 Eigenvalues of the square element (top) and the distorted element
(bottom)

Lower eigenvalues relate to the bendingmodes, and higher
eigenvalues relate to the stiffer membrane- and shear modes.
They are divided by a pronounced jump, see Fig. 2. Both ver-
sions lead to nearly the same results, whereas the eigenvalues
of the displacement element DISP-FI are partly considerable
larger. This is the reason for the stiff behavior in the following
test examples. Furthermore, results for the one point inte-
grated element without stabilization (DISP-RI) are included.
Then twelve zero eigenvalues occur.

Finally, the puremembrane case considering a flat element
(z ≡ 0) is investigated. The distortion in the x − y plane
corresponds to Fig. 1. The out-of plane displacements and the
rotations are fixed. The remaining degrees of freedom are 8
in–plane displacements. Hence there are 3 zero eigenvalues
associatedwith the 3 rigid bodymovements of a flat sheet. As
Fig. 3 shows, two further eigenvalues are very small, which
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Fig. 3 Eigenvalues of the distorted flat element

is not the case for c = 0. Thus, for problems with dominating
membrane deformations c = 0 should be used to avoid an
unstable element behavior.

5.2 Membrane and bending patch test

We investigate the element behavior within a constant mem-
brane and bending patch test as it is depicted in Fig. 4, see
also [47]. A rectangular plate of length a and width b is sup-
ported at the three corners. We consider in-plane loading and
bending loading denoted by load case 1 and 2, respectively.
Both, membrane and bending patch test are fulfilled with
constant normal forces nx = 1, ny = nxy = 0 (load case 1)
and constant bending moments mx = my = mxy = 1 (load
case 2) by present element.

5.3 Cook’s problem

We consider the nonlinear behavior of the well-known
Cook’s membrane, first introduced in [20]. It is a tapered
panel clamped on one end and uniformly loaded with a resul-
tant P = 1 on the other end, see Fig. 5.

Geometrical and material data are h = 1 and E = 2, ν =
1/3. The problem provides a pure membrane test including
element distortions and is a test for handling the in-plane
bending dominated by shear. The discretization is performed
with a N × N mesh. For the displacement uyA we depict
the performance in dependence of N in Table 2 and Fig. 6.
Using present element the total load P = 1 can be applied in
one step with 6 iterations. Findings forMITC4,MITC4+ and
+HW are taken from Table 3 in Ref. [17]. Table 2 contains
also results for geometrical linear strains, see also Ref. [48].

The convergence behavior of theMITC4andMITC4+ele-
ments is relative slow. Solutions for +HW ([17]) and present
element exhibit a fast convergence. As already mentioned in
above eigenvalue analysis the quadratic shape functions (16)
can only be used with c = 0. Otherwise the element formu-
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Fig. 4 Rectangular plate, patch of 5 elements

Fig. 5 Cook’s problem with a 4 × 4 mesh

Table 2 Cook’s problem: convergence behavior uyA − N

FE mesh 4 8 16 32 48

MITC4 7.868 8.960 9.313 9.414 9.435

MITC4+ 7.944 8.996 9.329 9.421 9.440

+HW 9.316 9.418 9.448 9.457 9.459

HW-RI c=0 9.451 9.440 9.444 9.450 9.452

HW-RI c=0 12.084 11.996 11.983 11.982 11.982

geom. linear

Fig. 6 Cook’s problem: convergence behavior uyA − N

Fig. 7 Cook’s problem: deformed mesh for P = 1

lation leads in a pure membrane case to hourglassing. The
deformed mesh for P = 1 is depicted in Fig. 7.

5.4 Twisted beam

We consider the twisted beam problem shown in Fig. 8,
originally introduced in [47]. Geometrical and material data
are L = 12, b = 1.1, thickness h = 0.0032 and E =
29 ·106, ν = 0.22, respectively. The beam is clamped at one
end and is loaded by an out-of-plane acting load Py at point
A. A regular 4 × 24 mesh is chosen for the solution.
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Fig. 8 Twisted beam: geometry and a 4 × 24 regular mesh

Fig. 9 Twisted beam: Py − uzA (top) and Py − uyA (bottom) for the
regular 4 × 24 mesh

Figure9 depicts the load displacement curves of point A
for one point integrated and fully integrated elements as well
as results using the MITC4+ element [34]. The converged
solution is defined via a 32 × 192 regular mesh.

Furthermoremesh distortion is investigated. The distorted
mesh is shown in Fig. 10 together with a flat projection, both
in a perspective view. A ratio Lmax/Lmin = 2 is chosen,
where Lmax and Lmin denote the longest and shortest element
length in the flat projection, respectively.

Fig. 10 Twisted beam: distorted 4 × 24 mesh 1, a perspective view, b
perspective view of the flat projection

Fig. 11 Twisted beam: Py − uzA (top) and Py − uyA (bottom) for the
distorted 4 × 24 mesh

The associated load displacement curves of point A are
contained in Fig. 11. The convergence behavior of the final
displacement uyA for the distorted mesh versus the number
of elements N in width direction is presented in Fig. 12. The
one point integrated element behaves slightly better than the
fully integrated element. In addition, the stiff behavior of a
pure displacement element is documented.

The deformed beam using the distorted mesh for Py =
4 · 10−2 is depicted in Fig. 13.
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Fig. 12 Twisted beam: uyA − N for the distorted mesh

Fig. 13 Twisted beam: deformed beam using the distorted mesh 2 for
Py = 4 · 10−2

5.5 Twisted beam-the dynamic case

Four-node quadrilateral shell elements with one quadrature
point have been widely used in programs with explicit time
integration. Here, we apply present shell formulation with-
out any modification to such a problem class. The above
described twisted beam example, see Fig. 8, is modified in
the following way: a thickness h = 0.32 is chosen, the
constant load Pz(t) = 1 is now acting in z-direction. A
regular 2 × 12 FE-mesh is the basis of the numerical cal-
culations. Linear dynamic analyses using an explicit time
integration (�T = 0.8 · 10−6 s) and an implicit time inte-
gration (Newmark, �T = 1 · 10−4 s) are performed. The
lumped mass matrix is computed for both methods with the
density ρ = 2.5 · 10−4. The results are depicted in Fig. 14.
A very good agreement with the findings of Ref. [24] can be
stated.

Fig. 14 Twisted beam: uzA − t

Fig. 15 Hook problem: geometry and a 4 × 8 × 12 regular mesh

5.6 Hook problem

Next, we consider the hook problem shown in Fig. 15,
referred to in linear analysis as the Raasch challenge, [49].
For the FE-discretization we use N × 2 N × 3 N elements
with N elements in width direction, 2 N elements for the first
arch (radius R1) and 3 N elements for the second arch (radius
R2), see Fig. 15.

Geometrical and material data are R1 = 14, ϕ1 =
60◦, R2 = 46, ϕ2 = 150◦, b = 20, thickness h = 0.02
and E = 3.3 · 103, ν = 0.3, respectively. The structure is
fully clamped at one end and is loaded by a shear load P
applied as a uniformly distributed traction at the free end.
For the solution, we use a regular 4 × 8 × 12 mesh.

Figure16 shows the resulting load–displacement curves of
point A using one point and fully integrated elements. Fur-
thermore, curves for the MITC4+ element [34] are included.
Similar results can be found for the +HW element (see Fig.
12b, 13b of Ref. [17]). The converged solutions are defined
via a 32 × 64 × 96 regular mesh.

A distorted mesh is shown in Fig. 17 together with a flat
projection. Here, Lmax/Lmin = 1.5 is chosen for the first
arch and Lmax/Lmin = 2.0 for the second arch [17].
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Fig. 16 Hook problem: P − ux A (top) and P − uzA (bottom) for the
regular 4 × 8 × 12 mesh

Fig. 17 Hook problem: distorted mesh and flat projection for a 4 × 8
× 12 mesh

Figure18 shows the convergence behavior of displace-
ment uzA of point A versus the number of elements N in

Fig. 18 Hook problem: convergence behavior uzA−N for regular (top)
and distorted (bottom) meshes

width direction. The results for MITC4, MITC4+ and +HW
are taken from Fig. 12a and 13a in Ref. [17].

A superior behavior of theMITC4+ and +HWelements as
well as of present elements can be seen. The final deformed
regular mesh is depicted in Fig. 19.

5.7 Channel section cantilever

This example demonstrates that present formulation is
able to handle shell intersections. The channel section can-
tilever according to Fig. 20 is a well known test example,
see for instance [50–56]. The dimensions are L = 36 in,
a = 2 in, b = 6 in, h = 0.05 in, where a and b refer to
the center lines of web and flange. One end of the beam is
clamped, at the free end a tip load P is applied. The finite
element mesh consists out of 72 elements in longitudinal
direction of the beam and 8/24/8 elements in circumferen-
tial direction of the cross section. The elasticity data are
E = 107 lb/in2 and ν = 0.333, whereas plastic behav-
ior without hardening is characterized by the yield stress
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Fig. 19 Hook problem: deformed mesh for P = 1

Fig. 20 Channel section cantilever with a mesh of 36 × 20 elements

Y0 = 5 · 103 lb/in2. A small strain material law is used to
describe the J2-elastoplastic behavior.

The calculation is carried out applying the arc-length
method, where the displacement w in direction of the load
is prescribed using displacement control. The thickness inte-
gration of the stress resultants and of the material matrix
is performed with four Gauss quadrature points in total. In
Fig. 21 the computed load P is plotted versus the deflection

Fig. 21 Channel section cantilever: load deflection curve for the vertical
displacement w

Fig. 22 Deformed configuration of the channel section cantilever at
w = 2.5 in with a plot of the normalized von Mises stress σv/Y0 of the
midsurface

w for pure elastic behavior and for elasto-plastic behavior
including an unloading path. Present solutions using one
point quadrature agree with the results of full integration.
The findings of Ref. [54] are also included. In Fig. 22 the
deformed configuration at w = 2.5 in with a plot of the nor-
malized von Mises stress σv/Y0 at the midsurface is shown.
The equivalent plastic strains are less than 2 %.

5.8 Cylindrical shell subjected to large strains

A cylindrical shell with thickness h is depicted in Fig. 23, see
also [40]. The structure is clamped at x2 = L and symmetry
conditions are imposed at x1 = 0 and x3 = 0. The shell is
loaded by a concentrated force F and a distributed tension
load p applied at x2 = 0. In this way the structure undergoes
large strains. For the reference solution using solid shell ele-
ments F is distributed as a line load f = F/h and p as a
surface load q = p/h through the thickness. The geometri-
cal data are summarized in Fig. 23. The material behavior is
described by a Neo-Hookean strain energy
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Fig. 23 Cylindrical shell with a 16 × 16 mesh

W (C) = μ

2
(trC− 3− ln (detC))+ �

4
(detC− 1− ln (detC)) . (33)

Here,C is the right Cauchy-Green tensor. It is computedwith
the independent shell strains ε, see the Hu–Washizu func-
tional (1). The constants are chosen as μ = 2.1125 N/mm2

and � = 1000 N/mm2. With � 
 μ a quasi incompressible
material behavior is considered. The thickness integration of
the stress resultants and of the material matrix is performed
with two Gauss quadrature points in total.

Proportional loading is applied with F = λ F0, p = λ p0,
where λ is the load factor and F0 = 0.25 N as well as
p0 = 0.1 N/mm. The load deflection curves are computed
load controlled with an increase of the load factor λ. They are
shown in Figs. 24 and 25 with u = −u2(0, 0, R) as well as
w = −u3(0, 0, R). With a 32×32mesh converged solutions
are obtained. There is good agreement with the 3D reference
solution computed with a mesh of 64 × 64 × 4 solid shell
elements [57]. Furthermore, the total load can be applied
with only two load steps and 12 iterations. The maximum
initial step size is �λ = 27. With a displacement based ele-
ment or an enhanced strain element such a load step leads to
divergence. Contour plots of the displacements u3 are plotted
with respect to the final deformed configuration in Fig. 26.
The alternative computation of the load deflection curve with
the FE2 method [40] and fully integrated shell elements (3
× 3 Gauss points for n > 7) is by a factor 8.9 longer than
the computation with present one point integrated elements.
This follows from the fact that for FE2 methods the comput-
ing time is dominated by the solution of the micro problems.

5.9 Square plate with spherical inclusions

The last example is computed applying the FE2 algorithm
developed in [40]. We consider an inhomogeneous square
plate according to Fig. 27 with constant loads p̄ = λ · 0.15 ·

Fig. 24 Cylindrical shell: load factor λ versus displacement u

Fig. 25 Cylindrical shell: load factor λ versus displacement w

10−2 kN/cm2 acting half on the upper and half on the lower
surface. The span of the plate is L = 1000 cm and the thick-
ness is h = 50 cm. It is simply supported (soft support) at all
boundaries.

The plate consists of 20× 20 evenly distributed unit cells
with spherical inclusions, see Fig. 27. The dimensions are
lx = ly = h = 50 cm and the diameter of the sphere is
35 cm. The outer material of a cell (Material 1) behaves
elasto-plastic with linear isotropic hardening, whereas the
soft inner material (Material 2) is linear elastic. The material
data are summarized as follows:

Material 1: E1 = 3050 kN/cm2

ν1 = 0.2
Y0 = 3.3 kN/cm2

ξ = 30.5 kN/cm2

Material 2: E2 = 30.5 kN/cm2

ν2 = 0.2

(34)

Hereby, Eα and να (α = 1, 2) denote the respective Young’s
modulus and Poisson’s ratio as well as Y0 and ξ denote the
yield stress and the hardening parameter. A small strainmate-
rial law is used to describe the J2-elastoplastic behavior.

Considering symmetry one quarter of the plate is dis-
cretized with 10 × 10 4-node shell elements. The used
representative volume element (RVE) corresponds to the unit
cell depicted in Fig. 27. It is discretized with 4462 nodes and
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Fig. 26 Cylindrical shell: displacement u3 [mm] (left: 3D, right: 2D HW-RI)

Fig. 27 Square plate with spherical inclusions and unit cell

351 27-noded solid elements. Again considering symmetry
conditions a full 3D discretization of one quarter of the plate
is performed to compute a comparative solution. A plot of the
mesh with 165862 nodes and 11200 27-noded solid elements
is shown in Fig. 28.

The geometrical linear computation of the loading and
unloading path is achieved applying an arclength method
with displacement control and increments �w = 2.5 cm.
The computed load factors λ are plotted versus the center dis-
placement w in Fig. 29. There is good agreement of present
FE2 results with the 3D reference solution. In Fig. 30 a plot
of the normalized von Mises stress σv/Y0 at w = 50 cm is
shown for one quarter of the plate. The deformed plate at
w = 50 cm is depicted in Fig. 31. The displacements are
amplified by a factor two. For present problem the comput-
ing time using a fully integrated element (2 × 2 integration)

Fig. 28 3D mesh of one quarter of the plate

Fig. 29 Load factor λ versus displacement w

Fig. 30 One quarter of the deformed plate, normalized von Mises
stresses σv/Y0 (3D)

is by a factor 3.9 longer than that for the one point integrated
element.
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Fig. 31 One quarter of the deformed plate at w = 50 cm (above: 3D,
below: 2D HW-RI + FE2)

6 Conclusions

The computed examples show that the new one point inte-
grated shell element with physical hourglass stabilization
shows an outstanding behavior within the scope of linear
and nonlinear shell computations. The element is free of
locking and reveals a high accuracy for coarse and distorted
meshes. An input of problem dependent control parameters
is not necessary. It can be applied to static and dynamic prob-
lems without further adaptions. Large strain problems can be
accounted for. Themembrane and bending patch tests are ful-
filled. With 5 or 6 nodal degrees of freedoms shell problems
with kinks or intersections can be incorporated. An impor-
tant feature of present element formulation is the remarkable
robustness in nonlinear applications. It allows very large load
steps in comparison to standard element formulations based
on the displacement method or enhanced strain elements.
One further reason of present development is to apply the
element in FE2 computations. Thereby the computing time
is dominated by the solution of themicro problems at the shell
integration points. Depending on the used ansatz functions
for the independent shell strains the new element is approxi-
mately by a factor 4 or 9 faster than the corresponding version
with full integration.

A Analytical integration of some element
matrices

The area element of the shell reference surface dA =
|X,ξ ×X,η | dξ dη can be approximated in case of arbitrary
warped elements by det J ≈ |X,ξ ×X,η |with J according to
(7)

det J = j0 + j1 ξ + j2 η

j0 = (G0
ξ · t1)(G0

η · t2) − (G0
η · t1)(G0

ξ · t2) = |G0
ξ × G0

η|
j1 = (G0

ξ · t1)(G1 · t2) − (G1 · t1)(G0
ξ · t2) = t3 · (G0

ξ × G1)

j2 = (G1 · t1)(G0
η · t2)−(G0

η · t1)(G1 · t2) = t3 · (G1 × G0
η) .

(35)

The reason for the approximation is the constant element
basis system ti in (7). Using (35) the constants ξ̄ and η̄ yield
with the element area Ae = 4 j0

ξ̄ = 1

Ae

∫

(�e)

ξ dA = 1

3

j1
j0

η̄ = 1

Ae

∫

(�e)

η dA = 1

3

j2
j0

. (36)

Furthermore, the following integrals are computed

Ǐ =
[
Ǐ11 Ǐ12
Ǐ21 Ǐ22

]

= 1

Ae

∫

(�e)

[
(ξ − ξ̄ ) (ξ − ξ̄ ) (ξ − ξ̄ ) (η − η̄)

(η − η̄) (ξ − ξ̄ ) (ξ − ξ̄ ) (ξ − ξ̄ )

]
dA

Ǐ11 = 1

3
− η̄2, Ǐ22 = 1

3
− ξ̄2, Ǐ12 = Ǐ21 = −ξ̄ η̄ . (37)

One obtains the same results when ξ̄ or η̄ is omitted in one
of the brackets of the integrand. This follows with Eq. (14).

The first two column vectors of T0 according to Eq. (9)
are defined with b = 1 as

i1 :=

⎡
⎢⎢⎣
J 011 J

0
11

J 012 J
0
12

J 011 J
0
12

⎤
⎥⎥⎦ i2 :=

⎡
⎢⎢⎣
J 021 J

0
21

J 022 J
0
22

J 021 J
0
22

⎤
⎥⎥⎦

.

(38)

With these preliminary results the following matrices can be
integrated analytically.

A.1 Matrix F22

The components Fi j
22 of the matrix

F22 = [Fi j
22]6×6 = −

∫

�e

N2T
ε N2

σ dA (39)
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are computed via Fi j
22 = −F̌ (i j)

22 Ǐ (i j)
22 , where no summation

over the indices (i j) takes place. Here, F̌ (i j)
22 are the compo-

nents of

F̌22 = Ň2T
ε Ň2

σ Ň2
ε = Tε M̌ Ň2

σ = Tσ M̌

M̌ =
⎡
⎣ I3 0 0

0 I3 0
0 0 I2

⎤
⎦ I3 =

⎡
⎣ 1 0
0 1
0 0

⎤
⎦ I2 =

[
1 0
0 1

] (40)

and Ǐ (i j)
22 are the components of

Ǐ22 = Ae

⎡
⎢⎣
Ǐ Ǐ Ǐ
Ǐ Ǐ Ǐ
Ǐ Ǐ Ǐ

⎤
⎥⎦
6×6

(41)

where Ǐ is given in (37). Due to the diagonal structure of
F̌22 the matrix F22 possesses likewise a diagonal structure,
consisting of 2 × 2 submatrices.

A.2 Matrix H22

The components Hi j
22 of the matrix

H22 = [Hi j
22]6×6 (42)

are computed via Hi j
22 = Ȟ (i j)

22 Ǐ (i j)
22 , where no summation

over the indices (i j) takes place. Thereby Ȟ (i j)
22 are the com-

ponents of Ȟ22 = Ň2T
ε C Ň2

ε with Ň2
ε given in (40) and Ǐ (i j)

22

are the components of Ǐ22 according to (41). In general H22

is fully populated.

A.3 Matrix H23

The components Hi j
23 of the matrix

H23 = HT
32 = [Hi j

23]6×n (43)

are computed via Hi j
23 = Ȟ (i j)

23 Ǐ (i j)
23 , where no summation

over the indices (i j) takes place. Thereby Ȟ (i j)
23 are the com-

ponents of Ȟ23 = Ň2T
ε C Ň3

ε with Ň2
ε according to (40) and

Ǐ (i j)
23 are the components of matrix Ǐ23. It holds

Ň3
ε = Tε M̌3

ε

M̌3
ε =

⎡
⎣ M̌3

εm
0
0

⎤
⎦
8×n

M̌3
εm =

⎡
⎣ 1 0 0 0 1 0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 0 0
0 0 1 1 0 0 1 0 0 0 0 1 1

⎤
⎦

Ǐ23 = Ae

⎡
⎣ Î
Î
Î

⎤
⎦

Î =
[
Ǐ12 Ǐ11 Ǐ12 Ǐ11

1
3 ξ̄ 1

3 ξ̄ 1
3 ξ̄ Ī11 Ī21 Ī21 Ī11 Ī11 Ī21

Ǐ22 Ǐ21 Ǐ22 Ǐ12
1
3 η̄ 1

3 η̄ 1
3 η̄ Ī12 Ī22 Ī22 Ī21 Ī12 Ī22

]

(44)

where the integrals Ǐαβ α, β = 1, 2 are computed in (37) and
Īαβ = ( 13 − c) Ǐαβ . In general H23 is fully populated.

A.4 Matrix H33

The components Hi j
33 of the matrix

H33 = [Hi j
33]n×n (45)

are computed via Hi j
33 = Ȟ (i j)

33 Ǐ (i j)
33 , where no summation

over the indices (i j) takes place. Thereby Ȟ (i j)
33 are the com-

ponents of Ȟ33 = Ň3T
ε C Ň3

ε with Ň3
ε according to (44) and

Ǐ (i j)
33 are the components of Ǐ33. It holds

Ǐ33 = Ae

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
0 1

3
1
3 0 1

3
0 1

3 0 1
3 sym.

1
3 η̄ 1

3 ξ̄ 1
3 η̄ 1

3 ξ̄ 1
9

1
3 η̄ 1

3 ξ̄ 1
3 η̄ 1

3 ξ̄ 1
9

1
9

1
3 η̄ 1

3 ξ̄ 1
3 η̄ 1

3 ξ̄ 1
9

1
9

1
9

0 c1 0 c1 c2 c2 c2 c4
c1 0 c1 0 c3 c3 c3 0 c4
c1 0 c1 0 c3 c3 c3 0 c4 c4
0 c1 0 c1 c2 c2 c2 c4 0 0 c4
0 c1 0 c1 c2 c2 c2 c4 0 0 c4 c4
c1 0 c1 0 c3 c3 c3 0 c4 c4 0 0 c4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(46)

where
c1 = 1

9 − 1
3 c , c2 = ( 15 − 1

3 c) ξ̄ ,
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c3 = ( 15 − 1
3 c) η̄ , c4 = 1

3 ( 15 − 2
3 c + c2).

A.5 Vector fs21

Toallow for an analytical integrationof fs21 := ∫
�e

N2T
σ εhg dA

a series expansion of the geometrical membrane strains and
curvatures in εhg = [εm, εb, εs]T at ξ = η = 0 is performed
up to linear terms in ξ and η:

εm = εm0 + ε
ξ
m ξ + ε

η
m η

εm0 := εm(ξ = η = 0) , ε
ξ
m := ∂ξεm , ε

η
m := ∂ηεm

εb = εb0 + ε
ξ
b ξ + ε

η
b η

εb0 := εb(ξ = η = 0) , ε
ξ
b := ∂ξεb , ε

η
b := ∂ηεb .

(47)

Application of the chain rule yields

ε
ξ
m = J 011 ε1m + J 012 ε2m

ε
η
m = J 021 ε1m + J 022 ε2m

ε
ξ
b = J 011 ε1b + J 012 ε2b

ε
η
b = J 021 ε1b + J 022 ε2b

(48)

with

ε1m =
⎡
⎣x,11 ·x,1 −X,11 ·X,1
x,21 ·x,2 −X,21 ·X,2
x,11 ·x,2 +x,21 ·x,1 −X,11 ·X,2 −X,21 ·X,1

⎤
⎦

ε2m =
⎡
⎣x,12 ·x,1 −X,12 ·X,1
x,22 ·x,2 −X,22 ·X,2
x,12 ·x,2 +x,22 ·x,1 −X,12 ·X,2 −X,22 ·X,1

⎤
⎦

ε1b =

⎡
⎢⎢⎣
x,11 ·d,1 +d,11 ·x,1 −X,11 ·D,1 −D,11 ·X,1
x,21 ·d,2 +d,21 ·x,2 −X,21 ·D,2 −D,21 ·X,2
x,11 ·d,2 +d,21 ·x,1 +x,21 ·d,1 +d,11 ·x,2
−X,11 ·D,2 −D,21 ·X,1 −X,21 ·D,1 −D,11 ·X,2

⎤
⎥⎥⎦

ε2b =

⎡
⎢⎢⎣
x,12 ·d,1 +d,12 ·x,1 −X,12 ·D,1 −D,12 ·X,1
x,22 ·d,2 +d,22 ·x,2 −X,22 ·D,2 −D,22 ·X,2
x,12 ·d,2 +d,22 ·x,1 +x,22 ·d,1 +d,12 ·x,2
−X,12 ·D,2 −D,22 ·X,1 −X,22 ·D,1 −D,12 ·X,2

⎤
⎥⎥⎦

.

(49)

In case of a geometrical linear shell element the expressions
in (49) have to be replaced by the corresponding terms of the
linear shell theory. The vectors x,αβ and d,αβ are obtained
with

x,αβ =
4∑

I=1

NI ,αβ (XI + uI ) α, β = 1, 2

d,αβ =
4∑

I=1

NI ,αβ dI

(50)

and in analogues way for X,αβ and D,αβ . Concerning the
second derivatives of the shape functions NI we refer to the
representation in Ref. [58]. Note, that εm0 and εb0 do not
depend on ξ and η and thus can be taken out of the integral.
For this reason they do not contribute to fs21 taking Eqs. (13)
and (14) into account. The series expansion is not necessary
for the transverse shear strains εs . This follows from the
assumed strain interpolation in (10) which directly leads to
positive whole-number powers of ξ and η in the integrand of
fs21.

Considering (47–50) the integration can now be per-
formed. One obtains

fs21 = Ae

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1 · ( Ǐ11 ε
η
m + Ǐ12 ε

ξ
m)

i2 · ( Ǐ21 ε
η
m + Ǐ22 ε

ξ
m)

i1 · ( Ǐ11 ε
η
b + Ǐ12 ε

ξ
b)

i2 · ( Ǐ21 ε
η
b + Ǐ22 ε

ξ
b)

1
2 [ 13 (γ D

ξ − γ B
ξ ) − ξ̄ (γC

η + γ A
η ) − η̄ (γ D

ξ + γ B
ξ )]

1
2 [ 13 (γC

η − γ A
η ) − ξ̄ (γC

η + γ A
η ) − η̄ (γ D

ξ + γ B
ξ )]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(51)

where γ A
η , γ B

ξ , γ C
η , γ D

ξ are specified in [11]. The integrals

Ǐαβ have been computed in (37) and the vectors i1, i2 are
defined in (38).

A.6 Matrix G2

Let BI and G2I be the submatrices of B and G2 =∫
�e

N2T
σ B dA related to node I ∈ {1, 2, 3, 4}, respectively.

The submatrices of BI for membrane, bending and shear

BI =
⎡
⎣ BmI 0

BbI BmITI

Bsu I Bsβ I

⎤
⎦ (52)

are explicitly specified in [11]. To allow for an analytical
integration of G2I the series expansion of BmI and BbI at
ξ = η = 0 is performed up to linear terms in ξ and η:

BmI = BmI0 + Bξ
mI ξ + Bη

mI η

BmI0 := BmI (ξ = η = 0) , Bξ
mI := ∂ξBmI , Bη

mI := ∂ηBmI

BbI = BbI0 + Bξ
bI ξ + Bη

bI η

BbI0 := BbI (ξ = η = 0) , Bξ
bI := ∂ξBbI , Bη

bI := ∂ηBbI .

(53)
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Application of the chain rule yields

Bξ
mI = J 011 B

1
mI + J 012 B

2
mI

Bη
mI = J 021 B

1
mI + J 022 B

2
mI

Bξ
bI = J 011 B

1
bI + J 012 B

2
bI

Bη
bI = J 021 B

1
bI + J 022 B

2
bI

(54)

with

B1
mI =

⎡
⎣ NI ,11 xT,1 +NI ,1 xT,11
NI ,21 xT,2 +NI ,2 xT,21
NI ,11 xT,2 +NI ,21 xT,1 +NI ,2 xT,11 +NI ,1 xT,21

⎤
⎦

B2
mI =

⎡
⎣ NI ,12 xT,1 +NI ,1 xT,12
NI ,22 xT,2 +NI ,2 xT,22
NI ,12 xT,2 +NI ,22 xT,1 +NI ,1 xT,22 +NI ,2 xT,12

⎤
⎦

B1
bI =

⎡
⎣ NI ,11 dT,1 +NI ,1 dT,11
NI ,21 dT,2 +NI ,2 dT,21
NI ,11 dT,2 +NI ,21 dT,1 +NI ,2 dT,11 +NI ,1 dT,21

⎤
⎦

B2
bI =

⎡
⎣ NI ,12 dT,1 +NI ,1 dT,12
NI ,22 dT,2 +NI ,2 dT,22
NI ,12 dT,2 +NI ,22 dT,1 +NI ,1 dT,22 +NI ,2 dT,12

⎤
⎦

.

(55)

Note, that BmI0 and BbI0 do not depend on ξ and η and thus
do not contribute toG2I considering Eqs. (13) and (14). Due
to the assumed interpolation for the transverse shear strains
[4] the series expansion is not necessary for Bsu I and Bsβ I .

Hence, one obtains

G2I = Ae

⎡
⎣GmuI 0
GbuI Gbβ I

Gsu I Gsβ I

⎤
⎦
6×ndf

Gbβ I = GmuITI

GmuI =
[
iT1 ( Ǐ11 B

η
mI + Ǐ12 B

ξ
mI )

iT2 ( Ǐ21 B
η
mI + Ǐ22 B

ξ
mI )

]
=

[
ǧ1I
ǧ2I

]

GbuI =
[
iT1 ( Ǐ11 B

η
bI + Ǐ12 B

ξ
bI )

iT2 ( Ǐ21 B
η
bI + Ǐ22 B

ξ
bI )

]

Gsu I =
[

ξ̂I dTM − 1
4 ξ̄ ηI dTL

η̂I dTL − 1
4 η̄ ξI dTM

]

Gsβ I =
[

η̌I bTM − 1
4 ξ̄ bTL

ξ̌I bTL − 1
4 η̄ bTM

]
(56)

with ξ̂I = 1
4 ξI ( 13 ηI − η̄), η̂I = 1

4 ηI ( 13 ξI − ξ̄ ), ξ̌I =
1
4 ( 13 ξI − ξ̄ ) and η̌I = 1

4 ( 13 ηI − η̄). The integrals Ǐαβ and
the vectors i1, i2 are defined in (37) and (38), respectively.
Furthermore, dM ,dL ,bM ,bL are specified in [11].

A.7 Matrix Kg2

Let KI K be the submatrix of Kg2 = ∫
�e

Kσ (σ h) dA with

σ h = N2
σ σ̂ 2 related to nodes I , K ∈ {1, 2, 3, 4}. To allow

for an analytical integration the series expansion of

NI K :=
⎡
⎣ NI ,1 NK ,1
NI ,2 NK ,2
NI ,1 NK ,2 +NI ,2 NK ,1

⎤
⎦ (57)

at ξ = η = 0 is expressed up to linear terms in ξ and η

NI K = NI K0 + Nξ
I K ξ + +Nη

I K η

NI K0 := NI K (ξ = η = 0) Nξ
I K := ∂ξNI K Nη

I K := ∂ηNI K .

(58)

The vector NI K0 does not depend on ξ and η and therefore
does not contribute to KI K taking Eqs. (13) and (14) into
account. Application of the chain rule yields

Nξ
I K = J 011N

1
I K + J 012 N

2
I K

Nη
I K = J 021N

1
I K + J 022 N

2
I K

(59)

with

N1
I K =

⎡
⎣ NI ,11 NK ,1 +NK ,11 NI ,1
NI ,21 NK ,2 +NK ,21 NI ,2
NI ,11 NK ,2 +NK ,21 NI ,1 +NI ,21 NK ,1 +NK ,11 NI ,2

⎤
⎦

N2
I K =

⎡
⎣ NI ,12 NK ,1 +NK ,12 NI ,1
NI ,22 NK ,2 +NK ,22 NI ,2
NI ,12 NK ,2 +NK ,22 NI ,1 +NI ,22 NK ,1 +NK ,12 NI ,2

⎤
⎦

.

(60)

Hence, one obtains

KI K = Ae

⎡
⎣ n̂ I K 13 (m̂ I K + q̂uβ

I K )TK

(m̂ I K + q̂βu
I K )TT

I δI K M̂I (hI )

⎤
⎦
ndf×ndf

n̂ I K = i1 · ( Ǐ11N
η
I K + Ǐ12N

ξ
I K ) σ̂9 + i2 · ( Ǐ21N

η
I K + Ǐ22N

ξ
I K ) σ̂10

m̂ I K = i1 · ( Ǐ11N
η
I K + Ǐ12N

ξ
I K ) σ̂11 + i2 · ( Ǐ21N

η
I K + Ǐ22N

ξ
I K ) σ̂12

q̂uβ
I K = 1

2 [(̂ξI f 1I K − 1
4 ξ̄ ηI f 2I K ) σ̂13 + (̂ηI f 2I K − 1

4 η̄ ξI f 1I K ) σ̂14]
q̂βu
I K = 1

2 [(̂ξK f 1I K − 1
4 ξ̄ ηK f 2I K ) σ̂13 + (̂ηK f 2I K − 1

4 η̄ ξK f 1I K ) σ̂14]
hI = σ̂11 ǧ1I + σ̂12 ǧ2I

+ σ̂13 (η̌I xM,ξ − 1
4 ξ̄ xL,η ) + σ̂14 (ξ̌I xL,η − 1

4 η̄ xM,ξ )

(61)
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with
ξ̂I = 1

4 ξI ( 13 ηI − η̄), η̂I = 1
4 ηI ( 13 ξI − ξ̄ ),

ξ̌I = 1
4 ( 13 ξI − ξ̄ ), η̌I = 1

4 ( 13 ηI − η̄)

and the corresponding expressions with index K . The quan-
tities σ̂i j are components of the parameter vector

σ̂ 2 = [σ̂9, σ̂10, σ̂11, σ̂12, σ̂13, σ̂14]T .
The integrals Ǐαβ are computed in (37) and the vectors i1, i2,
ǧ1I , ǧ2I are defined in (38), (56) respectively. The factors
f 1I K , f 2I K , the vectors x

M,ξ , xL,η and thematricesTI , M̂I (hI )

are specified in Ref. [11].
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