KIT | KIT-Bibliothek | Impressum | Datenschutz

Insights into the metal cutting contact zone through automation and multivariate regression modelling under the framework of gear skiving

Sauer, Florian 1; Mukherjee, Amartya ORCID iD icon 2; Schulze, Volker 1
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The modern time of Industry 4.0 requires an enhanced prediction process for reliable and sustainable manufacturing. It is essential to understand the relationships between various process parameters of machining for better optimization. Digitalization offers the opportunity to accelerate the prediction process using different modelling such as numerical and data-driven models. Improvements in the knowledge of thermo-mechanical variables and the use of finite element method (FEM) tools and machine learning approaches for thorough thermo-mechanical analysis are noteworthy contributions to the area. However, an ideal standardized approach remains to be resolved. Therefore, this research proposes a development process of an automated FEM tool to simulate the tool-chip interaction for AISI4140 material, coupled with a hybrid multivariate regression model for fast prediction of non-linear relationships between the cutting parameters and the contact properties. Consequently, the study also interprets the tool-chip interactions in the secondary deformation zone, facilitating process optimization for improved machining performance.


Verlagsausgabe §
DOI: 10.5445/IR/1000181489
Veröffentlicht am 06.05.2025
Originalveröffentlichung
DOI: 10.1016/j.simpat.2025.103107
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 1569-190X
KITopen-ID: 1000181489
Erschienen in Simulation Modelling Practice and Theory
Verlag Elsevier
Band 142
Seiten 103107
Schlagwörter Chip formation, Regression modelling, Automation, FE simulation
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 12 – Nachhaltiger Konsum und Produktion
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page