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High-dimensional quantum computing has
generated significant interest due to its poten-
tial to address scalability and error correction
challenges faced by traditional qubit-based sys-
tems. This paper investigates the Average
Gate Fidelity (AGF) of single qudit systems
under Markovian noise in the Lindblad formal-
ism, extending previous work by developing a
comprehensive theoretical framework for the
calculation of higher-order correction terms.
We derive general expressions for the pertur-
bative expansion of the Average Gate Infidelity
(AGI) in terms of the environmental coupling
coefficient and validate these with extensive
numerical simulations, emphasizing the transi-
tion from linear to nonlinear behaviour in the
strong coupling regime. Our findings highlight
the dependence of AGI on qudit dimensional-
ity, quantum gate choice, and noise strength,
providing critical insights for optimising quan-
tum gate design and error correction proto-
cols. Additionally, we utilise our framework to
identify universal bounds for the AGI in the
strong coupling regime and explore the practi-
cal implications for enhancing the performance
of near-term qudit architectures. This study
offers a robust foundation for future research
and development in high-dimensional quantum
computing, contributing to the advancement
of robust, high-fidelity quantum operations.

1 Introduction
High-dimensional quantum computing (QC) has gen-
erated remarkable scientific interest of late, introduc-
ing a shift from traditional computing paradigms.
While qubit-based quantum information processing
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(QIP) platforms, particularly superconducting qubits,
have the highest technological maturity, they are
faced with near-term technical challenges of scalabil-
ity and error correction [1, 2]. On the other hand, re-
cent advancements have highlighted the potential of
qudits — quantum systems with d levels — as power-
ful alternatives for novel QC architectures [3, 4, 5, 6].

Indeed, qudits offer several advantages, including
(i) lower decoherence rates in certain physical systems
[7], (ii) enhanced quantum error correction through
additional levels [8, 9, 10] and stabiliser codes [11],
as well as (iii) higher information density for reduc-
ing circuit complexity and enabling novel algorithm
design [12]. They also promise more robust flying
quantum memories [13, 14].

While classical computing ultimately settled on
bits once sufficient scalability and fault-tolerance were
achieved, early platforms did experiment with multi-
level systems [15]. Analogously, it can be argued
that quantum computing’s infancy stage could bene-
fit from exploring higher-dimensional bases to address
these current issues. In the push towards universal
QC, increasing the total Hilbert space dimension of
quantum systems is critical [16]. This dimension is
determined by dn, where d is the dimensionality and
n the number of qudits. Despite impressive advance-
ments in superconducting platforms [17], scaling the
number of qubits continues to pose significant chal-
lenges. Thus, qudit-based approaches may provide
an avenue for increasing the Hilbert space with fewer
physical units [17, 6, 18, 19].

On the other hand, with the increased num-
ber of excited states utilised to implement higher-
dimensional states in physical systems, qudits may
introduce a greater number of error channels com-
pared to qubits. This could lead to increased sensitiv-
ity to environmental noise, affecting coherence times
and complicating error correction processes [20]. In
a previous paper [21], we studied this scenario in de-
tail by comparing the effects of Markovian noise on
multi-qubit and single-qudit systems of equal Hilbert
space dimension. We developed a theoretical model
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of the first-order effects of the noise in the Lindblad
formalism, demonstrating how the noise impacts the
performance of quantum gates in these different sys-
tems, and supported these results with numerical sim-
ulations.

The fundamental quantities investigated were the
average gate fidelity (AGF, F̄) - equivalently infidelity
(AGI, Ī) - and the figure-of-merit (τ := tgate/T2). As
the name suggests, the AGF is useful in that it in-
tegrates out any specific features due to a particular
choice of initial state. Therefore, unlike the state fi-
delity or process fidelity, which compute the target-to-
output overlaps of quantum state transfers and uni-
tary gates, respectively, the AGF is fundamental as
a platform-agnostic measure of the quality of a sys-
tem’s interaction with its environment [22, 23]. Simi-
larly, the figure-of-merit is important for quantifying
realistically the circuit depth that can be achieved in
a system, based on the gate time, tgate, and decoher-
ence time, T2.

Those results showed that in the quasi-error-free -
weak coupling - regime, the first-order response of the
AGI (a linear function of the dimensionless coupling
strength γtgate) was sufficient to characterise the be-
haviour of the qudit or multi-qubit system. Specifi-
cally, a scaling law was derived, showing how the AGI
is affected by qudit dimension and the conditions on
the figure-of-merit under which qudits may be com-
petitive with multi-qubit systems. These conditions
lead to stricter requirements on the figure-of-merit as
the qudit dimension increases. However, first-order
approximations are insufficient for fully understand-
ing the behavior of qudits under realistic, near-term,
conditions where higher-order noise effects are ex-
pected to become significant, either through stronger
coupling or longer gate times (or circuit depths) ap-
proaching the decoherence limit.

Thus, this paper aims to extend the understand-
ing of the AGF of single qudit systems under Marko-
vian noise conditions through a general perturbative
expansion. Specifically, we focus on higher-order cor-
rection terms and their implications on quantum gate
performance in the strong coupling regime. Building
upon our previous work, we develop a comprehensive
theoretical framework that includes these nonlinear
effects, with a constructive method generalising the
AGF to arbitrary order in γt. This is supported by de-
tailed numerical simulations, with an emphasis on the
differences between the first and second order terms
in the case of pure dephasing. By doing so, we aim to
capture the nuanced impact of noise on the fidelity of
quantum gates more precisely.

The key research question addressed in our study
is: How do higher-order correction terms and noise
coupling strength influence the AGI of single qudit
systems, and what implications do these have for the
selection and design of quantum gates? Our find-
ings provide important insights on: (i) setting bench-

marks, as well as limits, for the performance of noisy
quantum systems of arbitrary dimension by identify-
ing gate-dependent effects, (ii) methodologies for im-
proving performance through optimising basis gates
that have favourable decoherence characteristics, and
(iii) advancing error correction protocols by enabling
the cancellation of higher-order noise effects.

The paper is structured as follows: We begin in
Sec. 2.1 with a review of the relevant theoretical back-
ground concerning the Lindblad formalism for qudit
open quantum systems and the superoperator repre-
sentation of noisy quantum channels, as well as gen-
eralised quantum gates on qudits. In Sec. 2.2, we
present our general result for the perturbative expan-
sion of the AGI in noise strength, deriving the general
expressions to arbitrary order in γt and discussing the
implications of its structure. Section 2.3 examines the
nonlinearity of the AGI in the strong coupling regime
of pure dephasing through numerical simulations that
elucidate key characteristics of this behaviour and mo-
tivate the proceeding investigations that make the link
with the theoretical results. Subsequently, in Sec. 2.4
we explore the gate- and noise-dependence of the AGI,
with particular emphasis on how the choice of quan-
tum gate can influence the performance of the quan-
tum channel. Finally, Sec. 2.5 presents a detailed an-
alytical and numerical study of the first- and second-
order correction terms to the AGI, extending the re-
sults of the previous paper and placing them on a
more rigorous theoretical foundation that serves fu-
ture investigations.

2 Results and Discussion
2.1 Mathematical Foundations of the Average
Gate Fidelity
We begin with the study of a single qudit, of arbi-
trary dimension d, whose state is represented by a
d × d density matrix ρ(t), and evolves according to
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equation [24, 25], which may be expressed in
superoperator form as [26]

∂tρ = S [ρ] + D [ρ] . (1)

Here, setting ℏ = 1, the Liouvillian superoperator S
represents the unitary evolution operator of the von
Neumann equation, and D the dissipation superoper-
ator coupling the qudit to the environment,

S [ρ] := −i [H, ρ] , (2)

D [ρ] :=
K∑

k=1
γkLk[ρ] (3)

=
K∑

k=1
γk

Å
LkρL†

k − 1
2
¶

L†
kLk, ρ

©ã
, (4)
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where H is the time-independent interaction Hamil-
tonian, and Lk one of K possible collapse operators
characterising the Markovian noise with coupling co-
efficient γk and Lk the matrix superoperator form [27].

The solution to the master equation for ρ(0) = ρ0 is
therefore given by the completely-positive and trace-
preserving (CPTP) quantum channel E as [28]

ρ(t) = E [ρ0] (5)
= e(S+D)tρ0. (6)

Considering the application of a quantum gate
U [ρ] = UρU† to the system then corresponds to a
composition operation, that in the matrix superop-
erator representation reduces to the matrix product,
from which we may express the AGF, F̄(E , U), of
implementing a unitary operator over the quantum
channel in the presence of a noisy environment [23]:

F̄(E , U) := 1 − Ī(E , U) (7)

=
∫

H

〈
U†E [ρ0]U

〉
0 dρ0 (8)

=
∫

H

〈(
U† ◦ E

)
[ρ0]
〉

0 dρ0, (9)

where the matrix product has been rewritten in the
superoperator representation. The integral is taken
uniformly over the Haar measure H of the state
space, with the expectation value ⟨A⟩0 = Tr{Aρ0}
representing the average over all initial states. For
convenience, we shall use F̄ and F interchangeably
for the AGF, and likewise for the AGI.

In this study we shall consider pure initial states,
Tr
{

ρ2
0
}

= 1. Then the state space is reduced to
the complex-projective space CPd−1 such that the
Haar measure (over all ρ0) then induces the Fubini-
Study measure, the integral of which is normalised,∫

H dρ0 = 1, [29] and may be calculated analytically
(see Appendix A.3). Furthermore, unless specified, we
shall also assume that: (i) the dissipator term is dom-
inated by a single noise channel, such that D = γL,
(ii) the associated superoperators S and L are time-
independent and (iii) we are working in the interac-
tion picture, such that the free evolution Hamiltonian
H0 = 0d, and therefore S0 = 0d×d such that the
unitary evolution simplifies to U = e(S0+Sc)t = eSt

with S = Sc corresponding to only the control (driv-
ing) Hamiltonian H = Hc implementing the quantum
gate. This allows us to rewrite Eqs. (5) and (6) as

E [ρ0] = e(S+γL)tρ0. (10)

We note that the (d × d) × (d × d) superoperators
acting on the H ⊗ H Hilbert space of the quantum
dynamical semigroup (QDS) may be written explic-
itly in Liouville matrix form in terms of the standard

operator form as [30]:

U [·] := (U∗ ⊗ U) vec (·) , (11)
S [·] := −i

(
1d ⊗ H − HT ⊗ 1d

)
vec (·) , (12)

L [·]

:=
Å

L∗ ⊗ L − 1
2

(
L†L ⊗ 1d +

(
1d ⊗ L†L

)T
)ã

vec (·) ,

(13)

where we identify the adjoint (†), complex-conjugate
(∗) and transpose (T ) operations, 1d the d×d identity
matrix, ⊗ the tensor, or equivalently here for linear
maps, the Kronecker product, and vec(·) the vectori-
sation operation that, when applied to a d×d density
matrix ρ, produces a 1 × d2 column vector by stack-
ing vertically each column of the matrix from left to
right. This corresponds to the explicit mapping

vec(ρ) :
∑
i,j

ρij |i⟩⟨j| →
∑
i,j

ρij |j⟩ ⊗ |i⟩ , (14)

of the quantum state from the Hilbert to the Fock-
Liouville space [27]. Furthermore, the quantum gate
Ug and associated control Hamiltonian Hc (and their
respective superoperator representations U and S) are
related by the matrix exponent (and, inversely) log-
arithm operations. Therefore, given some quantum
gate, it may be implemented by the control term,

Hctg = i log Ug, (15)

where the now time-independent Hc represents a sin-
gle, ideal control pulse that implements the gate in
time tg, which can be modulated by the absolute am-
plitude of the pulse ∥Hc∥. Existence and unique-
ness of the matrix logarithm map are well estab-
lished under the conditions that Ug is unitary and
−π < Hctg ≤ π [31]. This is an idealisation that
necessitates simultaneous control over all pulse am-
plitudes, phases and detunings on each possible tran-
sition between all d states. Platform-dependent phys-
ical constraints on the control pulses may preclude
experimental realisation of such a control term. Nev-
ertheless it allows for a time-optimal multi-chromatic
pulse for studying the robustness of quantum gates
that is independent of constraints imposed by the
physical platform or pulse control technique [32].

We now precisely define the gate and collapse oper-
ators that will be of interest in this study. We be-
gin with the following set of single-qudit quantum
gates Ug ∈ {1, X, Z, F} that generalise the single-
qubit identity, Pauli-x, Pauli-z and Hadamard gates
to d dimensions, and generate the d-dimensional gen-
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eralised Clifford algebra (GCA) [33]

1d :=
d−1∑
j=0

|j⟩⟨j| , (16)

Xd : =
d−1∑
j=0

|(j + 1) mod d⟩⟨j| , (17)

Zd :=
d−1∑
j=0

ωj |j⟩⟨j| , (18)

Fd := 1√
d

d−1∑
j=0

d−1∑
k=0

ωjk |j⟩⟨k| , (19)

where ω := e
2πi

d is the d-th root of unity. The sub-
script d is used to specify the dimension of the opera-
tor, and may be omitted in cases where it is clear from
context or when referring to the general operator. The
X, Z and F gates retain unitarity (and tracelessness
for X and Z) as well as the relations Xd = Zd = 1d

and X = FZF † of involution and change-of-basis, re-
spectively. However, it is worth noting that they are
no longer Hermitian for d > 2. Furthermore, in the
generalised forms, it can be observed that (i) X is ex-
tended from a bit-flip (NOT) gate to a cyclic permu-
tation (INC/ SHIFT) gate that increments the qudit
state, (ii) Z is extended from a phase-flip to a phase-
shift (CLOCK) gate of each state over the d roots of
unity, and (iii) the Walsh-Hadamard gate is extended
to the matrix form of the Quantum Fourier Trans-
form (QFT) (equivalently referred to as the Discrete
Fourier Transform, Sylvester or Chrestenson matrix).

In addition to this discrete set of Clifford gates, we
can also consider non-Clifford gates that may be use-
ful for quantum error correction (QEC) protocols for
universal QC. In general, since the unitary group U
is not finite, any unitary matrix sampled randomly
from, for example, the Haar measure over U will al-
most always be non-Clifford. Therefore, by including
in our investigations the Haar-random gates enables
comparison of the differences in behaviour of the Clif-
ford and non-Clifford gates. More specifically, one
noteworthy non-Clifford gate is the (generalised) π/8
gate [34],

Td :=
d−1∑
j=0

ei jπ
8 |j⟩⟨j| , (20)

which when considered together with the Zd gate, we
may extend to a generalised-PHASE gate

PHASEd(ϕ) :=
d−1∑
j=0

eijϕ |j⟩⟨j| . (21)

Setting ϕ to π
8 , 2π

d or π
4 recovers Td, Zd or the

Sd =
√

Zd gates, respectively, where we may note that

special cases including Zd and Sd are Clifford, while
in general for arbitrary choices of phase, including
ϕ = π

8 , will likely be non-Clifford (see Appendix B.1
for further details on the gate definitions).

Regarding the choice of Markovian collapse opera-
tors L ∈ {Jz, Jx, J−} representing the coupling of the
qudit to the environment in the master equation, we
shall primarily consider the effect of pure dephasing
by the operator Jz, and of secondary consideration
are the bit-flip error and spin relaxation effected by
the operators Jx and J−, respectively. These higher-
order spin operators from spin- 1

2 to spin- d−1
2 can be

obtained through the generalised Gell-Mann matrices,
and written as

Jz :=
d∑

j=1

1
2(d + 1 − 2j) |j⟩⟨j| , (22)

Jx :=
d−1∑
j=1

1
2

»
j(d − j) (|j + 1⟩⟨j| + |j⟩⟨j + 1|) , (23)

J− :=
d−1∑
j=1

»
j(d − j) (|j + 1⟩⟨j|) , (24)

where J− = Jx − iJy. It is also possible to consider
configurations of linear combinations of these opera-
tors, which can be used to model more complex and
realistic environmental interactions. However, for the
purposes of this study, we are interested in under-
standing their individual interaction with the control
Hamiltonian and consequent effect on the AGI in a
platform-agnostic way and thus shall only consider
each of the operators separately.

2.2 Perturbative Expansion of the AGI
Given the simplified expression for the time-evolution
of the quantum channel E in (10), we want to study
the effects on the AGF, not only from the choice of S
or L, but also from the coupling strength γ. There-
fore, performing a Taylor series expansion of the AGF
in powers of γ,

F̄(E , U) = 1 −
∞∑

m=1
γmF (m)(t). (25)

To calculate explicitly the correction terms F (m), we
begin by expanding the solution to the master equa-
tion,

ρ(t) = ρ(0) +
∞∑

m=1
γmρ(m), (26)

where the m-th order correction to the non-perturbed
solution of the master equation can be written as [35,
36]
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ρ(m) = eSt

(∫ t

0

∫ t1

0
· · ·

∫ tm−1

0

(
m∏

i=1
e−StiLeSti

)
dtm · · · dt2dt1

)
ρ0, (27)

and we separate the zero order term ρ(0) from the
summation, since it corresponds to only unitary evo-
lution through the von Neumann equation in the ab-
scence of environmental coupling.

We may then define a new quantity M̃ (m)(t)
containing the integral terms, such that ρ(m) :=
eSt
(
M̃ (m)(t)

)
ρ0, and therefore the m-th order of the

solution to the master equation in terms of the quan-
tum channel reduces to E(m) = U ◦ M (m)(t). Now, in
order to render this term M̃ (m)(t) into a more compu-
tationally tractable form, we make use of the epony-

mous lemma of Campbell resulting from the Baker-
Campbell-Hausdorff (BCH) Formula [37, 38],

eXY e−X =
∞∑

n=0

[(X)n, Y ]
n! , (28)

utilising the iterated commutator defined by the re-
cursion relation [(X)n, Y ] =

[
X,
[
(X)n−1, Y

]]
with

the halting condition
[
(X)0, Y

]
= Y . With S and L

time-independent, M̃ (m)(t) simplifies to

M̃ (m)(t) = tm
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

(
m∏

i=1

(−t)ni [(S)ni , L]
ni!

∑m
j=i (nj + 1)

)
(29)

= tm Lm

m! + tm
∞∑

n1=1

∞∑
n2=1

· · ·
∞∑

nm=1

(
m∏

i=1

(−t)ni [(S)ni , L]
ni!

∑m
j=i (nj + 1)

)
. (30)

For the sake of future convenience, we define the
new quantity M̃ (m)(t) := tmM (m)(t), from which we
obtain the following general form for the correction
terms of the AGF in Eq. (25) in terms of Eq. (10):

F (m)(t)

= −
∫

H

¨
U† ◦ U ◦

Ä
tmM (m)(t)

ä
[ρ0]
∂

0
dρ0 (31)

= −tm

∫
H

Tr
¶

M (m) [ρ0] ρ0
©

dρ0. (32)

This integral over the Fubini-Study measure of pure
initial states may now be evaluated using results from
Weingarten calculus [39] (see Appendix A.3). From
here we obtain our main result for the general pertur-
bative expansion of the AGI, I = 1−F =

∑∞
m=1 I(m):

I = −1
d(d + 1)

∞∑
m=1

(γt)m Tr
¶

M (m)(t)
©

, (33)

where d is the dimensionality of the qudit system, and
the powers of (γt) have been grouped to form a single,
dimensionless quantity.

As an illustrative example of the utility of this ex-
pression, in Fig. 1 we present the cumulative correc-
tion terms up to fourth order in γt for the QFT gate
F4 acting on a qudit of d = 4. With t = 1 normalised
by the amplitude of the control Hamiltonian Hc, the
pure dephasing operator L = Jz was applied over the

couplings γt ∈ [0, 0.5]. While the first-order approxi-
mation shows good agreement with the simulated AGI
for small γt ≪ 1, the deviation becomes significant as
the coupling grows large, necessitating the addition of
the higher-order corrections.

Looking closer at this general result for I, let
us consider the case of no coherent driving. This
is implemented through a zero control Hamiltonian,
H = 0d, giving S = 0d×d and corresponding to evolu-
tion by the identity gate Ug = 1d. Then, the system
evolves only through decay due to the collapse op-
erator L, since only the iterated commutator terms
[(S)ni , L] for ni = 0 in M (m)(t) survive, resulting in

I(m)
0 = −(γt)m

d(d + 1)
Tr{Lm}

m! , (34)

which is precisely the first term in Eq. (30), with the
subscript 0 used to refer to the gate-independent cor-
rection term. Therefore, generalising to nonzero S, it
is clear that the m-th order correction can always be
separated into the sum of two parts as in Eq. (30):
These gate-independent terms O((γt)m) (when all
ni = 0) and the product of the gate-dependent it-
erated commutators O((γt)m

∏m
i=1 tni).

Combining the summation over m in Eq. (33) and
the m-th order expression in Eq. (34) allows us to
rewrite the gate-independent part as a Taylor expan-
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Figure 1: Comparison of the first four correction terms of
the AGI to numerical simulations. AGIs for the QFT gate
applied to a d = 4 qudit undergoing pure dephasing (L = Jz)
at couplings γt ∈ [0, 0.5]. The discrete points (red) represent
the simulated AGI values, while the successive dashed-dotted
lines represent the correction terms from first to fourth order.

sion,

I0 =
Tr
{

1d×d − eγtL}

d(d + 1) . (35)

Furthermore, as long as the collapse operator is real
and symmetric, obeying L = L∗ = LT = L†, (as for
Jz, for example), it is possible to use a multinomial
expansion on the operator form of L in Eq. (13) to
obtain explicit expressions to arbitrary order (γt)m

for the gate-independent correction in Eq. (34):

Tr{Lm}

= Tr
ßÅ

L∗ ⊗ L − 1
2L†L ⊗ 1 − 1

21 ⊗ L†L

ãm™
(36)

= m!
∑

k1+k2+k3=m

Tr
{

Lk1+2k2
}

Tr
{

Lk1+2k3
}

k1!k2!k3!(−2)k2+k3
. (37)

In the case of a pure (spin) dephasing channel L =
Jz, considering that Tr{Jm

z } ∼ dm+1, it can be easily
seen that this expression for the m-th-order correction
scales as

O (Tr{Lm}) ∼ d2(m+1) (38)

=⇒ O
Ä
I(m)

0

ä
∼ (γt)md2m. (39)

Now, given this scaling of the gate-independent AGI,
let us refer to the work of Chiesa et al. [40], where
the authors proposed the use of a physical qudit to
encode a logical qubit. Using their binomial encoding
and error-correction protocol would result in a logi-
cal qubit robust to pure dephasing up to order (γt)m

where 2m+1 = d. Effectively, the AGI of such a logi-

cal qubit would be of the same order as I(m)
0 . In turn,

to maintain I0 ≪ 1, this sets a limit on the maximum

dimension (equivalently, order m of noise correction),
such that d < 1√

γt
. Such investigations for protecting

against decoherence have already been studied with
alternative logical qubit encodings and a discrete er-
ror evolution protocol in the work of Miyahara et al.
[10].

In what follows in the remainder of this study, we
shall focus on the first- and second-order correction
terms to the AGF. We note that the preceding ana-
lytical approach provides a framework for computing
any correction term to arbitrary order. However, ex-
plicit calculations up to second-order serve as an ex-
tension of our prior work [21], in which the first-order
correction to the AGF was investigated and the con-
sequent conditions on gate efficiency derived in terms
of the figure-of-merit as a function of qudit dimen-
sion. Thus, we study in detail the effects due to the
second-order correction terms as they relate to our
particular system of interest, particularly with regard
to the choice of quantum gate and collapse operator.

2.3 Nonlinearity of the AGI in the Strong Cou-
pling Regime
Let us now motivate our investigation into the AGI
in the regime of strong coupling between the qudit
and the environment. As identified in Fig. 1, the lin-
ear first-order approximation may be sufficient in the
weak coupling regime, but nonlinear effects become
significant above γt ∼ 10−1. It is therefore necessary
to identify a clear transition or separation between
these two regimes, and how the AGI behaves in the
limit of strong coupling.

To investigate, we perform calculations of the AGI
over a large range of scales for γt. Therefore, in Fig. 2,
we show numerical simulations of the AGIs for qudits
under pure dephasing (L = Jz) where the coupling
strengths varied logarithmically in γt ∈

[
10−5, 103].

Evolutions were repeated on qudits with dimensions
d ∈ {2, 4, 8, 16} for 100 Haar-random quantum gates
(see Appendix C.1 for a discussion on methods for
generating random quantum gates), with the inset
showing the linear regime for small γt ∈

[
10−5, 10−2]

and the main figure showing the transition region and
strong-coupling regime. The dashed-dotted straight
lines give the first-order correction terms at each qu-
dit dimension, defined by the linear function [21]

I(1) = d(d − 1)
12 γt, (40)

showing the d-dependence in the weak coupling
regime.

Further effects of the system dimension on the AGI
are notable for larger couplings: The start of devi-
ation from linearity, the plateau values I∗ that the
AGI curves converge to in the large γt limit, and the
associated saturation points (γt)∗ (both denoted by
the superscript ∗) at which the curves reach their re-
spective plateau values. Each of these effects confirms
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Figure 2: Deviation from linearity of the AGIs for qudits
under strong dephasing. Simulations of the AGI against the
strength of pure dephasing (L = Jz) are plotted on log-log
axes over γt ∈

[
10−2, 103]. The simulations were performed

on a set of qudit dimensions, d ∈ {2, 4, 8, 16} each for 100
Haar-random quantum gates. The dashed lines represent the
linear regime given by the first-order correction to the AGI
at each dimension. The inset shows the linear regime for
smaller values of γt ∈

[
10−5, 10−2]. For stronger noise the

AGIs exhibit a transition from the linear to nonlinear regime
that then saturates at a stable plateau value. These plateau
values vary for qudit dimension and also for different quan-
tum gates, highlighting the gate-dependence. The saturation
points (γt)∗ of the stable regime are also dependent on both
the qudit dimension and gate type, with higher-dimensional
qudits deviating from linearity and saturating earlier.

an overall decrease in robustness as the system dimen-
sion increases: Compared to the behaviour for qubits,
the AGIs (for arbitrary gates) of higher-dimensional
qudits begin to deviate from the linear regime, and
reach the higher plateau limits, at lower noise thresh-
olds. These quantities shall be studied in more detail
in Sec. 2.4.

Finally, it is interesting to note the gate dependence
of the I∗ and (γt)∗, which is more pronounced for
smaller d. Given the sample size of 100 gates, it is
apparent that, at each dimension, there exists an up-
per and lower bound to the AGI plateau values, with
all the sampled gates converging within this range. It
is also noticeable (particularly so for d = 2) that the
(γt)∗ and I∗ are positively correlated, as curves with
lower plateau infidelity appear to reach their plateau
values at lower (γt)∗ than those with higher plateau
infidelities.

Studying these effects of the large-γt behaviour in
more detail, in Fig. 3 we present simulations of a sam-
ple of 1 million Haar-random qubit (d = 2) gates over
γt ∈

[
10−2, 104]. This larger sample size provides

stronger evidence that the I∗ are indeed bounded
above and below, as shown by the red and black hor-
izontal lines, respectively. It was observed that the
randomly generated quantum gates fall into one of two
groups, indicated by the red and blue shaded curves.

Figure 3: Large-γt behaviour of the AGIs for Haar-random
qubit gates under pure dephasing. Simulations of the AGI
were performed for a sample of one million (50 displayed)
Haar-random qubit (d = 2) gates under pure dephasing
(L = Jz) for γt ∈

[
10−2, 104]. For each gate, the AGI

curves fall into one of two groups, exhibiting different be-
haviour near their respective saturation points ((γt)∗). The
curves in red (Imono) approach their plateau values monoton-
ically from below. The blue curves (Iover) rapidly approach
their plateau values, before overshooting once with a sin-
gle turning point, and then converging monotonically from
above. The degree of blue shading for each curve indicates
the degree of overshoot above the plateau value. All sam-
pled gates converged to their I∗ plateau values within the
range [I∗

min, I∗
max] indicated by the black and red horizontal

lines. In the figure and insets, the lighter and darker shaded
regions indicate the vertical extent of the sampled gates and
their standard deviations, with the solid and dashed lines
indicating the mean (Ī∗) and median (Ĩ∗) AGI values, re-
spectively. The inset figures show each group of gates in
isolation. The red group span the full bounding range, but
are weighted upwards by outliers near the upper limit. The
blue group do not span the full range, but are weighted to-
wards the lower limit. Only the average AGI taken over both
groups converges towards the expected mean value of 0.5.

The red shaded curves (Imono) approach their plateau
values monotonically from below. The blue shaded
curves (Iover) all experience an overshoot above their
plateau value, with a single turning point, before set-
tling to I∗ monotonically from above. From the full
sample, approximately 73% of all gates fell in the red,
monotonic group, and the remaining 27% in the blue,
overshoot group. The degree of blue shading repre-
sents the amount of overshoot, defined by the differ-
ence Imax − I∗ between the height of the peak and
the plateau value. Furthermore, there appears to be
some correlation between this quantity and the satu-
ration point; the larger the overshoot the longer the
curve takes to settle. Gates that experience this over-
shoot may therefore perform worse at intermediate
noise strengths over the strong coupling limit.

The insets show each category plotted separately,
from which it may be seen that, unlike the blue curves,
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the red curves span the range between the upper and
lower bounds, indicated by the lightly-shaded regions.
The darker shaded regions, show the standard devia-
tion about the mean, Ī∗, with the dashed line being
the median value, Ĩ∗. We can see from these quanti-
ties that, despite spanning the range, the red curves
are not distributed uniformly, but instead weighted
upwards towards the upper bound, while the blue
curves are weighted towards the lower bound. Both
groups have significant numbers of outliers at either
extreme, shifting the medians away from the means.
In fact, it is only when averaging over the combined
samples that the distribution becomes centered about
the mean of Ī∗ = 0.5 (see Appendix C.2 for further
investigations on the distributions of these groups of
curves within the bounding region).

2.4 Gate- and Noise-Dependence of the Fi-
delity
Having identified particular aspects of interest in the
AGI behaviour in the strong coupling regime, let us
investigate these characteristics in further detail.

Repeating the simulations presented in Fig. 3 for
larger dimensions, we observed that the lower and
upper bounds, I∗

min and I∗
max respectively, and the

mean value, Ī∗, depend only on the dimension d of
the system, and are given precisely by the following
expressions, for any d:

I∗
max = 1 − 1

d + 1 , (41)

Ī∗ = 1 − 1
d

, (42)

I∗
min = 1 − 2

d + 1 . (43)

In Appendix C.2, we present these further examples
of the distributions of I∗ for ensembles of Haar ran-
dom gates with dimensions d = 2, 4, 8, 16, which fol-
low these expressions. It has previously been shown
[41] that, for the case of a qudit in the singlet state
evolving in a noisy quantum channel, the infidelity
is bounded by 1 − 2

d+1 ≤ I∗ ≤ 1 − 1
d . This result

matches with our case of a single qudit in the large-
d limit due to convergence of the mean and upper
bound. However, for our single qudit system we shall
use our existing framework to prove these limits for
arbitrary d.

Writing the quantum channel as E = U ◦ M ,
and substituting into the expression for the AGF in
Eq. (9),

F =
∫

H

Tr{M [ρ0] ρ0}dρ0 (44)

= Tr{M} + Tr{M [1]}
d(d + 1) . (45)

Given that the quantum channel is CPTP, and that
U is a unitary operator, we know that the super-
operator M must also be trace-preserving and thus
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Figure 4: Gate-dependence of the AGIs and qudit state
evolution as functions of noise strength. (Data points)
AGI simulations of a d = 4 qudit under pure dephasing were
time-evolved for each of the listed quantum gates: the (blue
circles) QFT gate, and (other points) interpolated Xη gates
for η ∈ [0, 1] as shown. Additionally shown for each gate: the
(solid horizontal lines) plateau value I∗ of the AGI, (dashed
curves) state purity

(
Tr
(
ρ2)), and (dashed-dotted curves)

mean coherences E[ρij ] = 2
d(d−1)

∑
i>j

|ρi,j | for i > j. Note
that: (i) the AGI data points of the QFT and Xη gate for
η = 3d−2

4d
overlap and converge to the same plateau value

(for any d), (ii) the η values were chosen as they produce
equally spaced AGI plateau values (for any d), (iii) the final
state purity and coherences for each gate were averaged over
a set of 2400 random pure Hermitian initial states, and (iv)
their curves converge to 1

d−1 and 0 respectively, following the
behaviour of the AGIs as they transition from the linear to
nonlinear to plateau-like regimes.

Tr{M [1]} = d. Furthermore, in the strong coupling
limit where the collapse operator L = Jz describes
pure dephasing, it is clear that the action of M on a
state ρ is to transform it to a diagonal density matrix
where the coherences (off-diagonal elements) have all

decayed to zero. Expressing M =
∑K

k=1 E∗
k ⊗ Ek in

the Kraus representation, the trace can be written as

Tr{M} =
K∑

k=1

d−1∑
i=0

|Ek, ii|2. (46)

Furthermore, it can be shown that (see Appendix A.4
for a detailed derivation) each of the d squared-

elements are bounded by 0 ≤ |Ek, ii|2 ≤ 1 and hence
in the large noise regime the AGI is bounded by

1 − 2
d + 1 ≤ I∗ ≤ 1 − 1

d + 1 . (47)

Given the significance of this result, it is now of
interest to consider how the behaviour is affected by
the choice of quantum gate. In other words, we want
to identify any particular unitary operators Ug, or
properties thereof, whose AGIs I(E , Ug) when (γt) ≫
1 are precisely the I∗

min, I∗
max or Ī∗.

In Fig. 4, we present simulations of the AGI, as a
function of γt, on a d = 4 qudit for a set of gates that
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do indeed reflect this behaviour when undergoing pure
dephasing. The AGI values (discrete data points) are
accompanied by dashed and dotted curves represent-
ing the state purity and mean coherences, while the
horizontal lines show the I∗ values of the associated
gates. The purities and coherences were calculated
over a set of n = 2400 randomly generated pure Her-
mitian density matrices. The purity Tr

{
ρ2} decays

from 1 to a constant 1
d−1 , while the averages of the

d(d−1)
2 coherences decay to zero, confirming the de-

phasing action of the Jz collapse operator.
Regarding the set of gates, in addition to the QFT

gate, we introduce the interpolated-X gate (see Ap-
pendix B), Xη, where the matrix is raised to the η-th
power for η ∈ [0, 1]. Clearly, η = 1 or 0 produces the
X or 1d gate, respectively, while for 0 < η < 1 the
action interpolates between these two extremes.

We find that

I∗(E , 1d) = I∗
min, (48)

I∗(E , Fd) = Ī∗, (49)
I∗(E , Xd) = I∗

max. (50)

Specifically, the I∗ are extremised above and below by
the X and identity gates, respectively, while the mean
value Ī∗ indeed corresponds to the action of the QFT
gate that creates a superposition state. Furthermore,
by careful choice of the values of η, we can obtain
intermediate values of I∗. For example, the η values
chosen and shown in Fig. 4 lead to curves with plateau
values that are equally spaced within the bounding
region. We observed that for the value η = 3d−2

4d , the
I∗ matches that of the QFT gate, also converging to
the mean.

The effect of these gates on the AGI can be under-
stood by following the arguments in Appendix A.4
regarding the operator M and its form based on the
choice of quantum gate. It is clear that for the identity
gate, or more generally any diagonal unitary matrix,
Tr{M} = d which minimises I∗ = 1 − 2

d+1 . Indeed,
this result applies directly to the set of generalised-
PHASE gates, including Clifford CLOCK gate Zd and
the non-Clifford π/8 gate Td, whose AGI curves I(γt)
follow that of the identity gate and plateau at I∗

min.
Similarly, the QFT gate produces a superposition

state with each of the d basis elements of ρ being
1
d

, thus Tr{M} = 1 and I∗ = 1 − 1
d . Finally the

X gate increments all states circularly, and, having
no diagonal elements, results in traceless Tr{M} = 0
and thus I∗ = 1 − 1

d+1 .
Let us now consider how the choice of quantum

gate affects the saturation point (γt)∗ at which the
AGI attains the plateau value I∗. Figure 5 presents
simulations of the plateau saturation points as a func-
tion of the qudit dimension for set of Xη gates over
a range of η values from 0 to 1. In addition, the cal-
culations were repeated over a set of n = 4800 Haar
random gates at each dimension from d = 2 to 12.

2 4 6 8 10 12

d

100

101

102

103

104

γ
t∗

η = 1.000

η = 0.870

η = 0.783

η = 0.696

η = 0.609

η = 0.522

η = 0.435

η = 0.348

η = 0.261

η = 0.174

η = 0.087

η = 0.000

Figure 5: Saturation points ((γt)∗) of the AGIs for inter-
polated Xη gates as functions of qudit dimension. AGIs
were calculated for a set of 12 interpolated Xη gates for
0 ≤ η ≤ 1, at dimensions d ∈ [2, 12]. For each dimension
and gate, the AGI curve over γt was interpolated by a cu-
bic spline. The saturation points (γt)∗ were identified by
root-finding algorithm of the points at which they converged
(within ε < 10−8) to their AGI plateau values. The plotted
data points, on log-linear axes, indicate these root values as
functions of d for each gate, and the dashed lines represent
their associated power-law fits. This analysis was repeated
for a set of n = 4800 Haar-random gates at each dimen-
sion. The light shaded areas are bounded by the maximum
and minimum saturation points found at each dimension.
The darker shaded areas represent a 1σ deviation about the
mean (solid gray line).

The grey curve represents the mean value of the sat-
uration point at each dimension, while the dark grey
and light gray shaded regions indicate the standard
deviations and max-min values, respectively.

For each of the simulated Xη gates, the dashed-
dotted lines represent power-law fits to the discrete
data points at each dimension. The power-law model
is given by

(γt)∗ = α(d − β)δ, (51)

and, fitted by nonlinear least-squares regression, re-
sulted in R2 > 0.999 for each fit. It is interesting to
note that for the case of the identity gate, the satu-
ration point remains constant independent of dimen-
sion.

Continuing the investigation, we performed regres-
sion analysis of the fitted model parameters α, β and
δ across the set of η values. The fits are presented in
Appendix C.3. Parameter α was best described by a
sigmoid model while β and δ by exponential models,

α(η) = α0

(1 + eα1(η−α2))
+ α3, (52)

β(η) = β0eβ1(η−β2) + β3, (53)
δ(η) = δ0eδ1(η−δ2) + δ3. (54)

Thus far in our investigation, we have restricted
analysis to the effect of pure dephasing by the oper-
ator Jz on a qudit. Let us conclude this section by
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Figure 6: Effect of bit-flip errors and relaxation processes
on the AGI. Xη and QFT gate simulations were repeated on
qudits for d = 4 undergoing either (circles) bit-flip (L = Jx)
errors or (squares) spin relaxation (L = J−), rather than
pure dephasing noise. The following gates were simulated:
1 = X0 (black, η = 0), Xη (green, η = 3d−2

4d
), X (red,

η = 1) and QFT (blue). The solid horizontal lines show the
upper (1− 1

d+1 , red) and lower (1− 2
d+1 , black) bounds of the

AGIs, as well as the mean (1− 1
d

, blue). For L = J−, the AGIs
for all matrix powers of the Xη gate behaved almost exactly
as the QFT gate, while for L = Jx the plateau AGI values for
the non-zero matrix powers were observed to deviate upwards
from the identity gate, but not to the same extent as for the
case of pure dephasing. On the other hand, the QFT gate
response was the same for all types of noise.

studying the effects of the L = Jx and L = J− oper-
ators, corresponding to bit-flip errors and relaxation
processes. In Fig. 6, we present simulations of 4 gates:
the QFT gate F and 3 Xη gates for η = 0, 3d−2

4d , 1,
for d = 4 qudits interacting with the environment
via each of the collapse operators separately. We may
make the following remarks based on these results: (1)
the plateau values I∗ for the gates remain bounded
between I∗

min and I∗
max, (2) the QFT gate plateaus at

the same mean value Ī∗ for all L ∈ {Jz, Jx, J−}, (3)
for bit-flip errors the behaviour of the identity gate re-
mains the same, while the Xη gates plateau below the
QFT gate, and (4) for relaxation processes all gates
have nearly the same behaviour as the QFT gate, and
all plateau at Ī∗.

2.5 First- and Second-Order Correction Terms
to the AGI

Section 2.2 presented our general result for the per-
turbative expansion of the AGI to arbitrary order m
in Eq. (33). Now, let us investigate in further detail
the first and second-order correction terms.

Beginning with the first-order correction, at m = 1,
it can be seen that (see Appendix A.5) the trace over

M (1) simplifies to

I(1) = − (γt)
d(d + 1) Tr{L}, (55)

which confirms the gate-independent nature of the
first-order term as the AGI depends only on the noise
superoperator L. Additionally, this trace can be ex-
pressed in terms of the regular operator L as

Tr{L} = |Tr{L}|2 − d Tr
{

L†L
}

, (56)

reproducing the results of [21]. For the case of pure
dephasing, we obtain the familiar result in Eq. (40)

I(1) = γt

12d(d − 1), (57)

using the element-wise definition of the dephasing op-
erator in Eq. (22)

(Jz)ii = d − (2i − 1)
2 . (58)

Now, if we compare this analytical result with numer-
ical simulations, we observe in Fig. 7 the relative error
of the first-order correction to the AGI for dimensions
d = 2, 4 over γt ∈ [0, 0.1]. This relative error is ex-
pressed by

ε
(1)
I = I − I(1)

I
. (59)

The simulations were performed for the QFT, iden-
tity, X and Xη gates for η = 3d−2

4d . The dashed lines
show the expected analytic results for each dimen-
sion. The dark and light shaded regions represent the
standard deviations and max-min values taken over a
sample of Haar random gates

Clearly, the gate independence of the first-order
correction term matches precisely the identity gate.
The remaining gates show the expected deviation
from linearity, with the analytic value underestimat-
ing the AGI values. We observe that the relative er-
ror for d = 2 is approximately one order of magnitude
smaller than for d = 4.

Moving on to the second-order correction term, we
have from Eq. (33)

I(2) = −(γt)2

d(d + 1)×

∞∑
n1,n2=0

(−t)n1+n2 Tr{[(S)n1 , L][(S)n2 , L]}
n1!(n2 + 1)!(n1 + n2 + 2) , (60)

which we reduce (see Appendix A.6) to a single iter-
ated commutator using the relation n1 + n2 + 2 = s,

I(2) = − (γt)2

d(d + 1)

∞∑
s=0

Tr{L [(S)s, L]} (−t)s

(s + 2)! . (61)
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Figure 7: Relative error of the first-order correction to the
AGI, and gate-dependent deviation from linearity. AGIs
were simulated for 4 gates acting on qubits (circles) and
d = 4 qudits (squares) undergoing L = Jz pure dephasing.
The relative error ε

(1)
I = I−I(1)

I was calculated for the first-
order analytical correction. The dashed-dotted and dashed
lines represent the first-order term of the perturbative expan-
sion of the AGI, for d = 2 and d = 4, respectively. These
gate-independent terms correspond to the behaviour of the
identity gate, 1 = X0 (black, η = 0). The Xη (green,
η = 3d−2

4d
), X1 (red, η = 1) and F (blue, QFT) gates show

significant deviation from the gate-independent term, and for
d = 4 are roughly 10 times larger than for d = 2. The solid
and dashed grey lines represent the mean and median rela-
tive errors over a sample of n = 4800 Haar-random gates,
with the light and dark shaded areas indicating the min-max
bounds and standard deviations.

For s = 0, the trace term reduces further to Tr
{

L2}

by definition of the iterated commutator. Addition-
ally, we show (see Appendix A.7) that, using the prop-
erty [42],

[(A)s, B] =
s∑

k=0
(−1)k

Ç
s

k

å
As−kBAk, (62)

the trace over the iterated commutator is zero for all
odd values of s. Therefore,

I(2) = − (γt)2

d(d + 1)×
(

Tr
{

L2}

2 +
∞∑

s=2

Tr{L[(S)s, L]}(−t)s

(s + 2)!

)
. (63)

This shows us that the AGI remains gate-independent
at order γ2t2. Indeed the first appearance of gate-
dependence through the S operator occurs at order
γ2t4, when s = 2 and the iterated commutator term
contains S and is non-zero.

Since the summation of s is over all even integers,
we can introduce a maximum cutoff value to render
this calculation computationally tractable. Indeed,
for the correction term to not be unbound, we must
have that the sum is convergent, allowing us to iden-
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Figure 8: Iteration-dependent convergence of the second-
order AGI correction against qudit dimension. The critical
order sε was calculated as the number of iterations over the
summation term in the second-order AGI correction such that
the absolute difference |f2(sε) − f2(sε − 1)| < ε is less than
the error threshold ε = 1 × 10−8. Calculations were per-
formed for a set of interpolated Xη gates and the QFT gate,
as well as n = 2500 Haar-random gates, over dimensions
d ∈ [2, 64]. The identity gate (η = 0) only required the min-
imal s = 2 iterations, independent of dimension, since the
identity commutes with the collapse operator. Of the inter-
polated gates, the number of iterations required scales with
the interpolation parameter η, while the QFT gate shows
marked variation over d, without exceeding the critical order
for η = 1. The mean of the Haar-random gates (dark grey)
also lies below the η = 1 curve, while the min-max inter-
val, (light grey), shows gates at lower dimension requiring a
larger number of iterations to converge.

tify such a value. We can understand this computa-
tionally by identifying the s-th order of the summa-
tion,

f(s) = Tr{L [(S)s, L]} (−t)s

(s + 2)! . (64)

Then, for a given error threshold ε, the cutoff order sε

is simply the s at which the absolute difference from
the preceding order sε − 2 is below this threshold,

|f(sε) − f(sε − 2)| < ε. (65)

In Fig. 8 we present this iteration-dependent conver-
gence of the second-order AGI correction term. Our
set of interpolated Xη gates and the QFT gate were
simulated over dimensions d ∈ [2, 64] for a uniform
gate time of t = 1. We calculated for each of them the
cutoff order sε within an error threshold ε = 1×10−8.
This analysis was repeated for a set of n = 2500 Haar
random gates, and shown by the grey curve (mean
value) and shaded region (bounds). It is useful to
note that the number of iterations required grows ap-
proximately logarithmically with d. Furthermore we
have a fairly clear range of validity on sε for the gates,
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Figure 9: Time derivative of the convergence of the
second-order AGI correction over qudit dimension. Linear
gradients of the critical order sε as a function of t were fitted
by linear regression for each of a set of gates at each dimen-
sion d ∈ [2, 48]. The gate set included the QFT, identity
(X0), X, and uniformly interpolated Xη gates and n = 200
Haar-random gates. For the identity gate this is constant at
zero-gradient, while the gradients for the interpolated gates
show rapid initial growth that levels off as d increases. The
gradients of the QFT gates for d > 10 appear to populate
two distinct regimes around 25 and 33. The sampled Haar-
random gates exhibit behaviour similar to that of the X gate
within one standard deviation of the mean, and the large
variation at lower dimensions stabilises as d increases.

although the X gate does not give a consistent up-
per bound here for smaller dimensions. On the other
hand, the identity gate 1 = X0 always gives the lower
bound of sε = 2, since then [1, L] = 0.

Next, we need to investigate the effect of the gate
time parameter t on the second-order correction term,
since in the summation it is raised to the power of s.
We choose our set of quantum gates, Ug ∈ {Xη, F}
with η ∈ {0, 3d−2

8d , 9d−6
16d , 3d−2

4d , 1}, and simulate them
on qudits of dimension d ∈ [2, 48]. Instead of varying
the noise parameter γ with constant gate time t = 1,
we fix γ = 1 and then vary the gate time t ∈ [0, 5].
Note that, in order to implement the full quantum
gate during this modified gate time, the amplitude of
the control-pulse Hamiltonian matrix must be mod-
ulated by the inverse of the gate time, Hc → 1

t Hc.
We observed (see Appendix C.4 for an example of sε

against t for the X gate) that for each gate at each
dimension, the number of iterations required to reach
convergence was roughly linear in time: sε ∝ t. Hence
to each such set of data we fitted using linear regres-
sion the model

sε = mt + c, (66)

where m = dsε

dt . Figure 9 shows this curve of fit-
ted gradients for each gate as a function of the qu-
dit dimension. This analysis is also extended to a
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Figure 10: Relative error of the AGI up to second-order.
AGIs were simulated for 4 fixed gates and n = 1000 Haar-
random gates acting on qubits (circles) and d = 4 qudits
(squares) undergoing L = Jz pure dephasing. The relative
error ε

(2)
I = I−I(1)−I(2)

I was calculated for the second-order
perturbative correction. The error for d = 4 is roughly 1%
while for qubits this is reduced to 0.01%, two orders of mag-
nitude lower than the relative error at first-order.

set of n = 200 Haar random gates at each dimen-
sion, indicated by the grey curve and shaded regions.
The interpolated gates all appear to evolve smoothly
to a nearly constant value at large d. On the other
hand, the QFT gate for d > 6 appears to oscillate ran-
domly between two constant regimes near dsε

dt ≃ 25
and dsε

dt ≃ 33.
Based on these two analyses, we can identify a safe

bound on sε for precise calculation of the second-order
correction. Recall our standard approach of normal-
ising the Hamiltonian such that the gate time t = 1,
varying γ only, and generally considering d < 64.
Then, we observe that approximately 50 iterations are
sufficient to calculate the second-order correction to a
precision of ε < 1 × 10−8.

We now present in Fig. 10 our results for the rela-
tive error of the AGI up to second-order. The results
presented follow the same approach as for those up to
first-order shown in Fig. 7. Choosing the same set of
gates, {X0, Xη, X1, F} with η = 3d−2

4d and evolving
over γt ∈ [0, 0.1], we show the scaling of the relative
error for d = 2, 4,

ε
(2)
I = I − I(1) − I(2)

I
. (67)

Comparing these results with those of just the first-
order in Fig. 7, we see that the error for d = 4 is
reduced by one order of magnitude to ∼ 1%, while for
d = 2 the error of ∼ 0.01% is lower by two orders of
magnitude. Additionally, the sign of the relative error
has changed from negative to positive, indicating that
despite the increased precision, the correction up to
second order will tend to understate the actual AGI
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value, with this error growing quadratically in γt.
Finally, as for the first-order case, it is interesting

to express the trace of the repeated commutator of
superoperators S and L in terms of regular operators
H and L. This will give a clear representation of
the effect of the control Hamiltonian on the AGI, as
well as its interaction with the collapse operator. Let
us consider separately the two trace terms of I(2) in
Eq. (63): Tr

{
L2} and Tr{L[(S)s, L]}. We find (see

Appendix A.5) that the gate-independent expression
can be written as

Tr
{

L2} =
∣∣Tr
{

L2}∣∣2 + 1
2 Tr

{
L†L

}2 + d

2 Tr
{

(L†L)2},

(68)

which, in the case of pure dephasing, L = Jz, reduces
to

Tr
{

J2
z

}
= d2(3 − 5d2 + 2d4)

120 , (69)

using the element-wise definition in Eq. (58). This
allows us express the γ2t2 correction in terms of the
first-order correction term from Eq. (57),

− (γt)2

d(d + 1)
Tr
{

J2
z

}

2 = −(γt)2d2 − 3
20 I(1). (70)

However, it is not necessarily the case that any m-th
order expresssion can be written recursively in terms
of lower orders. Equation (70) for the second-order
appears to be a special case.

For the iterated commutator, we find that (see Ap-
pendix A.6)

Tr{L[(S)s, L]}

=
s∑

k=0

k∑
j=0

s−k∑
l=0

Ç
s

k

åÇ
k

j

åÇ
s − k

l

å
(−1)s+k−j−l×

× Re
[

Tr
{

LHk−jLHs−k−l
}∗ Tr

{
LHjLH l

}

+ 1
2 Tr

{
LT L∗Hs−j−l

}∗ Tr
{

LT L∗Hj+l
}

+ 1
2 Tr

{
LT L∗Hk−jLT L∗Hs−k−l

}∗ Tr
{

Hj+l
}

− Tr
{

LHk−jLT L∗Hs−k−l
}∗ Tr

{
LHj+l

}

− Tr
{

LT L∗Hk−jLHs−k−l
}∗ Tr

{
LHj+l

}
]

. (71)

This gives a complete description of the second-order
gate-dependence in terms of the explicit Hamiltonian
terms, without resorting to the superoperator repre-
sentation. The superoperator and operator expres-
sions have complexity O(sd6) and O((sd)3), respec-
tively. Since we observed in Fig. 8 that the maximal
sε needed to reach convergence is roughly logarith-
mic in d, the complexities can then be reduced to
O(d6 log d) and O((d log d)3). Therefore, for d ≫ 2,

it is computationally preferred to use the operator-
based expression, while for smaller qudits with d ∼ 2,
the superoperator representation is generally prefer-
able for numerical simulations.

3 Conclusions and Outlook
In this work, we have performed a comprehensive
analysis of the AGF for single qudit open quantum
systems coupled to Markovian noise environments in
the Lindblad superoperator formalism. Our primary
contributions and findings are as follows:

We have expanded the AGF perturbatively in pow-
ers of the dimensionless coupling constant γt. From
this we derived our main result in Eq. (33) for the
general expressions of the correction terms to arbi-
trary order. The result was expressed in terms of the
iterated commutators of the gate and noise superop-
erators, S and L, respectively, based on the expan-
sion obtained in Eq. (30). It is particularly signifi-
cant that these corrections were expressed in a form
that may be directly implemented in numerical cal-
culations. We found that, at each order above the
first, the correction term could be separated into a
gate-independent term O((γt)m) depending only on
L, and gate-dependent terms containing S and higher
powers of t. The first-order correction term, I(1), is
gate-independent and depends solely on the noise su-
peroperator L. The gate-dependence appears for the
first time at γ2t4, in the second-order correction term
I(2), highlighting the significant role of the interac-
tion between the control Hamiltonian S and the noise
operator L. Explicit expressions for the first- and
second-order correction terms in the operator repre-
sentation were also derived.

Our numerical simulations under pure dephasing
noise revealed a clear transition from linear to non-
linear behaviour in the AGI as the noise coupling
strength γt increases. For γt ∼ 1, the AGI deviates
significantly from the linear approximation and even-
tually reaches a plateau at a stable value. The plateau
values, I∗, as well as their corresponding saturation
points, (γt)∗, were found to be dependent not only on
the qudit dimension d but also on the specific quan-
tum gate implemented.

Indeed, utilising our theoretical framework we were
able to derive in Eq. (47) a significant result for uni-
versal upper and lower bounds of the AGI plateau
values in the strong coupling regime, depending only
on the dimensionality of the system. Furthermore we
were able to identify specific gates that saturate these
bounds: The identity gate (1d) and the generalised-
NOT (X) achieve the lower and upper limits, re-
spectively, while the QFT gate (Fd) was found to
plateau at the mean AGI value of the Haar mea-
sure. Additionally, we introduced the interpolated
Xη gates to demonstrate the range of AGI values be-
tween these bounds. The saturation points of these
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interpolated gates were studied numerically, and were
well-described by a power-law model of (γt)∗ vs d.

We analyzed the convergence behavior of the
second-order correction term, identifying that approx-
imately 50 iterations are sufficient for precise calcu-
lation up to a qudit dimension of d < 64 within an
absolute tolerance of ε < 1 × 10−8. The number of it-
erations to convergence was found to scale logarithmi-
cally with the system dimension d, and linearly with
the gate time t.

Numerical simulations confirmed the analytical pre-
dictions, demonstrating that the relative error of
the AGI is significantly reduced when including the
second-order correction term. For d = 4, the error is
reduced to the order of 1%, and for d = 2, it is reduced
to 0.01%, indicating the necessity of higher-order cor-
rections for accurate fidelity modeling, particularly as
the dimension of the system increases.

The detailed insights gained from this study have
several important applications and implications for
the field of quantum computing, particularly given
the growing interest in qudits. Understanding the be-
havior of the AGI and its dependence on the type
of quantum gate and environmental noise facilitates
the optimization of quantum gate design. Our ap-
proach provides a methodology for identifying quan-
tum gates that have favourable fidelity characteristics.
Thus, through appropriate choice or design of basis
gates it may be possible to enhance the performance
of quantum circuits. This could lead to significant im-
provements for optimising the robustness of quantum
algorithms on near-term noisy platforms.

The results underscore the importance of incorpo-
rating higher-order corrections into error correction
protocols. This is particularly relevant for qudits of
higher dimensions, where noise effects are more pro-
nounced. We envisage that the detailed perturbative
expansions provided in this work could be leveraged
to develop advanced error correction techniques, for
example by incorporating the higher-order correction
terms into the cost function of optimal control meth-
ods. In particular, our correction terms can be used
to quantify and mitigate the error in logical qubit em-
bedding protocols up to arbitrary order. Future re-
search is needed to show how this could result in pro-
tection against such errors above first-order, and how
this might incorporate the gate-dependencies identi-
fied.

The derived bounds and behaviours of AGI for
different gates and dimensions also serve as bench-
marks for assessing the performance of quantum sys-
tems. These benchmarks can guide experimental-
ists in evaluating and improving their quantum hard-
ware and gate implementations. Indeed further study
is needed to extend these results from the idealised
single-pulse (time-independent) Hamiltonian to real-
istic pulse-based optimal control techniques for gate
generation.

While this study focused primarily on pure dephas-
ing and bit-flip errors, future research should explore
further the impact of other noise models, such as am-
plitude damping and depolarizing noise. Understand-
ing how different types of noise affect the AGI will
provide a more comprehensive framework for design-
ing noise-resilient quantum systems.

Extending the framework to multi-qudit systems is
a necessity. These introduce additional complexity
due to inter-qudit interactions and correlated noise
effects. Investigating these factors will be crucial for
the scalability of qudit-based architectures, but could
prove fruitful in reducing the circuit complexity of
long range entangling operations.

Finally, it would be beneficial to have experimen-
tal verification of these predictions. Testing the de-
rived correction terms and transition points in real
quantum systems will help to validate and refine the
models presented.

In conclusion, this study provides a detailed the-
oretical foundation for understanding the fidelity of
quantum gates in noisy environments. The findings
contribute to the ongoing efforts to develop robust,
high-fidelity quantum operations, paving the way for
practical and scalable quantum computing.
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A Complementary Derivations
Here, we present the detailed derivations of the ana-
lytical results in the main text.

A.1 Integration of the m-th Order Solution to
the Master Equation
Theorem A.1. Consider an open quantum system
of a single qudit of dimension d, initiated in a pure
state Tr

{
ρ2

0
}

= 1, under the influence of a time-
independent noise superoperator L with coupling con-
stant γ, and evolving via a time-independent unitary
superoperator S over time t. The solution to the mas-
ter equation in Eq. (1) is given by the quantum chan-
nel in Eq. (10), and can be expressed in a perturbative
expansion in γ by Eq. (26), where the m-th order cor-
rection term is given by Eq. (27). Then, the nested
integral can be evaluated, by induction, and results in
Eq. (29):

M̃ (m)(t)

=
∫ t

0
· · ·

∫ tm−1

0

(
m∏

i=1
e−StiLeSti

)
dtm · · · dt1 (72)

= tm
∞∑

n1,··· ,nm=0

(
m∏

i=1

(−t)ni [(S)ni , L]
ni!

∑m
j=i (nj + 1)

)
. (73)

Proof. In the calculations that follow, we make use
of Campbell’s lemma, based on the Baker-Campbell-
Hausdorff Formula [37, 38], as stated in Eq. (28),

eXY e−X =
∞∑

n=0

[(X)n, Y ]
n! , (74)

with [(X)n, Y ] =
[
X,
[
(X)n−1, Y

]]
and

[
(X)0, Y

]
=

Y , and proceed with proof by induction.
Base Case: To first order, m = 1,

∫ t

0
e−St1LeSt1dt1

=
∫ t

0

∞∑
n1=0

[(−St1)n1 , L]
n1! dt1 (75)

=
∞∑

n1=0

(−1)n1

n1! [(S)n1 , L]
∫ t

0
tn1
1 dt1 (76)

= t

∞∑
n1=0

(−t)n1 [(S)n1 , L]
n1!(n1 + 1) (77)

= M̃ (1)(t). (78)

Induction Step: Assume that the result in
Eq. (73) holds at m-th order, and relabel indices
t, t1, · · · , tm−1 → t1, t2, · · · , tm and t → t1:

M̃ (m)(t1)

=
∫ t1

0
· · ·

∫ tm

0

(
m+1∏
2=1

e−StiLeSti

)
dtm+1 · · · dt2

(79)

= tm
1

∞∑
n2=0

· · ·
∞∑

nm+1=0

(
m+1∏
i=2

(−t1)ni [(S)ni , L]
ni!

∑m+1
j=i (nj + 1)

)
.

(80)

Then, to order m + 1:

∫ t

0
M̃ (m)(t1)

(
e−St1LeSt1

)
dt1

=
∫ t

0

Ñ
tm
1

∞∑
n2=0

· · ·
∞∑

nm+1=0

m+1∏
i=2

(−t1)ni [(S)ni , L]
ni!

∑m+1
j=i (nj + 1)

é( ∞∑
n1=0

(−t1)n1 [(S)n1 , L]
n1!

)
dt1 (81)

=
∞∑

n2=0
· · ·

∞∑
nm+1=0

(−1)n1 [(S)n1 , L]
n1!

m+1∏
i=2

(
(−1)ni [(S)ni , L]

ni!
∑m+1

j=i (nj + 1)

) ∫ t

0
tm
1 tn1

1

m+1∏
i=2

tni
1 dt1 (82)

=
∞∑

n2=0
· · ·

∞∑
nm+1=0

(−1)n1 [(S)n1 , L]
n1!

m+1∏
i=2

(
(−1)ni [(S)ni , L]

ni!
∑m+1

j=i (nj + 1)

)
tm+1+

∑m+1
i=1

ni

m + 1 +
∑m+1

j=1 nj

(83)

= tm+1
∞∑

n2=0
· · ·

∞∑
nm+1=0

(−t)n1 [(S)n1 , L]
n1!

∑m+1
j=1 (nj + 1)

m+1∏
i=2

(−t)ni [(S)ni , L]
ni!

∑m+1
j=i (nj + 1)

(84)

= tm+1
∞∑

n2=0
· · ·

∞∑
nm+1=0

m+1∏
i=1

(−t)ni [(S)ni , L]
ni!

∑m+1
j=i (nj + 1)

(85)

= M̃ (m+1)(t). (86)
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A.2 Perturbative Expansion of the AGI
We define the Average Gate Infidelity as

I(E , U) = 1 − F(E , U) (87)

= 1 −

(
1 −

∞∑
m=1

γmF (m)

)
, (88)

where the quantum channel is given by

E = U +
∞∑

m=1
γmE(m) (89)

= U +
∞∑

m=1
γmUM̃ (m). (90)

Then, from Eq. (9),

F(E , U)

=
∫

H

〈(
U† ◦ E

)
[ρ0]
〉

0 dρ0 (91)

=
∫

H

〈(
U† ◦

(
U +

∞∑
m=1

γmUM̃ (m)

))
[ρ0]
〉

0

dρ0

(92)

=
∫

H

〈
ρ0 +

∞∑
m=1

γmM̃ (m)[ρ0]
〉

0

dρ0, (93)

and evaluating the expectation value over ρ0 of initial
states with ⟨A⟩0 = Tr{Aρ0},

1 −
∞∑

m=1
γmF (m)

=
∫

H

Tr
{

ρ2
0 +

∞∑
m=1

γmM̃ (m)[ρ0]ρ0

}
dρ0 (94)

= 1 +
∞∑

m=1
γm

∫
H

Tr
¶

M̃ (m)[ρ0]ρ0
©

dρ0, (95)

since Tr
{

ρ2
0
}

= 1 and
∫

H dρ0 = 1, and using Eq. (25).
The m-th order term of the AGF is therefore

F (m) = −
∫

H

Tr
¶

M̃ (m)[ρ0]ρ0
©

dρ0, (96)

and we may write the AGI in terms of tmM (m) =
M̃ (m),

I(E , U) = −
∞∑

m=1
(γt)m

∫
H

Tr
¶

M (m)[ρ0]ρ0
©

dρ0.

(97)

A.3 Integral over the Fubini-Study Measure
We can evaluate Eq. (97) to arrive at the result in
Eq. (33). The integral over the Fubini-Study mea-
sure is calculated using methods from [39] relating to

Weingarten calculus. Specifically, we make use of the
following result,∫

H

UkaUicŪjbŪrddU

= 1
(d2 − 1) [(δkjδabδirδcd + δkrδadδijδcb)] −

− 1
d(d2 − 1) [(δkjδadδirδcb + δkrδabδijδcd)] , (98)

where, and for the remainder of this section, the in-
dices represent the matrix elements using Einstein
sum notation.

Now, beginning with the element-wise definition of
the superoperator term,

(M [ρ])pi = Mkj,piρkj , (99)

where we identify ρ and ρ0 for convenient usage of the
element-wise sum notation, this extends to

(M [ρ]ρ)pq = (M [ρ])pi ρiq (100)
= Mkj,piρkjρiq. (101)

Taking the trace of this term corresponds to

Tr{M [ρ]ρ} = δpq (M [ρ]ρ)pq (102)
= Mkj,riρkjρir, (103)

where we define r := p = q. Rewriting the integral
of this expression in terms of the associated unitary
operator U leads to∫

H

Tr
{

M
[
UρU†]UρU†}dU

=
∫

H

Mkj,ri

(
UkaρabŪjb

) (
UicρcdŪrd

)
dU (104)

= ρabMkj,riρcd

∫
H

(
UkaŪjbUicŪrd

)
dU. (105)

If we now substitute the result of this integral from
Eq. (98), and evaluate all of the delta function terms,
we arrive at∫

H

Tr{M [ρ]ρ}dρ

= 1
(d2 − 1) [ρaaρccMjj,ii + ρacρacMki,ki] −

− 1
d(d2 − 1) [ρacρacMjj,ii + ρaaρccMki,ki] (106)

= 1
(d2 − 1)

î
(Tr{ρ})2 Tr{M [1]} + Tr

{
ρ2}Tr{M}

ó
−

− 1
d(d2 − 1)

î
Tr
{

ρ2}Tr{M [1]} + (Tr{ρ})2 Tr{M}
ó

.

(107)
Returning to the matrix forms from the Einstein sum
notation, it can be seen that:

ρaaρcc = (Tr{ρ})2
, (108)

ρacρac = Tr
{

ρ2}, (109)
Mjj,ii = Tr{M [1]}, (110)
Mki,ki = Tr{M}, (111)
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which results in∫
H

Tr{M [ρ]ρ}dρ

= 1
(d2 − 1)

î
(Tr{ρ})2 Tr{M [1]} + Tr

{
ρ2}Tr{M}

ó
−

− 1
d(d2 − 1)

î
Tr
{

ρ2}Tr{M [1]} + (Tr{ρ})2 Tr{M}
ó

.

(112)

Finally, noting that Tr{ρ} = 1, Tr
{

ρ2} = 1 and ρ2 =
ρ, we arrive at∫

H

Tr{M [ρ]ρ}dρ = Tr{M} + Tr{M [1]}
d(d + 1) (113)

= Tr{M}
d(d + 1) , (114)

since for the cases where M is composed of a traceless
lindbladian operator L, Tr{M [1]} = 0, and we arrive
at Eq. (33).

A.4 Boundedness of the AGI
We make use of the relation in Eq. (113) to prove that,
in the limit of strong dephasing, the AGI of a single
qudit is bounded above and below, with the bounds
depending only on the dimension of the system.

Theorem A.2. Consider an open quantum system
of a single qudit of dimension d, initiated in a pure
state Tr

{
ρ2

0
}

= 1, under the influence of a time-
independent noise superoperator L with coupling con-
stant γ and pure dephasing collapse operator L = Jz,
and evolving via an arbitrary time-independent uni-
tary superoperator S over time t. Then, in the limit of
strong coupling where (γt) ≫ 1, the AGI I is bounded
in the region

1 − 2
d + 1 ≤ I ≤ 1 − 1

d + 1 . (115)

Proof. In superoperator form, the quantum channel
can be written as E = U ◦ M . Now, since the channel
is completely positive and trace-preserving (CPTP)
and U is a unitary operator, M must also be CPTP.
Substituting this into the integral equation for the
AGF in Eq. (9) and using Eq. (113), we have

F = Tr{M} + Tr{M [1]}
d(d + 1) . (116)

Therefore, proving the bound on I is equivalent to
proving that

1 ≤ (d + 1)F ≤ 2, (117)
d ≤ Tr{M} + Tr{M [1]} ≤ 2d, (118)
0 ≤ Tr{M} ≤ d, (119)

since Tr{M [1]} = Tr{1} = d due to the trace-
preservation of M .

Now, to show this, consider the action of M on
the state ρ. The collapse operator L = Jz of pure
dephasing is a diagonal matrix which preserves the
populations of ρ while causing the coherences to decay
to zero. Thus,

M : ρ →
d−1∑
i=0

ρ′
ii |i⟩⟨i| (120)

∀ρ , Mkl
ij ρkl ∝ δij (121)
Mkl

ij = λkl
i δij . (122)

In the Kraus representation, using M =
∑K

k=1 E∗
k ⊗

Ek, the matrix elements are given, trivially, by

Mnm
ij =

K∑
k=1

E∗
k,jmEk,in, (123)

and, since M is trace-preserving,

∀n, m,

d−1∑
i=0

Mnm
ii =

K∑
k=1

d−1∑
i=0

E∗
k,imEk,in (124)

= δnm. (125)

Furthermore,

Tr{Mρ} = Tr{ρ} (126)
vec(1)T · M · vec(ρ) = vec(1)T · vec(ρ) (127)

∴
d−1∑
n=0

Mnn
ij = δij . (128)

Thus, in particular, if n = m:
K∑

k=1

d−1∑
i=0

|Ek,in|2 = 1 (129)

⇐⇒
∑

k, i=n

|Ek,in|2 +
∑

k, i ̸=n

|Ek,in|2 = 1 (130)

∴ ∀n , 0 ≤
K∑

k=1
|Ek,nn|2 ≤ 1 (131)

Moreover, since

Tr{M} =
∑
k, ij

E∗
k, jjEk, ii (132)

=
∑

k

|Tr{Ek}|2, (133)

the trace of M can be equivalently expressed by

Tr{M} =
d−1∑
i=0

d−1∑
j=0

M ij
ij (134)

=
d−1∑
i=0

M ii
ii (135)

=
K∑

k=1

d−1∑
i=0

|Ek, ii|2. (136)
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Therefore, combining this last expression with
Eq. (131) where each of the d elements |Ek,ii|2 are
bounded above by 1, it is clear that the sum of all d
of them, and thus Tr{M}, must be bounded by d,

0 ≤
K∑
k

d−1∑
i=0

|Ek, ii|2 ≤ d, (137)

proving the boundedness of F and I.

A.5 Gate-Independent Correction Terms

In Sec. 2.2, we found in Eq. (34) that the m-th order
AGI correction always contains a gate-independent
term proportional to the trace of the m-th power of
the collapse operator L in superoperator form. Specif-
ically, in Sec. 2.5 Eqs. (55) and (63), we presented the
first- and second-order gate-independent AGI correc-
tion terms.

Since we have in Eq. (13) an expression for L in
terms of the (regular) collapse operators L, we can
use this to express the correction terms in terms of L
instead. To first-order,

Tr{L}

= Tr
ß

L∗ ⊗ L − 1
2

(
L†L ⊗ 1d +

(
1d ⊗ L†L

)T
)™
(138)

= Tr{L∗ ⊗ L} − 1
2 Tr

{
L†L ⊗ 1d + 1d ⊗

(
L†L

)T
}

(139)

= Tr{L∗} Tr{L} − d

2

(
Tr
{

L†L
}

+ Tr
{(

L†L
)T
})

(140)
= |Tr{L}|2 − d Tr

{
L†L

}
, (141)

giving the result of Eq. (56).

By the same procedure, it is trivial to see that the
second-order term in Eq. (68) is given by,

Tr
{

L2} =
∣∣Tr
{

L2}∣∣2 + 1
2

∣∣Tr
{

L†L
}∣∣2 + d

2 Tr
{

(L†L)2}.

(142)

Furthermore, it is possible to make use of the multi-
nomial expansion to find the m-th power trace to
arbitrary order. In general, this produces a non-
trivial sum over all L-words of length m. In the
specific case of real and symmetric collapse operators
L = L∗ = LT = L†, these words can be factorised,

resulting in the triangular sum

Tr{Lm}

= Tr
ßÅ

L∗ ⊗ L − 1
2

(
L†L ⊗ 1d +

(
1d ⊗ L†L

)T
)ãm™
(143)

= m!
∑

k1+k2+k3=m

Tr
{

(L∗)k1(L†L)k2 ⊗ Lk1((L†L)T )k3
}

(−2)k2+k3k1!k2!k3!
(144)

= m!
∑

k1+k2+k3=m

Tr
{

Lk1+2k2
}

Tr
{

Lk1+2k3
}

(−2)k2+k3k1!k2!k3! . (145)

= m!
m∑

k1=0

m−k1∑
k2=0

Tr
{

Lk1+2k2
}

Tr
{

L2m−k1−2k2
}

(−2)m−k1−1k1!k2!(m − k1 − k2)! .

(146)

A.6 Second-order Gate-Dependent Correction
Term
Beginning with the general expression for the second-
order term in the AGI expansion in Eq. (33), and
combining with the m = 2 term M (2)(t) in Eq. (30),
we obtain Eq. (60) since

Tr
¶

M (2)(t)
©

= Tr
{

L2

2! +
∞∑

n1=1

∞∑
n2=1

( 2∏
i=1

(−t)ni [(S)ni , L]
ni!

∑2
j=i (nj + 1)

)}

(147)

= Tr
ßL2

2!

™
+

+
∞∑

n1=1

∞∑
n2=1

(−t)n1+n2 Tr{[(S)n1 , L][(S)n2 , L]}
n1!n2!(n1 + n2 + 2)(n2 + 1)

(148)

Focusing now on the gate-dependent terms only, we
can express the double summation of the trace term
using the relation n1 + n2 + 2 = s

∞∑
n1=1

∞∑
n2=1

(−t)n1+n2 Tr{[(S)n1 , L][(S)n2 , L]}
n1!n2!(n1 + n2 + 2)(n2 + 1) (149)

=
∞∑

s=0

s−2∑
n=0

(−t)s−2 Tr
{

[(S)n, L]
[
(S)s−2−n, L

]}

n!s(s − 1 − n)!
(150)

=
∞∑

s=0

(−t)s−2

s(s − 1)!×

×
s−2∑
n=0

Ç
s − 1

n

å
Tr
{

[(S)n, L]
[
(S)s−2−n, L

]}
. (151)

Lemma A.1. Given operators A and B the following
binomial sum of the product of iterated commutators
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at order n and j − n is traceless,
j∑

n=1

Ç
j + 1

n

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}
= 0. (152)

Proof. Using
(

j+1
n

)
=
(

j+1−1
n−1

)
+
(

j+1−1
n

)
, we have

j∑
n=1

Ç
j + 1

n

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}

=
j∑

n=1

Ç
j

n − 1

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}
+

+
j∑

n=1

Ç
j

n

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}
. (153)

Now, for the first term with binomial
(

j+1−1
n−1

)
and

using the change of index n → n + 1,
j∑

n=1

Ç
j

n − 1

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}

=
j−1∑
n=0

Ç
j

n

å
Tr
{[

(A)n+1, B
][

(A)j−n−1, B
]}

(154)

=
j−1∑
n=0

Ç
j

n

å
Tr
{

[A, [(A)n, B]]
[
(A)j−n−1, B

]}
(155)

= −
j−1∑
n=0

Ç
j

n

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}
, (156)

by cyclic permutation of the trace. This summation is
the negation of the second binomial term

(
j+1−1

n

)
for

all terms 1 ≤ n ≤ j −1. Therefore only the n = 0 and
n = j terms remain. Moreover since

(
j
j

)
=
(

j
0
)

= 1,
we have that

j∑
n=1

Ç
j + 1

n

å
Tr
{

[(A)n, B]
[
(A)j−n, B

]}

= Tr
{[

(A)j , B
]
B
}

− Tr
{

B
[
(A)j , B

]}
(157)

= 0. (158)

Now, applying this result to the summation in
Eq. (151), where we identify j = s − 2, we have that
all terms for n ≥ 1 are zero, and therefore only the
n = 0 term survives giving the following relation

s−2∑
n=0

Ç
s − 1

n

å
Tr
{

[(S)n, L]
[
(S)s−2−n, L

]}

= Tr
{

L
[
(S)s−2, L

]}
. (159)

From this, with a change of index s − 2 = s, we can
rewrite the full second-order correction as

I(2) = −(γt)2

d(d + 1)×

×

(
Tr
{

L2}

2 +
∞∑

s=2

(−t)s Tr{L[(S)s, L]}
(s + 2)!

)
, (160)

giving the result in Eq. (63).
Now, as for the gate-independent terms, we wish to

express this gate-dependent trace of superoperators
explicitly in terms of the operators H and L.

Beginning with the binomial expansion of the trace
of the iterated commutator [42],

Tr{L[(S)s, L]}

=
s∑

k=0
(−1)k

Ç
s

k

å
Tr
{

LSkLSs−k
}

(161)

= is
s∑

k=0

k∑
j=0

s−k∑
l=0

Ç
s

k

åÇ
k

j

åÇ
s − k

l

å
(−1)s+k−j−l×

× Tr
{

L
(
(H∗)k−j ⊗ Hj

)
L
(
(H∗)s−k−l ⊗ H l

)}
,
(162)

where we used the binomial expansion of the expres-
sion for S in terms of H in Eq. (12),

Sk = ik
k∑

j=0
(−1)k−j

Ç
k

j

å
(H∗)k−j ⊗ Hj . (163)

Substituting now the expression for L in terms of L in
Eq. (13), and expanding algebraically the products of
the operator terms in the trace, we obtain the follow-
ing nine expressions, the sum of which is equivalent to
the superoperator trace (omitting the prefactors and
summations for convenience):

Tr
{

LHk−jLHs−k−l
}∗ Tr

{
LHjLH l

}
, (164)

−1
2 Tr

{
LHk−jLT L∗Hs−k−l

}∗ Tr
{

LHj+l
}

, (165)

−1
2 Tr

{
LHs−j−l

}∗ Tr
{

LHjLT L∗H l
}

, (166)

−1
2 Tr

{
LT L∗Hk−jLHs−k−l

}∗ Tr
{

LHj+l
}

, (167)
1
4 Tr

{
LT L∗Hk−jLT L∗Hs−k−l

}∗ Tr
{

Hj+l
}

, (168)
1
4 Tr

{
LT L∗Hs−j−l

}∗ Tr
{

LT L∗Hj+l
}

, (169)

−1
2 Tr

{
LHs−j−l

}∗ Tr
{

L†LHjLH l
}

, (170)
1
4 Tr

{
LT L∗Hs−j−l

}∗ Tr
{

L†LHj+l
}

, (171)
1
4 Tr

{
Hs−j−l

}∗ Tr
{

L†LHjLT L∗H l
}

. (172)

Now, we can simplify these expressions by making
the following observations: Firstly, s must be even
since (i) heuristically, the trace must be real since we
are calculating the fidelity (a real quantity) and there-
fore the prefactor is in Eq. (161) cannot be imaginary,
and (ii) formally, we prove this in Appendix A.7. Sec-
ondly, by symmetry of the binomial expansions, we
are free to make the following change of variables:

j → k − j,

l → s − k − l.
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For clarity, note that this change of variables does not
affect the prefactor

(−1)s+k−j−l → (−1)j+k+l,

since, with s even, the ratio of these two terms is

always a power of 2 and therefore equal to 1.

As an example to illustrate the effect of this change
of variables, for the first term Eq. (164), the for-
ward and backwards sums are complex conjugates and
therefore only the real part can remain (omitting pref-
actors of the full expression):

k∑
j=0

s−k∑
l=0

Tr
{

LHk−jLHs−k−l
}∗ Tr

{
LHjLH l

}
→

k∑
j=0

s−k∑
l=0

Tr
{

LHjLH l
}∗ Tr

{
LHk−jLHs−k−l

}
(173)

=⇒
k∑

j=0

s−k∑
l=0

Tr
{

LHk−jLHs−k−l
}∗ Tr

{
LHjLH l

}
=

k∑
j=0

s−k∑
l=0

Re
¶

Tr
{

LHk−jLHs−k−l
}∗ Tr

{
LHjLH l

}©
. (174)

Similarly, by comparing the remaining terms in
Eqs. (165) to (172) with their counterparts following
the change of variables, it is possible to identify the
following sums as complex conjugates of one another:

k∑
j=0

s−k∑
l=0

(165 + 166) =
k∑

j=0

s−k∑
l=0

2 Re{165},

k∑
j=0

s−k∑
l=0

(167 + 170) =
k∑

j=0

s−k∑
l=0

2 Re{167},

k∑
j=0

s−k∑
l=0

(169 + 171) =
k∑

j=0

s−k∑
l=0

2 Re{169},

k∑
j=0

s−k∑
l=0

(168 + 172) =
k∑

j=0

s−k∑
l=0

2 Re{168}.

Hence, by combining all of these terms into the full
expression for Tr{L[(S)s, L]} in Eq. (161), we obtain
the following result of Eq. (71):

Tr{L[(S)s, L]}

=
s∑

k=0

k∑
j=0

s−k∑
l=0

Ç
s

k

åÇ
k

j

åÇ
s − k

l

å
(−1)s+k−j−l×

× Re
[

Tr
{

LHk−jLHs−k−l
}∗ Tr

{
LHjLH l

}

+ 1
2 Tr

{
LT L∗Hs−j−l

}∗ Tr
{

LT L∗Hj+l
}

+ 1
2 Tr

{
LT L∗Hk−jLT L∗Hs−k−l

}∗ Tr
{

Hj+l
}

− Tr
{

LHk−jLT L∗Hs−k−l
}∗ Tr

{
LHj+l

}

− Tr
{

LT L∗Hk−jLHs−k−l
}∗ Tr

{
LHj+l

}
]

.

(175)

A.7 Tracelessness of the Odd-Order Iterated
Commutator
Theorem A.3. Given two operators A and B, the
product of B with the iterated commutator of order s,
B[(A)s, B], is traceless for all odd s,

∀ s = 2k + 1 , k ∈ Z , Tr{B[(A)s, B]} = 0. (176)

Proof. We begin with the trace of the binomial ex-
pansion of the iterated commutator [42],

B[(A)s, B] =
s∑

k=0
(−1)k

Ç
s

k

å
BAs−kBAk

(177)

∴ Tr{B[(A)s, B]} =
s∑

k=0
(−1)k

Ç
s

k

å
Tr
{

BAs−kBAk
}

.

(178)

By symmetry of the binomial expansion
(

s
k

)
=
(

s
s−k

)
,

and considering s odd (−1)s−k = −(−1)k, we can
write the equivalent expansion

B[(A)s, B] = −
s∑

k=0
(−1)k

Ç
s

k

å
BAkBAs−k

(179)

∴ Tr{B[(A)s, B]} = −
s∑

k=0
(−1)k

Ç
s

k

å
Tr
{

BAkBAs−k
}

(180)

= −
s∑

k=0
(−1)k

Ç
s

k

å
Tr
{

BAs−kBAk
}

,

(181)

by cyclic permutation of the trace, Tr{CD} =
Tr{DC} =⇒ Tr{[C, D]} = 0. Hence, we have the
result for odd s

Tr{B[(A)s, B]} = − Tr{B[(A)s, B]} (182)
=⇒ Tr{B[(A)s, B]} = 0. (183)
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B Gates and Operators
Here we compile additional information and examples
regarding the quantum gates and collapse operators
used in the main text.

B.1 Quantum Gates
Given the set of single-qudit gates Ug ∈ {1d, X, Z, F}
defined in Eqs. (16) to (19), we present them in matrix
form to illustrate their structure. The identity matrix
in d dimensions is trivial, and generated by a null
control Hamiltonian Hc = 0d, corresponding to no
action on the qudit state. The generalized Pauli-X or
SHIFT gate X = Σx is defined as

X =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0




, (184)

which cyclically permutes the basis states, increment-
ing them all by 1 level. An equivalent formulation is
given by the transpose XT , which cyclically permutes
the states downwards,

XT =




0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0




. (185)

The generalized Pauli-Z or CLOCK gate Z = Σz is
defined as

Z =




1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 · · · 0 ωd−1




, (186)

where the d-th roots of unity, ω, are also used to define
the matrix form of the Quantum Fourier Transform in
d dimensions, being the generalisation of the Walsh-
Hadamard (superposition) gate,

F = 1√
d

×



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωd−1

1 ω2 ω4 ω6 · · · ω2(d−1)

1 ω3 ω6 ω9 · · · ω3(d−1)

...
...

...
...

. . .
...

1 ωd−1 ω2(d−1) ω3(d−1) · · · ω(d−1)(d−1)




.

(187)

Note that we may consider a further generalisation of
the CLOCK gate from a phase shift of the roots of
unity to an arbitrary phase ϕ,

PHASE(ϕ) =




1 0 0 · · · 0
0 eiϕ 0 · · · 0
0 0 e2iϕ · · · 0
...

...
...

. . .
...

0 0 · · · 0 e(d−1)iϕ




, (188)

where the choice of phase factor allows us to generate
not only Clifford gates but also non-Clifford gates,
such as for the T gate with ϕ = π/8.

Now, we introduce the interpolated X (SHIFT) and
Z (CLOCK) gates, where we raise the X and Z gates
to the power η ∈ [0, 1], which allows us to smoothly
interpolate the action of the gate(s) between the iden-
tity (η = 0) and the original gate (η = 1). As an
example, consider η = 3d−2

4d for d = 2:

X0.5 = 1√
2

ï
ei π

4 e−i π
4

e−i π
4 ei π

4

ò
. (189)

It can be seen that for 0 < η < 1 the Xη and Zη gates
are non-Clifford.

B.2 Collapse Operators
We present a brief example for the collapse operators
of pure dephasing, bit-flip and relaxation, as defined
in Eqs. (22) to (24). In d = 4, these are precisely the
generalised spin operators Jz, Jx and J− for spin- 3

2
systems, given by

Jz = 1
2




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


 , (190)

and

Jx = 1
2




0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0


 , (191)

and

J− =




0 0 0 0√
3 0 0 0

0 2 0 0
0 0

√
3 0


 . (192)

C Complementary Results
Here, we present further results and investigations
that support the findings of the main text.
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Figure 11: Method QuTiP.rand unitary haar (and equiv-
alently Cirq.rand unitary), based on [44].

C.1 Uniformity of the CUE for Haar-random
Unitaries
As noted in Sec. 2.3, the ability to generate ensem-
bles of well-distributed random matrices for arbitrary
qudit dimensions is of fundamental importance to
the study of the statistical behaviour of the AGI,
particularly regarding the aspect of gate-dependence.
Given a qudit of dimension d, we identify the space
of all possible quantum gates with the unitary group
U(d) of d × d unitary matrices, associated to skew-
Hamiltonian control terms generated through the ma-
trix exponential map of the Lie algebra u(d) . There-
fore, the aim is to sample from a uniform distribution
over this group.

Since U is a compact, connected Lie group, it has
a unique (up to positive scalar multiplication) and
operation-invariant measure, referred to as the Haar
measure [44]. When normalised to one, it produces
a uniform probability measure on U, with the asso-
ciated probability space referred to by the name Cir-
cular Unitary Ensemble (CUE), as originally intro-
duced by Dyson [45]. Elements of the CUE are thus
typically referred to as Haar-random unitary matri-
ces. The properties of these random matrices have
been well-studied, particularly in the standard refer-
ence text on random matrix theory by Mehta [46], to
which we shall refer. For the specific case of the gen-
eration of random unitary matrices, we shall refer to
the work of Mezzadri [44].

The spectral statistics form the foundation for the
study of random matrices, and in particular we shall
concern ourselves with the two primary quantities: (1)
the eigenvalue distribution (level density), and (2) the
nearest-neighbour eigenvalue (n-level, for n = 1) spac-
ing distribution.

Since we are studying unitary matrices whose eigen-
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Figure 12: Method QuTiP.rand unitary (and equivalently
QuTiP.rand herm).

values all lie on the unit circle in the complex plane,
λj = eiθj , the eigenvalue distribution is thus the dis-
tribution of the complex phases θj of the d eigenval-
ues:

−π ≤ θj < π ∀ 1 ≤ j ≤ d. (193)

In the large matrix limit where d → ∞ the eigenvalue
phases will tend towards a uniform distribution on the
domain [−π, π) with probability density ρ(θ) = 1

2π .
Next, the nearest-neighbour eigenvalue spacing dis-

tribution p(s) is obtained by: (1) sorting the spectrum
of phases θj from smallest to largest, (2) unfolding
this spectrum by the factor d

2π to normalise the mean
spacing to 1, and then (3) taking their successive dif-
ferences sj = d

2π (θj+1 − θj), resulting in a list of d − 1
elements. This distribution for the unitary ensembles
is well approximated by the Wigner Surmise pw(s),

pw(s) = 32s2

π2 e
−4s2

π , (194)

where s is taken in the continuous limit of sj . In the
original work of Wigner [47] on the Gaussian Unitary
Ensemble (GUE) of random Hamiltonian (Hermitian)
matrices, this is the exact analytical form for the case
of 2 × 2 matrices, which applies to very good approx-
imation for large d. Additionally since the GUE and
CUE are related functionally, these two distributions
become equivalent for both ensembles for large d.

Given our requirements of sampling random
matrices uniformly from the unitary group, we
note that there exist numerous (Python-based)
packages with methods for generating unitary
matrices. Some common, but non-exhaustive, ex-
amples include: QuTiP [48, 49] (rand unitary,
rand unitary haar, rand herm), Cirq [50]
(rand unitary, rand special unitary), and
Bristol [51] (gen cue).
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Figure 13: Method Bristol.gen cue

Both QuTiP’s rand unitary haar and Cirq’s
rand unitary methods implement precisely the al-
gorithm provided by Mezzadri in [44]. The
Cirq.rand special unitary method augments the
original rand unitary method by normalising the de-
terminant of the randomly generated matrix to 1. The
QuTiP.rand unitary method uses the rand herm
method to generate a random Hermitian matrix and
then computes its unitary equivalent by matrix expo-
nentiation.

We tested each of these different methods by sam-
pling one million eigenvalues in each of 2 matrix size
configurations, d ∈ {2, 100} for each method. These
two values were chosen to represent the two regimes
of large and small matrix dimensions. The number of
eigenvalues was chosen such that, for the algorithm of
Mezzadri the standard deviation of the mean for the
level density of the eigenvalue phases of the d = 100
matrices fell below the threshold of 0.001. The num-
ber of eigenvalues was kept constant at each dimen-
sion by varying the number of quantum gates gen-
erated, specifically 500000 and 10000 for d = 2 and
d = 4 respectively.

In Figs. 11 to 14, the simulated data of eigen-
value and spacing distributions (blue) are compared
to their analytically expected results (red). We can
see that the method of Mezzadri in Fig. 11 performs
the best for generating uniformly distributed Haar-
random gates. Hence this is our method of choice.
However, even for this method the spacing distribu-
tion does show reduced accuracy for lower dimensions,
despite the level densities remaining uniform. This
could be attributed to the fact that the Wigner Sur-
mise is exact for 2 × 2 Hermitian matrices (but still
very accurate for large d), but it is only in the large d
limit that the distributions for the CUE are identical
to that of the GUE [46]. Thus some deviation is to
be expected for small unitary matrices.

−3 −2 −1 0 1 2 3

θ

0.0

0.1

0.2

0.3

0.4

0.5

ρ
(θ

)

(a) d = 100 level density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

p
(s

)

(b) d = 100 spacings

−3 −2 −1 0 1 2 3

θ

0.0

0.1

0.2

0.3

0.4

0.5

ρ
(θ

)

(c) d = 2 level density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

p
(s

)

(d) d = 2 spacings

Figure 14: Method Cirq.rand special unitary

The QuTiP.rand unitary and QuTiP.rand herm
methods in Fig. 12 do not appear suitable for sam-
pling uniformly from the CUE. Indeed, inspection of
the sampled matrices showed that approximately 50%
of the generated unitary matrices were diagonal. On
the other hand, the Bristol.gen cue in Fig. 13 is
well optimised for high-dimensional systems but is
unsuitable for small dimensions. Finally, it is inter-
esting to note that the special unitary matrices of
Cirq.rand special unitary in Fig. 14 are similarly
distributed for large dimension, but show singular be-
haviour for small d.

C.2 Distribution of the asymptotic AGIs
We continue our investigations on the different
Python methods for generating Haar-random gates,
namely: Bristol.gen cue, QuTiP.rand unitary,
QuTiP.rand unitary haar, Cirq.rand unitary
and Cirq.rand special unitary.

In Sec. 2.3, and Fig. 3 specifically, we discussed the
distribution of the plateau values I∗ of the AGI in the
large-γt regime. Recall that we refer to these plateau
values I∗ at the large-γt limit, limγt≫1 I → I∗. We
showed that they must be bounded above and below
by Eq. (47) for all gates. We also observed the ap-
pearance of two distinct behaviours (I∗

mono and I∗
over)

in the sampled Haar-random gates: (1) Monotonic
growth of the AGI towards I∗, and (2) overshoot with
a single turning point above I∗.

We note that, as for all the numerical results in the
main text, the QuTiP.rand unitary haar method
was used to generate the data shown in Fig. 3. We
complement this work by repeating these simulations
using the remaining methods (for d = 2) and also with
QuTiP.rand unitary haar for d ∈ {2, 4, 8, 16}. For
each test method and dimension, 100000 gates were
generated, their I∗ calculated numerically and their
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Ī∗ = 1− 1
d

E [I∗total]
I∗min = 1− 2

d+1

(c) Cirq.rand unitary

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

I∗
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(
I∗

)

p(I∗mono)
p(I∗over)
u(I∗min, I∗max)
p(I∗total)
I∗max = 1− 1

d+1
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Figure 15: Probability distributions of the AGI plateaus for different gate generation methods. 100000 gates were
generated using each of the four methods for d = 2: Bristol.gen cue in Fig. 15a, QuTiP.rand unitary in Fig. 15b,
Cirq.rand unitary in Fig. 15c and Cirq.rand special in Fig. 15d. For each gate, the I∗ was calculated and categorised
according to whether the curves were monotonic (orange) or overshooting (blue). The distributions of the counts of I∗

in the domain [I∗
min, I∗

max] (black and red vertical lines, respectively) were binned according to Sturge’s formula nbins =
log2(ngates + 1) and normalised such that the total distribution p(I∗

total) (grey) had unit area. The mean plateau value
E (I∗

total) (cyan, dotted vertical line), was plotted in comparison with the expected mean Ī∗ = 1 − 1
d

(blue, dashed vertical
line). The green line represents the expected uniform distribution u (I∗

min, I∗
max) in the domains.
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Figure 16: Probability distributions of the AGI plateaus for dimensions d ∈ {2, 4, 8, 16}. 100000 gates were generated
using the method QuTiP.rand unitary haar of [44] at each dimension: d = 2 in Fig. 16a, d = 4 in Fig. 16b, d = 8 in
Fig. 16c, d = 16 in Fig. 16d. For each gate, the I∗ was calculated and categorised according to whether the curves were
monotonic (orange) or overshooting (blue). The distributions of the counts of I∗ in the domain [I∗

min, I∗
max] (black and red

vertical lines, respectively) were binned according to: Sturge’s formula nbins = log2(ngates + 1) for d = 2, nbins = 100 for
d = 4, 8 and nbins = 200 for d = 16, due to the increasing concentration of the counts for the larger dimensions. The counts
were normalised such that the total distribution p(I∗

total) (grey) had unit area. The mean plateau value E (I∗
total) (cyan, dotted

vertical line), was plotted in comparison with the expected mean Ī∗ = 1 − 1
d

(blue, dashed vertical line). The green curve

represents the fitted Weibull distributions f (I∗; I∗
0 , k, λ) = k

λ

(
I∗−I∗

0
λ

)k−1
e

−
Ç

I∗−I∗
0

λ

åk

in the domain.
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behaviour categorised as either monotonic or over-
shooting as shown in Table 1.

Figures 15 and 16 display the data of these experi-
ments by plotting histograms of the probability den-
sities of the I∗ for each category of gate, I∗

mono in
orange and I∗

over in blue, as well as their combined
distribution I∗

total in grey. The histograms were nor-
malised such that the area under the curve of p(I∗

total)
was equal to 1. The red and black vertical lines show
the upper and lower bounds on I∗, respectively. The
dashed blue vertical lines show the expected mean
value for each dimension.

Looking closer at Fig. 15, the two Cirq meth-
ods in Figs. 15c and 15d appear to have dis-
tributions matching most closely with that of
QuTiP.rand unitary haar in Fig. 16a, although the
normalisation procedure for the special unitary ma-
trices appears to generate a larger proportion of gates
with overshoot. It is interesting to note that the
Bristol.gen cue method in Fig. 15a generates an
increasing number of gates near the expected mean,
but only below, with no gates in the range 1 − 1

d ≤
I∗ ≤ 1 − 1

d+1 . As mentioned in Appendix C.1,
QuTiP.rand unitary in Fig. 15b generates a large
number of diagonal unitary matrices, whose I∗ =
I∗

min = 1 − 2
d+1 are equivalent to that of the iden-

tity matrix 1d.

Figure 16 shows the preferred
QuTiP.rand unitary haar method for different
dimensions d ∈ {2, 4, 8, 16}. We note that at each
dimension the computed mean over all sampled I∗ is
equal to (within statistical error) the expected mean
shown by the dashed blue vertical line, Ī∗ = 1 − 1

d .
However, most striking is the fact that for d > 2
the total probability density is no longer uniformly
distributed between I∗

min and I∗
max, but becomes

increasingly concentrated about the mean.

We remark that this observed behaviour is due to
the concentration of measure phenomenon as the di-
mensionality of the system increases [52, 53]. To un-
derstand this, we first demonstrate the following prop-
erty of the AGI:

Lemma C.1. The AGI function I : U(d) → R
is L-Lipschitz continuous with respect to the Frobe-
nius norm ∥A∥F =

√
Tr{A†A} over the unitary group

U(d) with Lipschitz constant L = 2
d+1 , such that

|I(U) − I(U ′)| ≤ L∥U − U ′∥F (195)

where U, U ′ ∈ U(d).

Proof. The AGF F can be written in terms of the
process fidelity F as [41]

F = dF + 1
d + 1 , (196)

where F = 1
d2

∣∣Tr
{

U†V
}∣∣2 for two unitaries U, V ∈

U(d). Then, with I = 1 − F , we have that

I =
d2 −

∣∣Tr
{

U†V
}∣∣2

d(d + 1) . (197)

Considering the difference, we have that

|I(U) − I(U ′)|

= 1
d(d + 1)

∣∣∣∣∣Tr
{

U†V
}∣∣2 −

∣∣Tr
{

U ′†V
}∣∣2

∣∣∣ (198)

= 1
d(d + 1)

∣∣∣
∣∣Tr
{

U†V
}∣∣ −

∣∣Tr
{

U ′†V
}∣∣∣∣∣×

×
∣∣∣
∣∣Tr
{

U†V
}∣∣ +

∣∣Tr
{

U ′†V
}∣∣∣∣∣ , (199)

by difference of squares. Now,
∣∣∣
∣∣Tr
{

U†V
}∣∣ +

∣∣Tr
{

U ′†V
}∣∣∣∣∣

≤
∣∣Tr
{

U†V
}∣∣ +

∣∣Tr
{

U ′†V
}∣∣ (200)

≤ 2d, (201)

by the Cauchy-Schwartz inequality and since the trace
of a unitary is at most d. Similarly,

∣∣∣
∣∣Tr
{

U†V
}∣∣ −

∣∣Tr
{

U ′†V
}∣∣∣∣∣

≤
∣∣Tr
{

U†V
}

− Tr
{

U ′†V
}∣∣ (202)

≤
∥∥U†V − U ′†V

∥∥
F

(203)

≤
∥∥∥(U − U ′)†

V
∥∥∥

F
(204)

≤ ∥U − U ′∥F , (205)

and by unitary invariance of the Frobenius norm.
Therefore, substituting these two expressions,

|I(U) − I(U ′)| ≤ 2
d + 1∥U − U ′∥F , (206)

and thus I is Lipschitz with L = 2
d+1 .

Now, we can apply this result for I in conjunction
with Levy’s Lemma extended to the classical compact
group U(d) [54], which we restate here without proof:

Theorem C.1. Let f : X → R be L-Lipschitz con-
tinuous with Lipschitz constant L, and let X be an
element of one of the compact classical groups. Then,
for each t > 0,

P [|f(X) − E [f(X)]| ≥ t] ≤ e− (d−2)t2

24L2 . (207)

Using our result for I, we have that

P [|I(U) − E [I(U)]| ≥ t] ≤ e− (d−2)(d+1)2t2
96 . (208)

This therefore confirms our observation of the con-
centration of measure phenomenon in Fig. 16; it tells
us that the probability of observing a gate whose infi-
delity is further than t from the expectation value of
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d Method I∗
mono (%) I∗

over (%) ϵrel (%) DKL
2 Bristol.gen cue 59.56 40.44 0.100 0.885
2 QuTiP.rand unitary 100.00 0.00 0.243 0.438
2 Cirq.rand unitary 73.06 26.94 1.02 × 10−3 5.92 × 10−5

2 Cirq.rand special unitary 61.66 38.34 6.83 × 10−4 1.32 × 10−4

2 QuTiP.rand unitary haar 75.51 24.49 2.56 × 10−4 7.15 × 10−5

4 QuTiP.rand unitary haar 71.24 28.76 4.38 × 10−5 2.92 × 10−3

8 QuTiP.rand unitary haar 70.21 29.79 1.27 × 10−5 1.21 × 10−3

16 QuTiP.rand unitary haar 99.95 0.05 7.98 × 10−4 1.36 × 10−3

Table 1: Proportions of Random Gates with and without Turning Points. 100000 gates were generated for each of the
method and dimension pairs shown. The I∗

mono (%) and I∗
over columns show the percentages of gates falling into either

of the two categories: (1) monotonic growth, and (2) overshooting behaviour. The column ϵrel gives the relative error
between the measured mean of the overall data E(I∗

total) and the expected mean Ī∗ = 1 − 1
d

for the calculated AGI plateau
values, given by ϵrel =

∣∣∣ E(I∗
total)−Ī∗

Ī∗

∣∣∣. The quantity DKL is the Kullback-Leibler divergence measuring the relative entropy
between the distribution p (I∗

total) and the reference distribution: DKL (p(I∗
total)||u (I∗

min, I∗
max)) for d = 2 uniform and

DKL (p(I∗
total)||f (I∗; I∗

0 , k, λ)) for d > 2 Weibull.
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Figure 17: Fitted power-law model parameters as func-
tions of η for the saturation points (γt)∗ of the Xη

gates. AGIs for Xη with η ∈ (0, 1] for d ∈ [2, 12]. Sat-
uration points (γt)∗ were calculated by interpolation and
root-finding. A power law model was fitted with parameters
α(η) (blue, circles), β(η) (red, triangles), and δ(η) (black,
squares) were then fitted to sigmoidal and exponential mod-
els (dashed lines) as functions of η.

the AGI decays exponentially in the distance t2 and
the dimensionality (d − 2)(d + 1)2 of the system.

For the case d = 2, the exponent is zero and thus
the probability is constant for all t and so we see in
Fig. 16a that the AGI plateau values are uniformly
distributed. However, as d > 2 for Figs. 16b to 16d,
the I∗ become exponentially concentrated about the
mean Ī∗.

This could also account for the fluctuation in the
ratios of I∗

mono/I∗
over at different system sizes. How-

ever, further work is needed to elucidate the precise
reasons for these observations.

C.3 Power-law behaviour of the saturation
points of the AGI

As shown in Fig. 5 in Sec. 2.4, the saturation points
(γt)∗ of the AGIs for the interpolated Xη gates were
observed to follow a power-law model described by
Eq. (51). The initial analysis was performed for each
gate in a range of values η = (0, 1] for d ∈ [2, 12] by:
(1) computing the AGIs numerically for a range of γt
values in Python using QuTiP’s propagator and
process fidelity methods, (2) interpolating the
AGI curves using SciPy.interpolate.CubicSpline,
and (3) finding the plateau saturation points (γt)∗ by
root-finding with SciPy.optimize.root scalar.

Then, this three-parameter power law model in
Eq. (51) was fitted on (γt)∗ as a function of d for
each η curve by nonlinear least-squares regression us-
ing the SciPy.optimize.curve fit method. This
produced three sets of data for the fitted parameters
α, β, γ as functions of η. These three curves were
then themselves fitted to their respective sigmoidal
and exponential models in Eqs. (52) to (54), using
the same SciPy.optimize.curve fit method. The
models showed good agreement with the data, with
R2(α) = 0.9992, R2(β) = 0.9992 and R2(δ) = 0.9989.

The fitted data points and resulting models are
shown in Fig. 17. We note that the outliers at small
values of η (including η = 0 for the identity gate with
constant (γt)∗) are due to the near-constant satura-
tion point values of these gates over the range of d,
which slowly transition towards more power-law-like
behaviour as η increases. For example, for η = 0 the
saturation point is constant in d, giving a horizontal
line. Fitting a power-law curve to this dataset was
possible but required unrealistic fit parameters like
α ∼ 1050. Nevertheless, this analysis hints at a po-
tential approach for estimating the saturation points
based only on the parameter η, without requiring the
explicit numerical simulation.ut
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Figure 18: Linear regression fits of the critical order sε

over gate time t for the X gate. The X gate (η = 1)
was simulated for dimensions d ∈ {2, 4, 8, 16, 32} over gate
times γt ∈ [0.5, 4.5] with γ = 1 fixed. The second-order
gate-dependent correction term was calculated at each t for
increasing order s in the summation until convergence be-
tween successive terms was obtained at the critical value sε.
For each d, a linear model was fitted to the data as shown
by the dotted lines.

C.4 Time dependence of the second-order cor-
rection to the AGI
As alluded to in Fig. 9 in Sec. 2.5, the convergence
of the second-order (gate-dependent) AGI correction
term as a function of t was observed to be linear in
Eq. (66). More specifically, the number of iterations
sε required to reach convergence of two successive
terms in the summation Eq. (63) was calculated ac-
cording to Eqs. (64) and (65).

To understand the time-dependence of this, for each
of the η and d values shown in Fig. 9, the critical sε

was computed for a range of times t ∈ [0, 5] with γ
fixed at 1. Interestingly, we can see that in Fig. 18 the
sε does indeed appear linear in t for each dimension
shown for the X gate. This behaviour extends to
other η values too. Therefore, a linear least-squares
regression was performed on these data points using
the SciPy.optimize.curve fit; the resulting fitted
models are shown in Fig. 18 alongisde the data points,
indicating good agreement. The resulting gradients
m = dsε

dt for each fitted curve are thus the data shown
in Fig. 9.
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