KIT | KIT-Bibliothek | Impressum | Datenschutz

Industrial 300 mm wafer processed spin qubits in natural silicon/silicon-germanium

Koch, Thomas ORCID iD icon 1; Godfrin, Clement; Adam, Viktor ORCID iD icon 2; Ferrero, Julian ORCID iD icon 1; Schroller, Daniel 1; Glaeser, Noah 1; Kubicek, Stefan; Li, Ruoyu; Loo, Roger; Massar, Shana; Simion, George; Wan, Danny; De Greve, Kristiaan; Wernsdorfer, Wolfgang 1,2
1 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

The realisation of a universal quantum computer will require the operation of many thousands to millions of coherently coupled qubits. The possibility of using existing industrial semiconductor fabrication techniques and infrastructure for up-scaling and reproducibility makes silicon based spin qubits one of the most promising platforms to achieve this goal. The implementation of the up to now largest semiconductor based quantum processor was realised in a silicon/silicon-germanium heterostructure known for its low charge noise, long qubit coherence times and fast driving speeds, but the high structural complexity creates challenges for industrial implementations. Here we demonstrate quantum dots hosted in a natural Si/SiGe heterostructure fully fabricated by an industrial 300 mm semiconductor wafer process line from heterostructure growth to Co micromagnet monolithic integration. We report charge noise values below 2 μeV/ $\sqrt{Hz}$, spin relaxation times exceeding 1 s, and coherence times T$^*$$_2$ and T$^H$$_2$ of 1 μs and 50 μs respectively, for quantum wells grown using natural silicon. Further, we achieve Rabi frequencies up to 5 MHz and single qubit gate fidelities above 99%. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181522
Veröffentlicht am 12.05.2025
Originalveröffentlichung
DOI: 10.1038/s41534-025-01016-x
Scopus
Zitationen: 3
Web of Science
Zitationen: 4
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Physikalisches Institut (PHI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2056-6387
KITopen-ID: 1000181522
HGF-Programm 47.12.01 (POF IV, LK 01) Advanced Solid-State Qubits and Qubit Systems
Erschienen in npj Quantum Information
Verlag Nature Research
Band 11
Heft 1
Seiten Art.-Nr.: 59
Vorab online veröffentlicht am 05.04.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page