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Abstract—Digital Twins enable real-time monitoring through 

automatic model extraction of complex systems using data from 

sensors, meters and IoT devices to facilitate valuable decisions. In 

energy systems, Digital Twins can be integrated to improve 

system reliability by enabling adaptability to demand 

fluctuations and system disturbances. With the increasing share 

of renewable energy sources, reliability and stability of power 

grids is challenged by intermittent supply, unexpected 

disturbances, and demand mismatches. In this paper, we explore 

the use of modelling and simulation for reliability analysis and 

investigate automation of reliability model extraction for Digital 

Twins in the context of energy systems. By reviewing Digital 

Twin applications in energy systems, including energy 

optimization and predictive maintenance, the paper contributes 

to the understanding of trends, challenges, and opportunities in 

improving reliability of energy systems through a comprehensive 

review of literature and implementation results. 
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I. INTRODUCTION 

Reliability of energy systems is important to ensure stable 
and uninterrupted supply to meet the growing demands of 
modern society. However, aging infrastructures, increasing 
complexities, and integration of renewable energy sources 
present significant challenges to maintaining reliability [1]. 
Modeling and simulation play a pivotal role in evaluating 
reliability of power systems, particularly as the integration of 
renewable energy sources introduces new complexities [2].  

Two fundamental concepts within the reliability of power 
systems are adequacy and security [3]. Adequacy, also known 
as resource adequacy, refers to the capability of the electrical 
grid to meet end-user power demand at any given time, 
especially during peak demand periods. This involves ensuring 
a surplus of dispatchable generation capacity and demand 
response resources to accommodate major equipment failures 
and fluctuations in power from variable renewable energy 
sources, such as wind variability [4]. On the other hand, 
security refers to the ability of the system to maintain the 
balance between supply and demand in real-time, especially 
after contingencies, by automatically adjusting generation and 
removing interruptible loads. Security relies on the availability 
of operating reserves, historically provided by synchronous 

generators [4]. However, with the proliferation of inverter-
based resources, like solar photovoltaics and grid batteries, 
ensuring security has become more complex [5].  

 

Fig. 1. Integration of data-driven reliability analysis in energy systems. 

Modeling and Simulation (M&S) techniques enable the 
assessment of adequacy and security in power systems, 
facilitating understanding and improvement of reliability 
amidst changing energy landscapes and increasing renewable 
energy integration [2]. Given the central role of data in today's 
energy industry, data can be used to study the reliability of 
energy systems through the application of M&S with the aim 
of improving reliability measures and formulating more 
effective decisions for more reliable systems. For this reason, 
data-driven analysis and simulation approaches are becoming 
increasingly popular in many fields with the aim of extracting 
system behavior [6]. Fig. 1 illustrates the complementary roles 
of data-driven methods and reliability analysis in ensuring the 
security and adequacy of energy systems, emphasizing their 
integration to achieve reliable performance. 

A DT serves as a virtual representation of a physical entity, 
process, or system, capable of reflecting its real-time behavior 
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through data interaction [7]. For example, in the context of 
smart grids, a DT acts as a virtual replica of the physical power 
grid, reflecting real-time grid behavior using data from smart 
meters and sensors [8]. Implementing DTs for smart grids 
provides utilities and grid operators with a holistic view of their 
infrastructure [9]. DTs enable improved monitoring, 
management, and optimization of power system performance 
by providing accurate simulation and predictive analytics [10], 
[11]. Real-time monitoring and advanced analytics can help 
identify potential problems, predict failures, and improve 
power systems’ reliability and efficiency [12]. 

Capabilities of DTs can facilitate the transition of power 
systems, one of the most complex Cyber-Physical Systems 
(CPS) created by humans, towards a new generation of 
Industry 4.0 [13]. The advancement of digital transformation 
involves advanced technologies such as Machine Learning 
(ML) and Industrial Internet of Things (IIoT). The concept of 
DT has recently gained prominence as a means of 
revolutionizing modern energy industry, with potential 
applications to improve power grid operations, reduce 
unplanned outages and manage fluctuations in market 
conditions [14]. By enhancing stability, reliability, and 
resilience through real-time fault monitoring, power grid DTs 
emerge as a valuable tool. This transformative technology (i.e., 
DT) is relevant to microgrid development, where its 
application promises substantial benefits for long-term 
planning [15]. Furthermore, DT technology offers a 
transformative perspective from the standpoint of energy 
management and monitoring, enabling systems and operators 
to make optimal and more efficient decisions [10].  

To identify challenges and opportunities in using DTs to 
maintain reliability of power/energy systems, we performed 
detailed literature review on the application of data-driven 
methods in power system reliability analysis and simulation, 
focused on impactful papers published from 2014 to the 
present. We begin with a background and related work in 
Section II, where we outline the current methods for reliability 
assessment in power/energy systems. This section also 
addresses the primary M&S techniques used in power/energy 
systems, and their limitations in reliability assessment. We 
conclude this section with an overview of the concept of DTs 
in various power/energy systems and their applications, and 
advantages. In Section III, we discuss the role of data-driven 
approaches in applying DTs for enhancing energy system 
reliability. We, furthermore, present examples from recent 
research where DTs have been used for reliability analysis in 
power/energy systems. As a result of our findings, we propose 
a general framework for DTs for enhancing reliability in 
power/energy systems. In Section IV, we discuss the 
challenges and limitations associated with the implementation 
of DT for reliability enhancement in power/energy systems. In 
Section V, we present a summary of the key findings from the 
literature review and discuss future research directions in this 
area. 

II. BACKGROUND AND RELATED WORK 

In this section, we provide background on the use of DTs 
for enhancing reliability of power/energy systems. For this, we 
review recent advances on reliability, M&S, and DTs in energy 

systems. To conduct this review, we followed the three-level 
methodology below. Fig. 2 shows the number of documents 
obtained after the first level, accumulated over the last 10 years. 

Level 1: Keyword search on Scopus and Google Scholar. 

Level 2: Screening the documents based on their titles, 
keywords, and abstracts to select the most impactful studies. 

Level 3: Reading and analyzing the selected papers. 
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Fig. 2. Cumulative publications in Scopus over the last 10 years related to 

data-driven reliability analysis and simulation in power systems (as of 10-Jun-

2024). 

A. Reliability of Energy Systems 

Reliable energy is essential for life-saving hospital 
equipment, communication systems, and building 
environments, supporting health, safety, and economic security. 
Energy reliability is defined as the ability of a power system to 
withstand instability, uncontrolled events, cascading failures, 
or unforeseen loss of system components [16]. In other words, 
a reliable energy system can deliver energy securely and 
adequately to homes, buildings, and appliances, even in the 
event of physical or cyber disruptions. 

Power and energy system failures have a significant impact 
on the economy, causing significant financial losses and 
operational disruptions. In the United States, power outages 
cost about $150 billion annually, according to the Department 
of Energy [17], underscoring the importance of power system 
reliability. Utilities face challenges in recovering from severe 
outages, which affect not only their operations but also the 
broader economy. As a result, utilities must balance the high 
cost of grid improvements with the need for reliable power, 
aiming for an “adequate level of reliability” at a reasonable 
cost [18]. Digital transformation strategies can help utilities 
reduce unplanned outages, and enhance reliability and 
performance [19]. 

The evolution of power system reliability has undergone 
significant advancements driven by technological progress, 
increasing demand for electricity, and a deeper comprehension 
of system dynamics [20]. In the initial stages, the assessment of 
reliability was primarily focused on the maintenance of 
continuous electricity supply in the face of component failures, 
relying on empirical data and heuristic methods [21]. However, 
with the increasing complexity of power systems, it became 
evident that these traditional approaches were no longer 
sufficient to ensure reliability [22]. 

The introduction of probabilistic methods by researchers, 
such as Allan and Billinton, transformed the field, allowing 
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accurate modeling of system reliability by incorporating 
uncertainties in generation and load [4]. Advanced 
computational tools have further transformed reliability 
analysis, allowing detailed modeling of complex systems, 
including those with renewable energy sources and smart grid 
technologies [22], [23]. Additionally, the emergence of smart 
grid technologies further revolutionized this area of power 
system reliability by enabling real-time monitoring and 
predictive maintenance strategies, as discussed by Weng et al. 
[24], who demonstrated how historical data-driven state 
estimation can improve reliability management in modern 
power grids. An overview of reliability analysis in CPS has 
been presented in [25], outlining the need and potential of 
conducting data-driven reliability assessments in the current 
era due to the pivotal role played by data. 

Two different approaches are used to assess the reliability 
of power systems: deterministic and probabilistic [3]. 
Historically, deterministic methods have been employed for 
planning of aspects such as generation, operation, and network 
capacity [3]. However, despite the advantages of being simple 
to perform and requiring less data, these methods do not take 
into account the stochastic nature of systems’ behaviors, 
including uncertainty in customer load demands and 
component failures [3]. On the contrary, probabilistic 
approaches consider uncertain events and random nature of 
component failures (i.e., failure states). Therefore, probabilistic 
approaches can handle the variable nature of renewable 
generation, whereas deterministic approaches usually only 
consider worst-case scenarios [3]. 

Deterministic reliability analysis includes criteria, such  as 
N-1 redundancy, where critical components are duplicated to 
ensure system functionality in events of failures [3]. 
Otherwise, load shedding strategies are employed to prevent 
overloading by temporarily cutting off non-essential loads 
during peak demand [4]. The principal drawback of 
deterministic criteria is that they may result in the over-design 
of power systems, thereby failing to consider economic and 
risk factors.  

 
Fig. 3. Reliability assessment methods for power systems. 

On the other hand, probabilistic reliability analysis are not 
easily interpreted without translating results into actionable 
reliability indicators [3]. Reliability indicators are parameters 
that quantitatively assess an aspect of power system reliability 
[3], such as the number, duration, or frequency of failures. It is 

impossible to assess all aspects using one indicator and no 
approach always works best. Probabilistic reliability analysis 
of power systems is discussed in detail in the textbook by 
Tuinema et al. [3]. This textbook provides a comprehensive 
introduction to reliability models for components, small 
systems and large systems using a range of methods including 
reliability functions, Markov models, fault/event tree analysis 
and Monte Carlo simulation. Fig. 3 shows the main categories 
of reliability assessment methods for power systems. 

Several reliability indices are commonly used to evaluate 
the reliability of power systems [3]. For example, utilities 
measure their performance measures using: 

1. System Average Interruption Frequency Index (SAIFI) 

2. System Average Interruption Duration Index (SAIDI) 

3. Customer Average Interruption Duration Index (CAIDI) 

4. Customer Average Interruption Frequency Index (CAIFI) 

5. Average Service Availability Index (ASAI) 

6. Average Energy Not Supplied (AENS) 

B. Modeling & Simulation for Reliability in Energy Systems 

Advances in reliability of energy systems rely heavily on 
their M&S techniques. Subramanian et al. [26] review key 
M&S developments in the field of energy systems and 
categorize contributions into computational, mathematical, and 
physical models, while also exploring hybrid approaches. They 
emphasize hybrid models that integrate process systems 
engineering and energy economics provide a holistic view by 
combining technical and economic perspectives. This 
classification shows how different models address different 
aspects of energy systems to improve reliability. Key 
applications include optimal design, demand and price 
forecasting, sustainability analysis, and consideration of 
emerging technologies. Continued research to refine these 
techniques is essential to address the growing complexity of 
modern energy systems and ensure energy reliability. 

In the face of future uncertainties, reliability of energy 
systems is a critical concern for both researchers and 
practitioners. Niet et al. [2] address this issue by improving the 
reliability of energy system scenarios through integrated 
modeling. The authors review existing modeling paradigms—
energy economics, capacity expansion, and power sector 
planning—and discuss the benefits of combining them into a 
single framework to leverage their respective advantages. 
While integrated modeling can enhance representation of 
system interactions, it also increases complexity and risks 
creating “black box” models that lack transparency and trust. 
The authors emphasize that increasing model complexity 
requires careful consideration to maintain transparency and 
trustworthiness. They recommend avoiding overly complex 
models and focusing on clear modeling purposes and best 
practices to ensure clarity and transparency. Continued 
research in this area is crucial to address future challenges 
effectively. 

Adinolfi et al. [27] propose a unique method for power 
system reliability assessment that integrates component and 
system reliability metrics for a comprehensive evaluation. This 
method adapts Reliability Prediction Models (RPMs) for 
different equipment such as power lines, transformers, circuit 
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breakers, and renewable energy systems. The effectiveness of 
the method is demonstrated in grid reliability assessment by 
integrating it into a software application for practical 
implementation. The authors introduce the “Load Feeding 
Reliability” indicator, which evaluates the failure rate of all 
possible paths feeding a given load unit, thereby measuring the 
reliability of power supply to specific loads. This indicator 
helps identify unreliable systems and improve power system 
design, planning, and control, thereby increasing the reliability 
of grids and microgrids. The study underscores the importance 
of detailed and integrated modeling for the reliability of 
complex power systems and highlights the need for continued 
research in this area. 

Data-driven methods have emerged as powerful tools for 
enhancing power/energy system reliability. Bertozzi et al. [28] 
explore how these approaches can improve power system 
stability and control by enabling real-time analysis of large 
operational data sets to predict potential failures. The paper 
discusses methods such as Koopman spectral analysis, physics-
informed neural networks (PINNs), and sparse identification 
models that extract and analyze system dynamics from raw 
data. Machine learning algorithms can identify patterns and 
anomalies in historical data, enabling predictive control 
decisions and timely intervention to reduce downtime and 
improve reliability. Key findings highlight the effectiveness of 
these methods in improving grid stability, frequency support, 
and power oscillation damping. In addition, the authors 
advocate the integration of model-based and data-driven 
control techniques, combining their strengths to adapt to 
variations and uncertainties. Their work underscores the 
potential of data-driven modeling and simulation to 
revolutionize power system reliability and calls for further 
research to fully exploit these technologies. 

Quantitative reliability modelling of power systems 
presents several challenges due to their inherent complexity [4]. 
Factors, such as high redundancy, varying component 
reliability and the dynamic nature of outage events, contribute 
to this complexity [4]. Identifying and quantifying the 
probability and impact of outage events is a challenging task, 
particularly when major interruptions involve dependent 
outage events that are not easily modelled probabilistically [4]. 
In addition, load shedding mechanisms (typically triggered by 
insufficient system frequency or undervoltage) and the role of 
human interaction in the control room further complicate 
modelling processes [4]. Despite these challenges, probabilistic 
assessment provides valuable data-driven insights that improve 
decision making by reducing the reliance on subjective 
judgement [3]. Qualitative methods utilize models, diagrams, 
and other visual tools to analyze and understand the reliability 
of a system and its components [29]. Conversely, quantitative 
methods employ mathematical and statistical techniques to 
evaluate the system's and its components' reliability [29]. 
Combining both qualitative and quantitative reliability 
assessment approaches provide a comprehensive reliability 
assessment of CPS [29]. 

Traditional modeling approaches in energy systems 
typically do not address the complexity and dynamic nature of 
modern power grids. For instance, the traditional modeling 
approaches may not account for the variability and uncertainty 
inherent in renewable energy sources, such as solar and wind 
power, leading to less accurate reliability predictions. 
Additionally, these approaches typically focus on individual 
components in isolation rather than considering the 
interconnectedness and interdependencies within the entire 
system. Consequently, these models may not provide accurate 
predictions of system failures or insights into potential areas of 
vulnerability.  

The evolving landscape of energy systems, characterized 
by increased penetration of renewable energy and advanced 
grid technologies, necessitates more sophisticated modeling 
techniques that can dynamically adapt to changing conditions 
and integrate a holistic view of system interactions. Investment 
in research and development of modeling and simulation are 
crucial for building stable and reliable energy systems as they 
grow in complexity.  

The need for integrated modeling techniques is becoming 
increasingly apparent, necessitating innovative, data-driven, 
and probabilistic modeling approaches that can better capture 
the complexity of modern energy systems and improve their 
reliability. Therefore, based on the reliability methodologies 
explored in our literature review, we selected examples to 
illustrate data-driven reliability modeling for improvement of 
reliability in different energy system applications. The 
reviewed papers are presented in Table I and classified 
according to the reliability model, application, data, reliability 
assessment method and key performance indicators (KPIs) 
used.   

C. Digital Twins for Energy Systems 

Digital Twins (DTs) are sophisticated, dynamic digital 
replicas of physical systems that continuously update and 
evolve through real-time data and expert knowledge. This 
concept was first introduced by Michael Grieves in 2002 [7] 
and has since evolved to encompass advanced technologies 
such as smart sensors, IoT, 5G communications, cloud 
platforms, and Artificial Intelligence (AI) [8]. In energy 
systems, DTs serve as virtual entities that replicate the 
properties, behaviors, and interactions of physical energy 
assets such as power plants, grids, and substations [8]. They 
enable real-time monitoring, performance optimization, and 
predictive maintenance by creating a continuous feedback 
loop between the physical and virtual worlds [13], [30]. 

DTs are transforming energy systems by enhancing 
efficiency, reliability, and sustainability across various sectors, 
including power generation, transmission, distribution, energy 
storage, industrial management, and smart cities. DTs are 
increasingly used in various facets of energy systems to 
improve cybersecurity, efficiency, sustainability, and 
reliability [10], [31]. This section explores the various 
applications of DTs across different energy systems, 
highlighting key studies and their findings. 

 

830
Authorized licensed use limited to: KIT Library. Downloaded on January 30,2026 at 00:14:16 UTC from IEEE Xplore.  Restrictions apply. 



1) Power Generation 
The emergence of DTs is transforming the field of power 

generation, enabling more efficient, reliable, and sustainable 
operations. In the context of power generation, DTs are 
employed for real-time monitoring and control, improved 
maintenance strategies, and enhanced energy production. For 
instance, Choi et al. [40] discuss the implementation of DTs in 
power generation, emphasizing their role in operational 
efficiency and predictive maintenance. 

Wind Power: The development and deployment of DTs in 
wind power are significant for monitoring and improving the 
performance of wind turbines. Pimenta et al. [41] highlight the 
creation of a DT for an onshore wind turbine, using monitoring 
data to enhance performance and maintenance. Wang et al. [24] 
examine the use of DT solutions to enhance the reliability and 
support the structures of offshore wind turbine, demonstrating 
the improvements in structural integrity and operational 
reliability. Real-world applications, such as General Electric's 
DT for wind farms [42] and DNV GL's WindGEMINI [43], 
illustrate the practical benefits of DTs in enhancing energy 
production and reliability. 

Solar Power: In the context of solar power, DTs are 
applied to reduce downtime and optimize fault diagnosis, 
power point tracking, and asset management. Jain et al. [44] 
apply fault detection and identification methodologies through 
a model-based DT to enhance fault diagnosis and reduce 
downtime for photovoltaic (PV) systems. Moreover, Yalçin et 
al. [45] investigate the potential of machine learning and DT 
concepts to enhance the operation of solar PV plants, 
improving fault detection and system efficiency. Additionally, 
Wang et al. [46] underscore the significance of DTs in 
enhancing power output by improving the maximum power 
point estimation for PV systems. 

2) Power Transmission  
DTs in power transmission are critical for real-time 

analysis and improving the reliability of power grids. Yassin et 
al. [47] provide a comprehensive review that explores the 
operating principles, communication channels, and challenges 
of applying DTs in power systems, integrating concepts such 
as Machine Learning (ML), Big Data (BD), Artificial 
Intelligence (AI), Cyber-Physical Systems (CPS), and Internet 
of Things (IoT). Furthermore, Sifat et al. [8] provide 
frameworks and an overview of the technologies and 
requirements for implementing DTs in power grids, 
highlighting their potential to prevent power outages and 
blackouts. In addition, real-time online analysis of power grids 
is explored by Zhou et al. [48], showing the potential of real-
time online analysis through DTs to improve grid performance 
and security. 

3) Power Distribution & Microgrids 
DTs improve the management and reliability of distribution 

networks. Zhaoyun and Linjun [49] review the current 
applications and future prospects of DTs in distribution 
networks applications for fault prediction, real-time monitoring, 
reconfiguration, and power load forecasting. In addition, the 
DT approach of Jain et al. [44] enables fault diagnosis in 
distributed PV systems to reduce downtime. Real-world 
applications, such as the Norwegian Distribution System 
Operator's (DSO) Tensio test of a DT of the power grid [50], 
demonstrate the benefits of this technology. 

Microgrids: A microgrid is an independent energy system 
comprising distributed energy resources and connected loads, 
capable of operating both independently and while connected 
to the main grid [51]. Bazmohammadi et al. [15] discuss the 
application of DTs in microgrids and their role in improving 
operational efficiency and resiliency, using historical and real-
time data through sensor networks and IoT technologies. The 

TABLE I. EXAMPLES OF RELIABILITY MODELING FOR ENERGY SYSTEMS USING POPULAR RELIABILITY MODELS 

Reliability Model References Application 
Model 
Development 

Data 
Reliability 
Assessment 
Approach 

KPIs 

Markov Models 

[32] Integrated 
Energy System 
(IES) 

Data-driven, 
Physics-based 

Static data for power 
and heat loads, system 
configuration  

Monte Carlo 
Simulation, State 
Enumeration Method 

Loss of Load Probability 
(LOLP), Expected 
Energy Not Supplied 
(EENS), Expected Heat 
Not Supplied (EHNS) 

[33] Renewable 
Energy-Based 
Microgrids 

Data-driven,   
Physics-baseda 

Static hourly weather 
data, parameters for 
components’ faults and 
failures 

Monte Carlo 
Simulation 

LOLP,  EENS, Loss of 
Load Expectation 
(LOLE) 

[34] Offshore Wind 
Farm 

Data-driven,   
Physics-based 

Static data from wind 
speed, system 
configuration 

Sequential Monte 
Carlo Simulation 

LOLP,  EENS, Energy 
Utilization Ratio (EUR), 
Time Utilization Ratio 
(TUR), Energy Loss 
(EL)  

Hybrid Models 
(combining discrete-
event and continuous 
models) 

[35] Grid-Connected 
Solar 
Photovoltaic 
System 

Data-driven,  
Physics-baseda 

Static data on weather 
patterns,  parameters 
for components’ faults 
and failures 

Sequential Monte 
Carlo Simulation 

Time-to-Failure (TF), 
Time-to-Repair (TR), 
Healthy State Probability 

Reliability Block 
Diagrams 

[36], [37] Microgrids with 
Hybrid Energy 
Storage 

Data-driven Static data on failure 
and repair time of 
components 

Monte Carlo 
Simulation 

LOLP, SAIFI, SAIDI, 
CAIDI, ASAI 

Fault Trees  
[38], [39] Cyber-Physical 

Systems 
Data-driven, 
Expert 
knowledge 

Streaming data from 
fault, repair, and 
failure occurrences 

Proxel-based 
simulation 

Reliability and 
Maintainability 
Distributions 

a. The model considers the variability of renewable resources and weather conditions. 
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applications of DTs in microgrids, explored by the authors, 
include optimizing operation, maintenance, design, control, 
operator training, forecasting, fault diagnosis, expansion 
planning, and policy making.  Danilczyk et al. [52] present 
ANGEL, an intelligent DT framework for microgrid security, 
highlighting the potential for enhanced protection and 
operational stability. 

4) Energy Storage Systems 
DT plays a pivotal role in optimizing energy storage 

systems. Semeraro et al. [53] explore trends and challenges for 
various application of DT in energy storage systems (EES), 
emphasizing their potential in improving storage efficiency and 
reliability. Further studies by Semeraro et al. [54] and 
Kharlamova et al. [55] highlight the use of DTs in battery 
energy storage systems (BESS) for better performance and 
frequency regulation. 

5) Industrial Management 
In industry, reliability of systems is directly linked to the 

energy consumption. DTs in industrial energy management are 
increasingly implemented for improving energy efficiency and 
sustainability of industrial systems. Yu et al.  [56] classify the 
different types of DTs used in industrial energy management, 
summarizing the applications of energy DTs throughout an 
industrial site's lifecycle. Khodadadi and Lazarova-Molnar [57] 
analyze data requirements of energy-oriented DT for industrial 
energy efficiency through  a case study system. 

6) Smart Cities 
Smart cities are inseparable from energy systems. 

Employing a smart city DT applies to all energy systems 
within the smart city. Jafari et al. [10] review the potential of 
DT technology in the management and energy systems of 
smart cities, such as transportation and power systems, and 
show the key role of DT in improving the operation of smart 
cities. 

III. A FRAMEWORK FOR DATA-DRIVEN DIGITAL TWINS FOR 

RELIABILITY ANALYSIS IN ENERGY SYSTEMS 

The DT concept is becoming increasingly important for 
improving the reliability and stability of power grids, 
especially with the integration of renewable energy 
technologies [9], [58], [59]. DT frameworks for power systems 
can be classified as model-based, data-driven and hybrid, based 
on the modelling technique [47]. Since DTs update underlying 
models in near-real-time with system changes based on data, 
data-driven DTs are emerging as a good solution for improving 
the reliability of power systems where timeliness is important 
[60]. Applications of extracted models from energy system 
data through DTs can be supporting predictive maintenance, 
fault diagnosis using fault trees [38], security evaluation, 
operation management, monitoring, and control [15].  

Data-driven approaches alone may not be sufficient to 
ensure energy system reliability. Dynamic system models 
complement data-driven methods to accurately capture and 
predict system behavior under different operating conditions 
[60]. For example, Chakraborty and Adhikari [61] proposed a 
hybrid approach that combines physics-based and data-driven 
methods to track and predict the multiscale evolution of system 
parameters. Similarly, Tzanis et al. [11] developed a hybrid DT 

model for smart grid fault prediction by combining data-driven 
machine learning with model-based transient state estimators. 
This hybrid approach improves fault prediction and predictive 
maintenance, ensuring robust performance, effective real-time 
fault detection, and accurate predictions by leveraging the 
strengths of both modeling techniques. 

Security of Operation: Enhancing the security of 
operation in energy systems involves advanced technologies 
and proactive strategies to minimize the frequency and impact 
of unplanned outages and disruptions. Possible advances using 
data-driven DTs include real-time grid monitoring and control 
systems that utilize data analytics and IoT sensors to detect 
faults early and enable swift corrective actions. Smart grid 
technologies, augmented with data-driven DTs, can facilitate 
dynamic grid reconfiguration and rapid fault isolation, ensuring 
quick restoration of service during disruptions. Additionally, 
microgrid solutions and distributed energy resources (DERs), 
integrated through DT frameworks, enhance local resilience 
and reduce dependency on centralized infrastructure. Robust 
cybersecurity measures, including continuous monitoring and 
threat detection through DTs, protect against physical and 
cyber threats. These innovations collectively ensure 
uninterrupted energy supply, safeguard critical infrastructure, 
and maintain the reliability of energy systems under diverse 
operational conditions. 

Adequacy of Supply: Data-driven DTs hold significant 
potential for bolstering supply adequacy in energy systems by 
improving the integration and management of renewable 
energy sources and energy storage technologies. Advanced 
forecasting and grid management techniques for renewables, 
alongside data-driven insights from DTs, enhance grid stability 
and reduce supply variability. Innovations in battery storage 
and grid-scale solutions like pumped hydro, monitored and 
optimized through DTs, support reliable peak demand 
management and the integration of intermittent renewable 
sources into the grid. These advancements contribute to 
enhanced energy efficiency and reduced emissions, ensuring a 
stable and adequate energy supply. 

 Data-driven approaches, such as machine learning and 
process mining, are used in DTs for various reliability 
improvements in power systems. Djebali et al. [9] highlight the 
use of AI and ML in DTs for smart grids, focusing on 
predictive maintenance, energy optimization, and demand 
response to improve decision making and system reliability. 
Chakraborty and Adhikari’s [61] hybrid approach combines 
physics-based and data-driven methods for dynamic system 
analysis, using machine learning algorithms such as mixture of 
experts (ME) and Gaussian process (GP) to update DT models 
and make future predictions, with the ME-GP-based DT 
providing superior results compared to the GP-based twin. 

Anomaly detection algorithms and dynamic system 
modeling, as proposed by Sleiti et al. [60] improve the 
reliability and maintainability of power plants by utilizing real-
time data. In addition, Shi et al. [62] developed a data-driven 
model for power system anomaly detection using random 
matrix and free probability theory, which improves the 
accuracy and sensitivity of system anomaly detection.  
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In addition, Nguyen et al. [63] used a Power Hardware-In-
The-Loop (PHIL) setup to integrate DTs for real-time 
monitoring and operational optimization of renewable energy 
resources. Song et al. [64] proposed a multi-level system of DT 
systems (SDTS) using BD and AI to improve grid stability and 
resilience. IoT and machine learning, highlighted by Jafari et al. 
[10] enhance real-time data management and analysis in smart 
grids and transportation systems to improve overall reliability 
and efficiency. 

For example, Wang et al. [65] developed a data-driven DT 
framework for real-time monitoring, fault diagnosis, and 
operation optimization of offshore wind turbines. In addition, 
the DT developed by Jain et al. [44] uses model-based fault 
detection and identification methods to improve fault diagnosis 
and reduce downtime for PV systems. Several other studies 
have proposed five-dimensional DT (5D-DT)  framework for 
power systems  and energy sector applications consisting of 
five key layers (“physical system”, “virtual system”, 
“connection”, “data” and “services”) [15], [30], [31], [49], [66].  

Based on our findings, we propose a general data-driven 
DT framework for reliability enhancement of energy systems, 
illustrated in Fig. 4 The components of the framework are 
explained below.  

Energy System: The energy system component 
encompasses the physical infrastructure of power plants, 
transmission lines, substations, distribution networks, 
microgrids, or energy storage systems. These systems are 
equipped with data collection technologies such as sensors, 
smart meters, Supervisory Control and Data Acquisition 
(SCADA) systems, and IIoT devices. These technologies 

enable collection of essential operational data for further 
processing and analysis. 

Input Data: Input data is automatically collected and 
processed from operational data from sensors, smart meters, 
SCADA systems, IIoT devices, historical records, and expert 
knowledge.  This component ensures data quality and 
relevance for model extraction, providing a robust foundation 
for reliability analysis by the DT. 

Reliability-Oriented Digital Twin: DT extracts reliability 
models from input data using data-driven, model-driven, or 
hybrid approaches to analyze energy system reliability.  
Machine learning and other data-driven techniques can be used 
to extract fault tree and Markov models from real-time data fir 
fault detection and diagnosis in energy systems [45], [62]. In 
addition, model-driven approaches incorporate physical laws 
and engineering principles to simulate system behavior [2]. On 
the other hand, hybrid approaches combine both data-driven 
and model-driven extraction methods, for example, using 
physics-based models to study system dynamics and machine 
learning to adjust parameters in real-time [11], [60], [61]. 
Furthermore, validation of DT ensures that model accuracy in 
reflecting real-world conditions [67], [68]. Finally, DT models 
are used to analyze reliability indicators that support decision 
making, enabling dynamic monitoring, predictive maintenance, 
fault diagnosis, and safety evaluations. 

Decision Support: This component translates the DT 
output (i.e., reliability analysis results and indicators) into 
actionable recommendations and adjustment measures, 
providing feedback into the energy system. The decision 
support component is divided into security and adequacy: 
Security focuses on monitoring, predictive maintenance, and 

 
Fig. 4.  Proposed framework for DTs for enhancing reliability in power/energy systems. 
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fault detection; while adequacy covers expansion planning, 
operation management, and managing renewables variability. 
With the assist of reliability analysis using real-time data, the 
DT detects and diagnoses failures and recommends actions to 
prevent future disruptions and optimize performance [15], [49]. 
Decisions are implemented through advanced control 
algorithms and real-time optimization, enabling dynamic 
adjustments based on current conditions [28]. By providing 
continuous feedback and implementing adaptive control 
measures, the DT enhances the overall reliability of the energy 
system, ensuring it can meet both current and future demands. 

IV. CHALLENGES 

Having discussed the benefits of the DT technology, in the 
following, we discuss the challenges and limitations associated 
with data-driven DTs for reliability of energy systems: 

A. Data Quality and Availability 

Effectiveness of DTs is highly dependent on the accuracy 
and consistency of the data they receive. Advanced data 
analysis techniques are needed to pre-process noisy raw data 
and improve data quality [15]. Any errors or inconsistencies in 
the sensor data can lead to inaccurate models and predictions, 
which can affect the reliability of energy systems [69]. 

B. Connectivity and Real-Time Management 

Ensuring that data is collected in real-time and can be 
efficiently processed without delay is critical to maintaining the 
accuracy and responsiveness of DT models. In energy systems, 
this is particularly challenging due to the need to continuously 
update DT models with data from diverse, geographically 
dispersed sources such as wind turbines, solar panels, and grid 
sensors, all without latency issues [70]. Delays can result from 
incompatibilities in data collection, communication speeds, and 
processing infrastructure [10], [47]. Managing large and 
diverse data streams is complex and requires robust 
communication networks and processing capabilities to ensure 
timely updates and accurate representation of physical system 
changes [9]. 

C. Standardization and System Complexity 

There is a lack of standardized methodologies and generic 
modeling and validation criteria for developing and 
implementing DTs across different energy systems [10], [47]. 
The complexity of energy systems, with their diverse 
components and varying operating conditions, further 
complicates standardization efforts. This can lead to 
inconsistencies, as well as increased costs and inefficiencies 
when developing and implementing DTs across different types 
of energy systems, such as electrical grids, wind farms, and 
solar power plants [9], [49]. 

D. Implementation Costs  

The initial implementation of DTs involves significant 
costs, including specialized software, infrastructure, and 
ongoing maintenance. It requires large amounts of data and 
sensors, which are directly proportional to processing costs. 
Renewable energy generation technologies such as wind and 
solar already face high operation and maintenance (O&M) 
costs. DTs can help optimize maintenance strategies and 

predict failures, but the initial implementation of DT 
technology can be costly and resource intensive [71]. 

E. Cybersecurity 

The implementation of DTs in energy systems introduces 
cybersecurity risks. Unauthorized access and data manipulation 
can lead in severe consequences, including grid instability, 
energy theft, and large-scale power outages. Although 
reliability-oriented DTs aim to enhance system reliability, this 
reliability is also critical for overall security. However, DT 
integration with control systems of critical infrastructure, such 
as power grids, makes them prime targets for cyber-attacks. 
Consequently, robust cybersecurity measures are essential to 
protect energy systems from potential threats and ensure the 
reliability and security of the energy infrastructure [9], [10]. 

 
Fig. 5. Challenges of DT implementation in energy systems. 

V. CONCLUSIONS AND OUTLOOK 

The goal of our comprehensive literature review was to 
explore the role of Digital Twins (DTs) in enhancing reliability 
of energy systems. DTs facilitate real-time monitoring, 
predictive maintenance, and optimization of operations, which 
are crucial for adapting to the complexities introduced by the 
integration of renewable energy sources. Data-driven 
approaches, combined with advanced modeling and simulation 
techniques, have demonstrated considerable promise in 
improving system reliability by enabling accurate predictions 
and proactive interventions. However, the implementation of 
DTs faces challenges such as data quality, real-time data 
management, standardization, and high initial costs. 

Future research should focus on developing standardized 
methodologies and protocols for implementing DTs across 
various energy systems to ensure reliability and stability. 
Additionally, there is a need for hybrid approaches that 
integrate both data-driven and physics-based methods to 
capture the dynamic behavior of complex systems more 
accurately. Future case studies should aim to demonstrate the 
practical applications of DTs in diverse energy systems, 
highlighting the benefits and addressing the challenges of 
scalability and cybersecurity. Continued advancements in ML 
and IIoT technologies will further enhance the capabilities of 
DTs, paving the way for more resilient and reliable energy 
infrastructures. 
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