2024 8th International Conference on System Reliability and Safety (ICSRS) | 979-8-3503-5450-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICSRS63046.2024.10927521

2024 the 8th International Conference on System Reliability and Safety

Enhancing Reliability of Energy Systems with Digital
Twins: Challenges and Opportunities

Omar Mostafa*
Institute of Applied Informatics and Formal Description Methods,
Karlsruhe Institute of Technology
Karlsruhe, Germany
omar.mostafa@kit.edu
*Corresponding author

Abstract—Digital Twins enable real-time monitoring through
automatic model extraction of complex systems using data from
sensors, meters and IoT devices to facilitate valuable decisions. In
energy systems, Digital Twins can be integrated to improve
system reliability by enabling adaptability to demand
fluctuations and system disturbances. With the increasing share
of renewable energy sources, reliability and stability of power
grids is challenged by intermittent supply, unexpected
disturbances, and demand mismatches. In this paper, we explore
the use of modelling and simulation for reliability analysis and
investigate automation of reliability model extraction for Digital
Twins in the context of energy systems. By reviewing Digital
Twin applications in energy systems, including energy
optimization and predictive maintenance, the paper contributes
to the understanding of trends, challenges, and opportunities in
improving reliability of energy systems through a comprehensive
review of literature and implementation results.
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I. INTRODUCTION

Reliability of energy systems is important to ensure stable
and uninterrupted supply to meet the growing demands of
modern society. However, aging infrastructures, increasing
complexities, and integration of renewable energy sources
present significant challenges to maintaining reliability [1].
Modeling and simulation play a pivotal role in evaluating
reliability of power systems, particularly as the integration of
renewable energy sources introduces new complexities [2].

Two fundamental concepts within the reliability of power
systems are adequacy and security [3]. Adequacy, also known
as resource adequacy, refers to the capability of the electrical
grid to meet end-user power demand at any given time,
especially during peak demand periods. This involves ensuring
a surplus of dispatchable generation capacity and demand
response resources to accommodate major equipment failures
and fluctuations in power from variable renewable energy
sources, such as wind variability [4]. On the other hand,
security refers to the ability of the system to maintain the
balance between supply and demand in real-time, especially
after contingencies, by automatically adjusting generation and
removing interruptible loads. Security relies on the availability
of operating reserves, historically provided by synchronous
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generators [4]. However, with the proliferation of inverter-
based resources, like solar photovoltaics and grid batteries,
ensuring security has become more complex [5
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Fig. 1. Integration of data-driven reliability analysis in energy systems.

Modeling and Simulation (M&S) techniques enable the
assessment of adequacy and security in power systems,
facilitating understanding and improvement of reliability
amidst changing energy landscapes and increasing renewable
energy integration [2]. Given the central role of data in today's
energy industry, data can be used to study the reliability of
energy systems through the application of M&S with the aim
of improving reliability measures and formulating more
effective decisions for more reliable systems. For this reason,
data-driven analysis and simulation approaches are becoming
increasingly popular in many fields with the aim of extracting
system behavior [6]. Fig. 1 illustrates the complementary roles
of data-driven methods and reliability analysis in ensuring the
security and adequacy of energy systems, emphasizing their
integration to achieve reliable performance.

A DT serves as a virtual representation of a physical entity,
process, or system, capable of reflecting its real-time behavior
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through data interaction [7]. For example, in the context of
smart grids, a DT acts as a virtual replica of the physical power
grid, reflecting real-time grid behavior using data from smart
meters and sensors [8]. Implementing DTs for smart grids
provides utilities and grid operators with a holistic view of their
infrastructure  [9]. DTs enable improved monitoring,
management, and optimization of power system performance
by providing accurate simulation and predictive analytics [10],
[11]. Real-time monitoring and advanced analytics can help
identify potential problems, predict failures, and improve
power systems’ reliability and efficiency [12].

Capabilities of DTs can facilitate the transition of power
systems, one of the most complex Cyber-Physical Systems
(CPS) created by humans, towards a new generation of
Industry 4.0 [13]. The advancement of digital transformation
involves advanced technologies such as Machine Learning
(ML) and Industrial Internet of Things (IloT). The concept of
DT has recently gained prominence as a means of
revolutionizing modern energy industry, with potential
applications to improve power grid operations, reduce
unplanned outages and manage fluctuations in market
conditions [14]. By enhancing stability, reliability, and
resilience through real-time fault monitoring, power grid DTs
emerge as a valuable tool. This transformative technology (i.e.,
DT) is relevant to microgrid development, where its
application promises substantial benefits for long-term
planning [15]. Furthermore, DT technology offers a
transformative perspective from the standpoint of energy
management and monitoring, enabling systems and operators
to make optimal and more efficient decisions [10].

To identify challenges and opportunities in using DTs to
maintain reliability of power/energy systems, we performed
detailed literature review on the application of data-driven
methods in power system reliability analysis and simulation,
focused on impactful papers published from 2014 to the
present. We begin with a background and related work in
Section II, where we outline the current methods for reliability
assessment in power/energy systems. This section also
addresses the primary M&S techniques used in power/energy
systems, and their limitations in reliability assessment. We
conclude this section with an overview of the concept of DTs
in various power/energy systems and their applications, and
advantages. In Section III, we discuss the role of data-driven
approaches in applying DTs for enhancing energy system
reliability. We, furthermore, present examples from recent
research where DTs have been used for reliability analysis in
power/energy systems. As a result of our findings, we propose
a general framework for DTs for enhancing reliability in
power/energy systems. In Section IV, we discuss the
challenges and limitations associated with the implementation
of DT for reliability enhancement in power/energy systems. In
Section V, we present a summary of the key findings from the
literature review and discuss future research directions in this
area.

II. BACKGROUND AND RELATED WORK

In this section, we provide background on the use of DTs
for enhancing reliability of power/energy systems. For this, we
review recent advances on reliability, M&S, and DTs in energy

systems. To conduct this review, we followed the three-level
methodology below. Fig. 2 shows the number of documents
obtained after the first level, accumulated over the last 10 years.

Level 1: Keyword search on Scopus and Google Scholar.

Level 2: Screening the documents based on their titles,
keywords, and abstracts to select the most impactful studies.

Level 3: Reading and analyzing the selected papers.
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Fig. 2. Cumulative publications in Scopus over the last 10 years related to
data-driven reliability analysis and simulation in power systems (as of 10-Jun-
2024).

A. Reliability of Energy Systems

Reliable energy is essential for life-saving hospital
equipment, communication  systems, and  building
environments, supporting health, safety, and economic security.
Energy reliability is defined as the ability of a power system to
withstand instability, uncontrolled events, cascading failures,
or unforeseen loss of system components [16]. In other words,
a reliable energy system can deliver energy securely and
adequately to homes, buildings, and appliances, even in the
event of physical or cyber disruptions.

Power and energy system failures have a significant impact
on the economy, causing significant financial losses and
operational disruptions. In the United States, power outages
cost about $150 billion annually, according to the Department
of Energy [17], underscoring the importance of power system
reliability. Utilities face challenges in recovering from severe
outages, which affect not only their operations but also the
broader economy. As a result, utilities must balance the high
cost of grid improvements with the need for reliable power,
aiming for an “adequate level of reliability” at a reasonable
cost [18]. Digital transformation strategies can help utilities
reduce unplanned outages, and enhance reliability and
performance [19].

The evolution of power system reliability has undergone
significant advancements driven by technological progress,
increasing demand for electricity, and a deeper comprehension
of system dynamics [20]. In the initial stages, the assessment of
reliability was primarily focused on the maintenance of
continuous electricity supply in the face of component failures,
relying on empirical data and heuristic methods [21]. However,
with the increasing complexity of power systems, it became
evident that these traditional approaches were no longer
sufficient to ensure reliability [22].

The introduction of probabilistic methods by researchers,
such as Allan and Billinton, transformed the field, allowing
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accurate modeling of system reliability by incorporating
uncertainties in generation and load [4]. Advanced
computational tools have further transformed reliability
analysis, allowing detailed modeling of complex systems,
including those with renewable energy sources and smart grid
technologies [22], [23]. Additionally, the emergence of smart
grid technologies further revolutionized this area of power
system reliability by enabling real-time monitoring and
predictive maintenance strategies, as discussed by Weng et al.
[24], who demonstrated how historical data-driven state
estimation can improve reliability management in modern
power grids. An overview of reliability analysis in CPS has
been presented in [25], outlining the need and potential of
conducting data-driven reliability assessments in the current
era due to the pivotal role played by data.

Two different approaches are used to assess the reliability
of power systems: deterministic and probabilistic [3].
Historically, deterministic methods have been employed for
planning of aspects such as generation, operation, and network
capacity [3]. However, despite the advantages of being simple
to perform and requiring less data, these methods do not take
into account the stochastic nature of systems’ behaviors,
including uncertainty in customer load demands and
component failures [3]. On the contrary, probabilistic
approaches consider uncertain events and random nature of
component failures (i.e., failure states). Therefore, probabilistic
approaches can handle the variable nature of renewable
generation, whereas deterministic approaches usually only
consider worst-case scenarios [3].

Deterministic reliability analysis includes criteria, such as
N-1 redundancy, where critical components are duplicated to
ensure system functionality in events of failures [3].
Otherwise, load shedding strategies are employed to prevent
overloading by temporarily cutting off non-essential loads
during peak demand [4]. The principal drawback of
deterministic criteria is that they may result in the over-design
of power systems, thereby failing to consider economic and
risk factors.

Power System
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Probabilistic
Approaches

Monte-Carlo
Simulation

Deterministic
Approaches

* Large Systems
* Many States

* Possible Scenarios
* Uncertain States
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= Certain States

Fig. 3. Reliability assessment methods for power systems.

On the other hand, probabilistic reliability analysis are not
easily interpreted without translating results into actionable
reliability indicators [3]. Reliability indicators are parameters
that quantitatively assess an aspect of power system reliability
[3], such as the number, duration, or frequency of failures. It is

impossible to assess all aspects using one indicator and no
approach always works best. Probabilistic reliability analysis
of power systems is discussed in detail in the textbook by
Tuinema et al. [3]. This textbook provides a comprehensive
introduction to reliability models for components, small
systems and large systems using a range of methods including
reliability functions, Markov models, fault/event tree analysis
and Monte Carlo simulation. Fig. 3 shows the main categories
of reliability assessment methods for power systems.

Several reliability indices are commonly used to evaluate
the reliability of power systems [3]. For example, utilities
measure their performance measures using:

. System Average Interruption Frequency Index (SAIFI)

. System Average Interruption Duration Index (SAIDI)

. Customer Average Interruption Duration Index (CAIDI)

. Customer Average Interruption Frequency Index (CAIFI)
. Average Service Availability Index (ASAI)

. Average Energy Not Supplied (AENS)

AN DWW

B. Modeling & Simulation for Reliability in Energy Systems

Advances in reliability of energy systems rely heavily on
their M&S techniques. Subramanian et al. [26] review key
M&S developments in the field of energy systems and
categorize contributions into computational, mathematical, and
physical models, while also exploring hybrid approaches. They
emphasize hybrid models that integrate process systems
engineering and energy economics provide a holistic view by
combining technical and economic perspectives. This
classification shows how different models address different
aspects of energy systems to improve reliability. Key
applications include optimal design, demand and price
forecasting, sustainability analysis, and consideration of
emerging technologies. Continued research to refine these
techniques is essential to address the growing complexity of
modern energy systems and ensure energy reliability.

In the face of future uncertainties, reliability of energy
systems is a critical concern for both researchers and
practitioners. Niet et al. [2] address this issue by improving the
reliability of energy system scenarios through integrated
modeling. The authors review existing modeling paradigms—
energy economics, capacity expansion, and power sector
planning—and discuss the benefits of combining them into a
single framework to leverage their respective advantages.
While integrated modeling can enhance representation of
system interactions, it also increases complexity and risks
creating “black box” models that lack transparency and trust.
The authors emphasize that increasing model complexity
requires careful consideration to maintain transparency and
trustworthiness. They recommend avoiding overly complex
models and focusing on clear modeling purposes and best
practices to ensure clarity and transparency. Continued
research in this area is crucial to address future challenges
effectively.

Adinolfi et al. [27] propose a unique method for power
system reliability assessment that integrates component and
system reliability metrics for a comprehensive evaluation. This
method adapts Reliability Prediction Models (RPMs) for
different equipment such as power lines, transformers, circuit
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breakers, and renewable energy systems. The effectiveness of
the method is demonstrated in grid reliability assessment by
integrating it into a software application for practical
implementation. The authors introduce the “Load Feeding
Reliability” indicator, which evaluates the failure rate of all
possible paths feeding a given load unit, thereby measuring the
reliability of power supply to specific loads. This indicator
helps identify unreliable systems and improve power system
design, planning, and control, thereby increasing the reliability
of grids and microgrids. The study underscores the importance
of detailed and integrated modeling for the reliability of
complex power systems and highlights the need for continued
research in this area.

Data-driven methods have emerged as powerful tools for
enhancing power/energy system reliability. Bertozzi et al. [28]
explore how these approaches can improve power system
stability and control by enabling real-time analysis of large
operational data sets to predict potential failures. The paper
discusses methods such as Koopman spectral analysis, physics-
informed neural networks (PINNs), and sparse identification
models that extract and analyze system dynamics from raw
data. Machine learning algorithms can identify patterns and
anomalies in historical data, enabling predictive control
decisions and timely intervention to reduce downtime and
improve reliability. Key findings highlight the effectiveness of
these methods in improving grid stability, frequency support,
and power oscillation damping. In addition, the authors
advocate the integration of model-based and data-driven
control techniques, combining their strengths to adapt to
variations and uncertainties. Their work underscores the
potential of data-driven modeling and simulation to
revolutionize power system reliability and calls for further
research to fully exploit these technologies.

Quantitative reliability modelling of power systems

presents several challenges due to their inherent complexity [4].

Factors, such as high redundancy, varying component
reliability and the dynamic nature of outage events, contribute
to this complexity [4]. Identifying and quantifying the
probability and impact of outage events is a challenging task,
particularly when major interruptions involve dependent
outage events that are not easily modelled probabilistically [4].
In addition, load shedding mechanisms (typically triggered by
insufficient system frequency or undervoltage) and the role of
human interaction in the control room further complicate
modelling processes [4]. Despite these challenges, probabilistic
assessment provides valuable data-driven insights that improve
decision making by reducing the reliance on subjective
judgement [3]. Qualitative methods utilize models, diagrams,
and other visual tools to analyze and understand the reliability
of a system and its components [29]. Conversely, quantitative
methods employ mathematical and statistical techniques to
evaluate the system's and its components' reliability [29].
Combining both qualitative and quantitative reliability
assessment approaches provide a comprehensive reliability
assessment of CPS [29].

Traditional modeling approaches in energy systems
typically do not address the complexity and dynamic nature of
modern power grids. For instance, the traditional modeling
approaches may not account for the variability and uncertainty
inherent in renewable energy sources, such as solar and wind
power, leading to less accurate reliability predictions.
Additionally, these approaches typically focus on individual
components in isolation rather than considering the
interconnectedness and interdependencies within the entire
system. Consequently, these models may not provide accurate
predictions of system failures or insights into potential areas of
vulnerability.

The evolving landscape of energy systems, characterized
by increased penetration of renewable energy and advanced
grid technologies, necessitates more sophisticated modeling
techniques that can dynamically adapt to changing conditions
and integrate a holistic view of system interactions. Investment
in research and development of modeling and simulation are
crucial for building stable and reliable energy systems as they
grow in complexity.

The need for integrated modeling techniques is becoming
increasingly apparent, necessitating innovative, data-driven,
and probabilistic modeling approaches that can better capture
the complexity of modern energy systems and improve their
reliability. Therefore, based on the reliability methodologies
explored in our literature review, we selected examples to
illustrate data-driven reliability modeling for improvement of
reliability in different energy system applications. The
reviewed papers are presented in Table I and classified
according to the reliability model, application, data, reliability
assessment method and key performance indicators (KPIs)
used.

C. Digital Twins for Energy Systems

Digital Twins (DTs) are sophisticated, dynamic digital
replicas of physical systems that continuously update and
evolve through real-time data and expert knowledge. This
concept was first introduced by Michael Grieves in 2002 [7]
and has since evolved to encompass advanced technologies
such as smart sensors, IoT, 5G communications, cloud
platforms, and Artificial Intelligence (AI) [8]. In energy
systems, DTs serve as virtual entities that replicate the
properties, behaviors, and interactions of physical energy
assets such as power plants, grids, and substations [8]. They
enable real-time monitoring, performance optimization, and
predictive maintenance by creating a continuous feedback
loop between the physical and virtual worlds [13], [30].

DTs are transforming energy systems by enhancing
efficiency, reliability, and sustainability across various sectors,
including power generation, transmission, distribution, energy
storage, industrial management, and smart cities. DTs are
increasingly used in various facets of energy systems to
improve cybersecurity, efficiency, sustainability, and
reliability [10], [31]. This section explores the various
applications of DTs across different energy systems,
highlighting key studies and their findings.
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TABLE I. EXAMPLES OF RELIABILITY MODELING FOR ENERGY SYSTEMS USING POPULAR RELIABILITY MODELS

Model Reliability
Reliability Model References | Application D Data Assessment KPIs
evelopment A
pproach
[32] Integrated Data-driven, Static data for power Monte Carlo Loss of Load Probability
Energy System Physics-based and heat loads, system | Simulation, State (LOLP), Expected
(IES) configuration Enumeration Method Energy Not Supplied
(EENS), Expected Heat
Not Supplied (EHNS)
[33] Renewable Data-driven, Static hourly weather Monte Carlo LOLP, EENS, Loss of
Markov Models Energy-Based Physics-based* data, parameters for Simulation Load Expectation
Microgrids components’ faults and (LOLE)
failures
[34] Offshore Wind Data-driven, Static data from wind Sequential Monte LOLP, EENS, Energy
Farm Physics-based speed, system Carlo Simulation Utilization Ratio (EUR),
configuration Time Utilization Ratio
(TUR), Energy Loss
(EL)
Hybrid Models [35] Grid-Connected | Data-driven, Static data on weather Sequential Monte Time-to-Failure (TF),
(combining discrete- Solar Physics-based* patterns, parameters Carlo Simulation Time-to-Repair (TR),
event and continuous Photovoltaic for components’ faults Healthy State Probability
models) System and failures
Reliability Block [36], [37] Microgrids with | Data-driven Static data on failure Monte Carlo LOLP, SAIFI, SAIDI,
Di Hybrid Energy and repair time of Simulation CAIDI, ASAI
1agrams Storage components
g p
[38], [39] Cyber-Physical Data-driven, Streaming data from Proxel-based Reliability and
Fault Trees Systems Expert fault, repair, and simulation Maintainability
knowledge failure occurrences Distributions

# The model considers the variability of renewable resources and weather conditions.

1) Power Generation

The emergence of DTs is transforming the field of power
generation, enabling more efficient, reliable, and sustainable
operations. In the context of power generation, DTs are
employed for real-time monitoring and control, improved
maintenance strategies, and enhanced energy production. For
instance, Choi et al. [40] discuss the implementation of DTs in
power generation, emphasizing their role in operational
efficiency and predictive maintenance.

Wind Power: The development and deployment of DTs in
wind power are significant for monitoring and improving the
performance of wind turbines. Pimenta et al. [41] highlight the
creation of a DT for an onshore wind turbine, using monitoring
data to enhance performance and maintenance. Wang et al. [24]
examine the use of DT solutions to enhance the reliability and
support the structures of offshore wind turbine, demonstrating
the improvements in structural integrity and operational
reliability. Real-world applications, such as General Electric's
DT for wind farms [42] and DNV GL's WindGEMINI [43],
illustrate the practical benefits of DTs in enhancing energy
production and reliability.

Solar Power: In the context of solar power, DTs are
applied to reduce downtime and optimize fault diagnosis,
power point tracking, and asset management. Jain et al. [44]
apply fault detection and identification methodologies through
a model-based DT to enhance fault diagnosis and reduce
downtime for photovoltaic (PV) systems. Moreover, Yalgin et
al. [45] investigate the potential of machine learning and DT
concepts to enhance the operation of solar PV plants,
improving fault detection and system efficiency. Additionally,
Wang et al. [46] underscore the significance of DTs in
enhancing power output by improving the maximum power
point estimation for PV systems.

2) Power Transmission

DTs in power transmission are critical for real-time
analysis and improving the reliability of power grids. Yassin et
al. [47] provide a comprehensive review that explores the
operating principles, communication channels, and challenges
of applying DTs in power systems, integrating concepts such
as Machine Learning (ML), Big Data (BD), Artificial
Intelligence (AI), Cyber-Physical Systems (CPS), and Internet
of Things (IoT). Furthermore, Sifat et al. [8] provide
frameworks and an overview of the technologies and
requirements for implementing DTs in power grids,
highlighting their potential to prevent power outages and
blackouts. In addition, real-time online analysis of power grids
is explored by Zhou et al. [48], showing the potential of real-
time online analysis through DTs to improve grid performance
and security.

3) Power Distribution & Microgrids

DTs improve the management and reliability of distribution
networks. Zhaoyun and Linjun [49] review the current
applications and future prospects of DTs in distribution
networks applications for fault prediction, real-time monitoring,
reconfiguration, and power load forecasting. In addition, the
DT approach of Jain et al. [44] enables fault diagnosis in
distributed PV systems to reduce downtime. Real-world
applications, such as the Norwegian Distribution System
Operator's (DSO) Tensio test of a DT of the power grid [50],
demonstrate the benefits of this technology.

Microgrids: A microgrid is an independent energy system
comprising distributed energy resources and connected loads,
capable of operating both independently and while connected
to the main grid [51]. Bazmohammadi et al. [15] discuss the
application of DTs in microgrids and their role in improving
operational efficiency and resiliency, using historical and real-
time data through sensor networks and IoT technologies. The
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applications of DTs in microgrids, explored by the authors,
include optimizing operation, maintenance, design, control,
operator training, forecasting, fault diagnosis, expansion
planning, and policy making. Danilczyk et al. [S2] present
ANGEL, an intelligent DT framework for microgrid security,
highlighting the potential for enhanced protection and
operational stability.

4) Energy Storage Systems

DT plays a pivotal role in optimizing energy storage
systems. Semeraro et al. [53] explore trends and challenges for
various application of DT in energy storage systems (EES),
emphasizing their potential in improving storage efficiency and
reliability. Further studies by Semeraro et al. [54] and
Kharlamova et al. [55] highlight the use of DTs in battery
energy storage systems (BESS) for better performance and
frequency regulation.

5) Industrial Management

In industry, reliability of systems is directly linked to the
energy consumption. DTs in industrial energy management are
increasingly implemented for improving energy efficiency and
sustainability of industrial systems. Yu et al. [56] classify the
different types of DTs used in industrial energy management,
summarizing the applications of energy DTs throughout an
industrial site's lifecycle. Khodadadi and Lazarova-Molnar [57]
analyze data requirements of energy-oriented DT for industrial
energy efficiency through a case study system.

6) Smart Cities

Smart cities are inseparable from energy systems.
Employing a smart city DT applies to all energy systems
within the smart city. Jafari et al. [10] review the potential of
DT technology in the management and energy systems of
smart cities, such as transportation and power systems, and
show the key role of DT in improving the operation of smart
cities.

III. A FRAMEWORK FOR DATA-DRIVEN DIGITAL TWINS FOR
RELIABILITY ANALYSIS IN ENERGY SYSTEMS

The DT concept is becoming increasingly important for
improving the reliability and stability of power grids,
especially with the integration of renewable energy
technologies [9], [58], [59]. DT frameworks for power systems
can be classified as model-based, data-driven and hybrid, based
on the modelling technique [47]. Since DTs update underlying
models in near-real-time with system changes based on data,
data-driven DTs are emerging as a good solution for improving
the reliability of power systems where timeliness is important
[60]. Applications of extracted models from energy system
data through DTs can be supporting predictive maintenance,
fault diagnosis using fault trees [38], security evaluation,
operation management, monitoring, and control [15].

Data-driven approaches alone may not be sufficient to
ensure energy system reliability. Dynamic system models
complement data-driven methods to accurately capture and
predict system behavior under different operating conditions
[60]. For example, Chakraborty and Adhikari [61] proposed a
hybrid approach that combines physics-based and data-driven
methods to track and predict the multiscale evolution of system
parameters. Similarly, Tzanis et al. [11] developed a hybrid DT

model for smart grid fault prediction by combining data-driven
machine learning with model-based transient state estimators.
This hybrid approach improves fault prediction and predictive
maintenance, ensuring robust performance, effective real-time
fault detection, and accurate predictions by leveraging the
strengths of both modeling techniques.

Security of Operation: Enhancing the security of
operation in energy systems involves advanced technologies
and proactive strategies to minimize the frequency and impact
of unplanned outages and disruptions. Possible advances using
data-driven DTs include real-time grid monitoring and control
systems that utilize data analytics and IoT sensors to detect
faults early and enable swift corrective actions. Smart grid
technologies, augmented with data-driven DTs, can facilitate
dynamic grid reconfiguration and rapid fault isolation, ensuring
quick restoration of service during disruptions. Additionally,
microgrid solutions and distributed energy resources (DERs),
integrated through DT frameworks, enhance local resilience
and reduce dependency on centralized infrastructure. Robust
cybersecurity measures, including continuous monitoring and
threat detection through DTs, protect against physical and
cyber threats. These innovations collectively ensure
uninterrupted energy supply, safeguard critical infrastructure,
and maintain the reliability of energy systems under diverse
operational conditions.

Adequacy of Supply: Data-driven DTs hold significant
potential for bolstering supply adequacy in energy systems by
improving the integration and management of renewable
energy sources and energy storage technologies. Advanced
forecasting and grid management techniques for renewables,
alongside data-driven insights from DTs, enhance grid stability
and reduce supply variability. Innovations in battery storage
and grid-scale solutions like pumped hydro, monitored and
optimized through DTs, support reliable peak demand
management and the integration of intermittent renewable
sources into the grid. These advancements contribute to
enhanced energy efficiency and reduced emissions, ensuring a
stable and adequate energy supply.

Data-driven approaches, such as machine learning and
process mining, are used in DTs for various reliability
improvements in power systems. Djebali et al. [9] highlight the
use of Al and ML in DTs for smart grids, focusing on
predictive maintenance, energy optimization, and demand
response to improve decision making and system reliability.
Chakraborty and Adhikari’s [61] hybrid approach combines
physics-based and data-driven methods for dynamic system
analysis, using machine learning algorithms such as mixture of
experts (ME) and Gaussian process (GP) to update DT models
and make future predictions, with the ME-GP-based DT
providing superior results compared to the GP-based twin.

Anomaly detection algorithms and dynamic system
modeling, as proposed by Sleiti et al. [60] improve the
reliability and maintainability of power plants by utilizing real-
time data. In addition, Shi et al. [62] developed a data-driven
model for power system anomaly detection using random
matrix and free probability theory, which improves the
accuracy and sensitivity of system anomaly detection.
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Fig. 4. Proposed framework for DTs for enhancing reliability in power/energy systems.

In addition, Nguyen et al. [63] used a Power Hardware-In-
The-Loop (PHIL) setup to integrate DTs for real-time
monitoring and operational optimization of renewable energy
resources. Song et al. [64] proposed a multi-level system of DT
systems (SDTS) using BD and Al to improve grid stability and

resilience. IoT and machine learning, highlighted by Jafari et al.

[10] enhance real-time data management and analysis in smart
grids and transportation systems to improve overall reliability
and efficiency.

For example, Wang et al. [65] developed a data-driven DT
framework for real-time monitoring, fault diagnosis, and
operation optimization of offshore wind turbines. In addition,
the DT developed by Jain et al. [44] uses model-based fault
detection and identification methods to improve fault diagnosis
and reduce downtime for PV systems. Several other studies
have proposed five-dimensional DT (5D-DT) framework for
power systems and energy sector applications consisting of
five key layers (“physical system”, “virtual system”,

“connection”, “data” and “services”) [15], [30], [31], [49], [66].

Based on our findings, we propose a general data-driven
DT framework for reliability enhancement of energy systems,
illustrated in Fig. 4 The components of the framework are
explained below.

Energy System: The energy system component
encompasses the physical infrastructure of power plants,
transmission  lines, substations, distribution networks,
microgrids, or energy storage systems. These systems are
equipped with data collection technologies such as sensors,
smart meters, Supervisory Control and Data Acquisition
(SCADA) systems, and IIoT devices. These technologies

enable collection of essential operational data for further
processing and analysis.

Input Data: Input data is automatically collected and
processed from operational data from sensors, smart meters,
SCADA systems, IloT devices, historical records, and expert
knowledge. = This component ensures data quality and
relevance for model extraction, providing a robust foundation
for reliability analysis by the DT.

Reliability-Oriented Digital Twin: DT extracts reliability
models from input data using data-driven, model-driven, or
hybrid approaches to analyze energy system reliability.
Machine learning and other data-driven techniques can be used
to extract fault tree and Markov models from real-time data fir
fault detection and diagnosis in energy systems [45], [62]. In
addition, model-driven approaches incorporate physical laws
and engineering principles to simulate system behavior [2]. On
the other hand, hybrid approaches combine both data-driven
and model-driven extraction methods, for example, using
physics-based models to study system dynamics and machine
learning to adjust parameters in real-time [11], [60], [61].
Furthermore, validation of DT ensures that model accuracy in
reflecting real-world conditions [67], [68]. Finally, DT models
are used to analyze reliability indicators that support decision
making, enabling dynamic monitoring, predictive maintenance,
fault diagnosis, and safety evaluations.

Decision Support: This component translates the DT
output (i.e., reliability analysis results and indicators) into
actionable recommendations and adjustment measures,
providing feedback into the energy system. The decision
support component is divided into security and adequacy:
Security focuses on monitoring, predictive maintenance, and
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fault detection; while adequacy covers expansion planning,
operation management, and managing renewables variability.
With the assist of reliability analysis using real-time data, the
DT detects and diagnoses failures and recommends actions to
prevent future disruptions and optimize performance [15], [49].
Decisions are implemented through advanced control
algorithms and real-time optimization, enabling dynamic
adjustments based on current conditions [28]. By providing
continuous feedback and implementing adaptive control
measures, the DT enhances the overall reliability of the energy
system, ensuring it can meet both current and future demands.

IV. CHALLENGES

Having discussed the benefits of the DT technology, in the
following, we discuss the challenges and limitations associated
with data-driven DTs for reliability of energy systems:

A. Data Quality and Availability

Effectiveness of DTs is highly dependent on the accuracy
and consistency of the data they receive. Advanced data
analysis techniques are needed to pre-process noisy raw data
and improve data quality [15]. Any errors or inconsistencies in
the sensor data can lead to inaccurate models and predictions,
which can affect the reliability of energy systems [69].

B. Connectivity and Real-Time Management

Ensuring that data is collected in real-time and can be
efficiently processed without delay is critical to maintaining the
accuracy and responsiveness of DT models. In energy systems,
this is particularly challenging due to the need to continuously
update DT models with data from diverse, geographically
dispersed sources such as wind turbines, solar panels, and grid
sensors, all without latency issues [70]. Delays can result from
incompatibilities in data collection, communication speeds, and
processing infrastructure [10], [47]. Managing large and
diverse data streams is complex and requires robust
communication networks and processing capabilities to ensure
timely updates and accurate representation of physical system
changes [9].

C. Standardization and System Complexity

There is a lack of standardized methodologies and generic
modeling and validation criteria for developing and
implementing DTs across different energy systems [10], [47].
The complexity of energy systems, with their diverse
components and varying operating conditions, further
complicates standardization efforts. This can lead to
inconsistencies, as well as increased costs and inefficiencies
when developing and implementing DTs across different types
of energy systems, such as electrical grids, wind farms, and
solar power plants [9], [49].

D. Implementation Costs

The initial implementation of DTs involves significant
costs, including specialized software, infrastructure, and
ongoing maintenance. It requires large amounts of data and
sensors, which are directly proportional to processing costs.
Renewable energy generation technologies such as wind and
solar already face high operation and maintenance (O&M)
costs. DTs can help optimize maintenance strategies and

predict failures, but the initial implementation of DT
technology can be costly and resource intensive [71].

E. Cybersecurity

The implementation of DTs in energy systems introduces
cybersecurity risks. Unauthorized access and data manipulation
can lead in severe consequences, including grid instability,
energy theft, and large-scale power outages. Although
reliability-oriented DTs aim to enhance system reliability, this
reliability is also critical for overall security. However, DT
integration with control systems of critical infrastructure, such
as power grids, makes them prime targets for cyber-attacks.
Consequently, robust cybersecurity measures are essential to
protect energy systems from potential threats and ensure the
reliability and security of the energy infrastructure [9], [10].

Data Quality and
Availability

Real-Time
Management

Implementation
Costs

Digital Twin
Challenges in
Energy Systems

Standardization
and Complexity

Cybersecurity

Fig. 5. Challenges of DT implementation in energy systems.

V. CONCLUSIONS AND OUTLOOK

The goal of our comprehensive literature review was to
explore the role of Digital Twins (DTs) in enhancing reliability
of energy systems. DTs facilitate real-time monitoring,
predictive maintenance, and optimization of operations, which
are crucial for adapting to the complexities introduced by the
integration of renewable energy sources. Data-driven
approaches, combined with advanced modeling and simulation
techniques, have demonstrated considerable promise in
improving system reliability by enabling accurate predictions
and proactive interventions. However, the implementation of
DTs faces challenges such as data quality, real-time data
management, standardization, and high initial costs.

Future research should focus on developing standardized
methodologies and protocols for implementing DTs across
various energy systems to ensure reliability and stability.
Additionally, there is a need for hybrid approaches that
integrate both data-driven and physics-based methods to
capture the dynamic behavior of complex systems more
accurately. Future case studies should aim to demonstrate the
practical applications of DTs in diverse energy systems,
highlighting the benefits and addressing the challenges of
scalability and cybersecurity. Continued advancements in ML
and IIoT technologies will further enhance the capabilities of
DTs, paving the way for more resilient and reliable energy
infrastructures.
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