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Part I.

Foundations





CHAPTER 1

INTRODUCTION

Global energy markets are experiencing a significant transition, shifting from central-
ized, fossil-fuel-dominated generation systems to more decentralized and renewable
energy-focused ones (Gielen et al., 2019). The process of energy transition can be
described in two phases (Markard, 2018). The first phase centers on introducing
and initially developing innovative yet immature technologies like renewable energy
sources, which rely heavily on public policy support and are implemented in pilot
projects and niche markets. In contrast, the second phase marks these technologies’
maturation and large-scale adoption, driving significant transformations in indus-
tries, business models, institutional frameworks, and complementary systems such
as energy storage and smart grids. With renewables already accounting for 30% of
global electricity production in 2023—a figure projected to rise to 46% by 2030—the
energy transition is entering a critical stage (International Energy Agency (IEA),
2024b). The main challenges now arise in the second phase, where the focus tran-
sitions from introducing new technologies to scaling them up and integrating these
mature solutions into existing systems while considering their broader impact on
households, industries, business models, and infrastructure.

One of these challenges is the intermittent nature of renewable energy sources
like wind and solar, which creates significant difficulties in maintaining the real-time
balance between the supply and demand of electricity (Hirth and Ziegenhagen, 2015).
This shift highlights the need for greater system flexibility and dynamic mechanisms
to manage energy consumption patterns, aligning electricity use with scarcity signals
from the market, which is also called demand response (Klein et al., 2019).

Dynamic tariffs are seen as a key tool to enable demand response in modern
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power systems (Faruqui et al., 2010). By motivating electricity consumers to switch
from static electricity tariffs to time-varying ones, peak demand and overall system
costs can be decreased since the use of expensive peak power plants can be reduced
(Faruqui et al., 2010). Dynamic electricity tariffs can be implemented in different
forms, ranging from Time-of-Use tariffs, where prices vary by the time of day to en-
courage off-peak usage (Nicolson et al., 2018), to Real-Time Pricing, where prices are
based on wholesale market rates and change hourly or more frequently (Doostizadeh
and Ghasemi, 2012), to Critical Peak Pricing, which imposes higher rates during
peak demand events (Herter, 2007), to further forms. Although the implementation
of dynamic tariffs varies, their underlying rationale remains the same: consumers
should have an economic incentive to shift their electricity consumption in response
to power system signals. Specifically, they should reduce consumption during peri-
ods when peak power plants are needed (Faruqui et al., 2010) and increase it when
there is surplus electricity from renewable sources, such as during times of high solar
or wind generation that would otherwise be curtailed.

1.1 Motivation
Although dynamic tariffs have been extensively researched, their implementation

and uptake remain limited. For example, as of 2024, only 7% of households in
Germany have subscribed to dynamic tariffs (Verbraucherzentrale Bundesverband
e.V., 2024), despite their availability for several years and a government mandate
requiring utilities with more than 100,000 customers to offer dynamic tariffs starting
in 2025 (Bundesministerium für Wirtschaft und Klimaschutz, 2023). Low adoption
rates of time-varying rates can also be observed in several other countries, i.e., France
(Cabot and Villavicencio, 2024) or the United States (Pereira and Marques, 2023).

On the way to a higher share of households subscribing to dynamic tariffs, there are
various challenges and barriers. First, utilities offering dynamic tariffs must enhance
their understanding of customer load patterns and improve their ability to forecast
future electricity consumption. This is essential for minimizing energy costs and
making informed trading decisions (Khan et al., 2016). As discussed in Khan et al.
(2016), predicting household electricity consumption under dynamic tariff-induced
demand response presents several challenges. These include ensuring user data pri-
vacy, developing scalable approaches for large datasets, and effectively interpreting
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smart meter data. Additionally, novel forecasting methods are needed to improve
accuracy, especially when operators must make decisions without historical data. In-
troducing new high-energy-demand devices, such as heat pumps (Love et al., 2017)
and electric vehicles (Babrowski et al., 2014), further exacerbates these challenges by
significantly altering household load profiles. Second, household loss aversion poses
a significant barrier to the adoption of dynamic tariffs. A UK study demonstrated
this, revealing that two-thirds of households were reluctant to adopt time-varying
electricity tariffs (Nicolson et al., 2017). In particular, loss-averse households were
substantially less willing to switch to dynamic tariffs. Third, while being beneficial
on a power system level, the introduction of dynamic tariffs can also impose techni-
cal challenges on the distribution grid, leading to so-called avalanche effects when a
high number of flexible devices react to price signals in the same way and, thereby,
lead to higher peak loads and additional stress on the grid (Kühnbach et al., 2021).

Uncertainty lies at the heart of the challenges surrounding the widespread adoption
of dynamic tariffs: utilities and operators face uncertainty about future household
loads and the impact of new devices like heat pumps, households are uncertain about
the price risks associated with dynamic tariffs, and grid operators are uncertain about
how increasing adoption rates will affect stress on the distribution grid.

In this uncertain environment, lawmakers and practitioners must make critical
decisions regarding investments, strategies, and policies to pave the way for greater
demand response in power systems through the implementation of dynamic tariffs.

This thesis aims to reduce the uncertainty surrounding dynamic tariffs by inte-
grating empirical studies, introducing novel algorithms, advancing operational ap-
proaches for dynamic tariff design in households, and developing frameworks to eval-
uate their impact on distribution grids. In doing so, it contributes to the aforemen-
tioned second phase of the energy transition, potentially enhancing system benefits
through tariffs aligned with system signals and promoting the effective use of expand-
ing flexibility resources and renewable generation capacity. Through the outcomes of
this dissertation, practitioners, lawmakers, and researchers are enabled to make more
informed decisions regarding strategic planning and policy design for the regulation
of dynamic tariffs. This thesis establishes policy recommendations for managing
flexibility potential, highlights the potential of novel guarantees that can alleviate
households’ loss aversion towards time-varying tariffs, and devises approaches for
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designing grid charges to mitigate potential avalanche effects.
This thesis is structured into six major parts. While the first part of this thesis de-

scribes the fundamentals of dynamic tariffs, the second part lays the groundwork for
the subsequent contributions by examining how household battery storage systems
and their flexibility potential are regulated globally. It then empirically investigates
the system-wide impact of widespread self-consumption-favoring policies combined
with static electricity tariffs. Through a first-of-its-kind large-scale field study and
subsequent simulation analyses, this part demonstrates the economic benefits of dy-
namic tariffs for the power system.

The third part of this thesis addresses the operational uncertainties practitioners
face when implementing dynamic tariffs. This section explores forecasting challenges
related to household loads, particularly in the presence of novel heat pump instal-
lations and state-of-the-art machine learning models. It also advances methods for
peak load and peak time forecasting while incorporating privacy-preserving tech-
niques and examines the generation of synthetic heat pump data. Although these
contributions are not exclusively tailored to households adopting dynamic tariffs,
they provide valuable insights into predicting and interpreting household loads—an
essential step for effectively managing flexibility potentials within the framework of
dynamic tariffs.

The fourth part of this thesis addresses households’ aversion to dynamic tariffs by
mitigating the associated cost risks. It proposes household-specific electricity price
guarantees offered by aggregators in exchange for the right to manage the households’
flexibility potential. This approach is enabled by a detailed formulation of the cost
minimization problem for households equipped with battery storage systems and
heat pumps under time-varying electricity prices, considering the thermal inertia of
buildings, their flexibility potential, behavioral constraints, and the uncertainties of
future price curves and weather profiles. These guarantees are evaluated from the
economic perspective of aggregators alongside a proposed decision support system
to aid in their formulation. The proposed guarantees enable the demand response
potential of households while shielding them from cost risks.

In the scope of the fifth part, the technical uncertainty of increasing shares of
dynamic tariff adoption - in terms of unclear associated grid stress and reinforce-
ment costs - is addressed with an open-source simulation framework that enables
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policymakers to evaluate the impact of different grid charge policy options.
In summary, this dissertation addresses key challenges on the path to higher dy-

namic tariff adoption by providing tools, methods, and analyses to mitigate opera-
tional, behavioral, and technical uncertainty. By doing so, it contributes to a greater
utilization of demand response potential in modern power systems, ultimately fos-
tering a greener, more cost-effective, and efficient energy landscape.

1.2 Research questions
The previously described challenges related to the adoption of dynamic tariffs are

addressed through 11 specific research questions, which are outlined in the following.
Although various studies highlight the positive effects of dynamic tariffs on power

systems, these studies are mostly simulation-based. Therefore, Research Question
1 refers to an empirical investigation of battery storage systems operated under
self-consumption promoting regulation with static tariffs, which then serves as a
foundation for a simulative assessment of more dynamic-tariff-oriented regulatory
approaches in Research Question 2.

Research Question 1 What are the empirically observed effects of self-
consumption-promoting regulation on the operation of battery energy storage systems
and their economic impact on the power system?

Research Question 2 How do dynamic regulatory approaches and alternative
influencing factors enhance the value of battery energy storage systems for both the
energy system and their owners?

The actual implementation of dynamic tariffs from an operational perspective
in combination with household energy management systems requires accurate and
privacy-preserving forecasting methods, as well as available historical data. This is
especially important for new large, electricity-consuming devices like heat pumps.
Hence, Research Question 3 investigates effective load forecasting algorithms for
heat pump loads, such as Long Short Term Memory (LSTM) neural networks and
Transformer models. Research Question 4 investigates the load forecasting task
from an aggregator perspective with smart meter data and focuses on peak loads.
When aggregators or utilities operate households’ home energy management systems,
ensuring secure and privacy-preserving handling of household load data is essential.
Hence, Research Question 5 investigates how privacy-preserving peak time forecasts
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can be conducted with a Learning-to-Rank model. To improve the data availability
for large and flexible heat pump loads, Research Question 6 investigates the accuracy
of a novel method to generate synthetic heat pump load profiles.

Research Question 3 To what extent do the same forecasting methods used for
day-ahead predictions of traditional household loads also perform effectively for heat
pump loads?

Research Question 4 How can smart meter data and hybrid LSTM-XGBoost
models improve day-ahead aggregated load forecasts for energy communities, partic-
ularly in addressing insufficient peak load predictions?

Research Question 5 How can a Learning-to-Rank XGBoost model improve peak
time forecasting accuracy while offering privacy-preserving advantages compared to
conventional XGBoost models?

Research Question 6 How can synthetic heat pump load profiles be generated
using a k-means clustering-based approach?

While the research questions above focus on operational aspects of dynamic tariffs,
in particular the forecasting and data availability of loads, the following questions fo-
cus on an integral barrier to dynamic tariff adoption: the loss aversion of households.
Therefore, a novel scheme where aggregators control the dynamic tariff operation of
households and offer household-individual price guarantees in return is suggested.
Therefore, Research Question 7 tackles the formulation of the operation of home en-
ergy management systems with respect to the flexibility of battery storage systems,
heating requirements, and the thermal inertia of buildings. In Research Question 8,
the economic value of aggregators taking over the control of the dynamic tariff-based
operation of household flexibility potentials is identified, while Research Question 9
analyzes the quality of a quantile regression-based decision support system that sug-
gests household individual price guarantee levels.

Research Question 7 How can the operation of household home energy manage-
ment systems under dynamic tariffs be modeled by incorporating flexibility potentials
like battery storage, heat storage, heat pumps, and building thermal inertia, alongside
behavioral constraints such as thermostat setpoint profiles?

Research Question 8 What is the economic value of managing household flexi-
bility potentials for aggregators, and how can it be quantified under the proposed price
guarantee mechanism?
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Research Question 9 How accurate are quantile regression-based predictions of
household-level electricity price guarantees?

On the path to a higher share of dynamic tariff adoption, there are also technical
constraints. As described before, the simultaneous reaction of households and their
flexibility potential can lead to new peak loads, also often denoted as "avalanche
effects". Hence, Research Question 10 investigates the impact of increasing shares
of dynamic tariff adoption on grid reinforcement costs, and Research Question 11
investigates the impact of regulatory options on these.

Research Question 10 How does increasing adoption of dynamic tariffs by res-
idential households impact distribution grid reinforcement costs across different grid
topologies?

Research Question 11 How effective are alternative regulatory options for grid
charges and PV feed-in remuneration in alleviating grid reinforcement costs given
increasing dynamic tariff adoption?

These research questions are addressed through a combination of empirical and
simulation-based studies, emphasizing the open-source publication of datasets and
code. The goal is to promote the adoption of dynamic tariffs in modern power
systems. The contributions focus on mitigating uncertainties related to regulatory
frameworks, technological advancements, and behavioral responses associated with
dynamic tariffs.

1.3 Thesis structure
The structure of this thesis is depicted in Figure 1.1. In the scope of the first

part of the thesis, the fundamentals of dynamic tariffs are outlined following this
introduction (Chapter 2). The second part of the thesis includes an international
analysis of regulations governing household battery storage systems. An empirical
field evaluation of the impact of battery storage systems on the power system under
self-consumption policies follows this. Additionally, the study explores the effects of
alternative regulatory approaches that focus on more dynamic, tariff-oriented options
(Chapter 3).

The third part focuses on mitigating operational uncertainty by improving fore-
casting and synthetic data generation methods. In particular, Chapter 4 investigates
the impact of heat pump installations on day-ahead load forecasting; Chapter 5 in-
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Figure 1.1.: The structure of this thesis

troduces a novel algorithm that improves day-ahead load forecasts on the basis of
smart meter data and a special peak load handling algorithm; Chapter 6 focuses on
privacy-preserving peak time forecasting and Chapter 7 introduces a novel method
to generate synthetic heat pump load data.

The fourth section addresses households’ loss aversion towards dynamic tar-
iffs, which could hinder their widespread adoption. It introduces and evaluates
household-level price guarantees provided by aggregators as a potential solution
(Chapter 8).

The fifth part of this thesis examines the potential technical uncertainties faced
by grid operators due to the additional stress on the distribution grid caused by
simultaneous household responses to dynamic tariff price signals. Furthermore, it
explores the impact of various grid charge and feed-in remuneration design options
on grid reinforcement costs (Chapter 9).

Finally, the sixth part summarizes the answers to the main research questions
addressed in this thesis and highlights the key contributions (Chapter 10). The
concluding Chapter 11 offers an outlook on promising directions for future research.
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Chapters 3, 4, 5, 6 and 7 are based on published articles, while Chapter 8 is a
working paper and Chapter 9 is forthcoming. In Chapters 3 to 9, I consistently use
"we" to reflect the collaborative nature of the research, as the underlying articles
were developed in partnership with fellow researchers.

The chapters of this dissertation are based on the following articles:
Chapter 3: L. Semmelmann, M. Konermann, D. Dietze, and P. Staudt. Em-

pirical field evaluation of self-consumption promoting regulation of household battery
energy storage systems, Energy Policy, 2024.

Chapter 4: L. Semmelmann, M. Hertel, KJ. Kircher, R. Mikut, V. Hagenmeyer
and C. Weinhardt. The impact of heat pumps on day-ahead energy community load
forecasting, Applied Energy, 2024.

Chapter 5: L. Semmelmann, S. Henni and C. Weinhardt. Load forecasting for
energy communities: A novel LSTM-XGBoost hybrid model based on smart meter
data, Energy Informatics, 2022.

Chapter 6: L. Semmelmann, O. Resch, S. Henni and C. Weinhardt. Privacy-
preserving peak time forecasting with Learning to Rank XGBoost and extensive fea-
ture engineering, IET Smart Grid, 2024.

Chapter 7: L. Semmelmann, P. Jaquart, and C. Weinhardt. Generating syn-
thetic load profiles of residential heat pumps: a k-means clustering approach, Energy
Informatics, 2023.

Chapter 8: L. Semmelmann, S. Kimbrough, and P. Staudt. Price guarantees for
households with demand-side flexibility potential and thermal building inertia under
dynamic electricity tariffs, Working Paper, 2025.

Chapter 9: L. Semmelmann, K. Kaiser, A. Heider, K. Kircher, G. Hug, C. Wein-
hardt. Analyzing the Impact of Dynamic Tariff Adoption and Regulatory Options on
Distribution Grids with an Open-Source Framework, forthcoming in: Proceedings of
the Sixteenth ACM International Conference on Future Energy Systems, 2025.





CHAPTER 2

DYNAMIC TARIFF FUNDAMENTALS

In this chapter, an overview of the most important aspects of dynamic tariffs, as
discussed in both literature and practice, is presented. First, a detailed overview of
various forms of dynamic tariff design is provided. Second, findings related to the
impact of dynamic tariffs on the power system are examined. Third, the role of home
energy management systems and flexibility potentials in enabling dynamic tariff
adoption is explored. The insights presented in this chapter serve as a foundation
for the subsequent parts of this dissertation.

2.1 Types of dynamic tariffs
Traditional electricity tariffs are designed to be simple and easy to understand:

households pay a flat volumetric rate, with a fixed price per kWh of electricity
consumed each month (Matisoff et al., 2020). These tariffs are typically adjusted
periodically, such as once per year. While this structure is straightforward to explain
to customers, it fails to reflect the varying costs of electricity supply. Besides that,
volumetric electricity tariffs can also raise concerns about fairness. For instance,
when some households consume disproportionately large amounts of electricity dur-
ing high-demand hours—when expensive gas plants must be operated—the associated
costs are socialized among all electricity consumers (Johnson et al., 2017).

Hence, policymakers are considering more cost-reflective, time-varying rates, also
referred to as dynamic tariffs. Below is an overview of the most prevalent forms
of dynamic tariff designs, explained in the context of their cost-causality, derived
from Matisoff et al. (2020). An illustration of the different described tariff designs is
depicted in Figure 2.1.
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Figure 2.1.: Schematic illustration of electricity tariff designs

Seasonal Pricing: Seasonal differentiation of flat volumetric rates adjusts elec-
tricity prices based on the season, reflecting the higher demand during winter and
summer periods or changes in fuel costs. While relatively simple, this approach in-
troduces a basic level of temporal variation to account for predictable seasonal cost
differences. However, this simple approach neglects potential diurnal patterns of
supply and demand in power systems.

Time-of-Use Pricing: Time-of-Use (TOU) pricing establishes regular rate
schedules with a limited number of price fluctuations throughout the day based
on historical supply and demand patterns. This method provides predictable price
signals, helping consumers shift their consumption to off-peak hours. TOU pricing
has demonstrated that residential demand is responsive to such temporally varying
prices, effectively reducing peak loads, as shown in empirical evidence from Italy
(Torriti, 2012) or Spain (Enrich et al., 2024).

Critical Peak Pricing: Critical Peak Pricing (CPP) introduces significantly
higher rates during critical peak demand hours, often triggered by extreme system
conditions. While these price changes are not announced far in advance, they are
typically limited in duration and frequency, with pre-set price levels. Variations,
such as Variable Peak Pricing and Critical Peak Rebates, further refine this ap-
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proach by either charging different rates at peak times or rewarding consumers for
reducing demand during critical events. Empirical evidence from California shows
that households react to these critical peak price signals by adjusting their consump-
tion (Herter and Wayland, 2010). Figure 2.1 illustrates an exemplary critical peak
event on a winter day, accompanied by a higher price, in contrast to a summer day
without such an event.

Real-Time Pricing: Real-Time Pricing (RTP) links electricity prices directly
to time-varying marginal costs of electricity provision. Prices adjust dynamically
in response to changing system conditions, offering the highest level of temporal
disaggregation. A typical implementation of RTP forwards day-ahead wholesale
market electricity prices to users (Guo and Weeks, 2022; Häseler and Wulf, 2024).
This implementation can already be

In the remainder of this dissertation, the term "dynamic tariffs" refers to the day-
ahead market RTP implementation, which is already being offered in practice by
some German electricity retailers (Tibber, 2023).

2.2 Home energy management systems and flexible

devices
For dynamic tariffs to positively influence the energy system, it is essential that

household consumption1 aligns with price signals (Matisoff et al., 2020). This align-
ment can be achieved through either human or technical responses. While some
empirical evidence suggests that humans do react, at least to some extent, to dy-
namic price signals (Torriti, 2012; Herter and Wayland, 2010; Enrich et al., 2024), the
literature generally assumes that household loads remain inflexible even under dy-
namic tariffs. Instead, research primarily focuses on automated devices that respond
to dynamic prices (Stute and Kühnbach, 2023; Avau et al., 2021; Miletić et al., 2022).
Consequently, this dissertation adopts the common assumption of inflexible house-
hold loads and emphasizes the flexibility potential of automatable devices. While
first studies in the field were focused on load shifting of household appliances un-
der variable prices (e.g., dishwashers and washing machines, as in Gottwalt et al.

1While commercial and industrial customers can also subscribe to dynamic tariffs, this thesis
focuses on households for the sake of conciseness.
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(2011)), recent studies are instead focusing on novel devices, such as heat pumps
and electric vehicles (Stute and Klobasa, 2024). The following sections provide an
overview of four key technologies for demand response under dynamic tariffs, which
are emphasized throughout this thesis.

Battery storage systems: Battery storage systems, especially when integrated
with PV systems, are widely acknowledged for their ability to enhance household en-
ergy flexibility (Parra and Patel, 2016). By storing surplus PV-generated electricity
during periods of low demand, these systems allow households to use the stored en-
ergy during times of high demand, adverse weather conditions, or elevated electricity
prices. This functionality facilitates energy time-shifting, helping households reduce
reliance on grid imports while increasing self-consumption (Luthander et al., 2015).
Accordingly, Chapter 2 of this dissertation explores the effects of self-consumption
policies on the utilization of household battery storage systems and compares these
outcomes with operational strategies aligned with dynamic tariffs.

Electric vehicles: EV charging has inherent flexibility since the charging process
is not strictly tied to the plug-in and plug-out times (Sørensen et al., 2023). Within
the available time window, and considering the technical constraints of the EV and
the charging device, the desired charging energy can be distributed flexibly, enabling
the use of dynamic tariffs to reduce household electricity costs and shift load away
from peak periods (Daneshzand et al., 2023).

Heat pumps: For the transition of the heating sector away from fossil fuels to
electricity—potentially powered by renewable, emission-free sources—international
policymakers have prioritized the adoption of heat pumps (Kou et al., 2024). While
heat pumps significantly increase household electricity demand, particularly during
winter, they also offer inherent flexibility. Buildings can be pre-heated in advance,
or indoor temperatures can be allowed to temporarily decrease during peak price
periods. This flexibility can be further enhanced by integrating a buffer tank, which
acts as thermal storage (Hedegaard and Balyk, 2013). Given the relatively recent
push for large-scale heat pump adoption and associated policies, uncertainty sur-
rounds their integration (Chaudry et al., 2015). This dissertation addresses various
aspects of heat pump integration: Chapter 4 examines their impact on load fore-
casting techniques, Chapter 7 introduces a novel method for generating synthetic
heat pump load profiles, Chapter 8 presents a home energy management problem
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focusing on the operation of heat pumps under dynamic tariffs while incorporating
building thermal mass as additional flexibility, and Chapter 9 analyzes their role in
the context of increased dynamic tariff adoption and its effects on distribution grid
reinforcement costs.

Home energy management systems: Home energy management systems play
a central role in controlling and scheduling devices in response to price signals from
dynamic tariffs (Yousefi et al., 2020). These systems rely on actual or forecasted
prices, as well as predictions of household energy consumption and generation, to
make decisions about charging or discharging batteries, pre-heating buildings, man-
aging thermal storage, and coordinating EV charging. Accordingly, Part II of this
dissertation focuses on the role of home energy management systems combined with
battery storage systems in enabling dynamic tariff-based operation strategies and
emphasizes the importance of users adopting these strategies. Meanwhile, Part III
addresses the improvement of load forecasting techniques, which are critical for the
efficient operation of these systems.

2.3 System impact of dynamic tariffs
While there is empirical evidence for household reactions on dynamic tariff-based

price signals (Herter and Wayland, 2010; Torriti, 2012; Enrich et al., 2024), the large-
scale impact has to be investigated in simulative studies, given the yet low adoption
of dynamic rates. In the following, an overview of relevant findings about the system
impact of households adopting dynamic tariffs is presented.

In Katz et al. (2016), a partial equilibrium model is employed to simulate the effects
of dynamic tariffs on electricity systems by capturing interactions between demand-
side responses and supply-side dynamics. The study highlights how time-varying
tariffs reduce wholesale price peaks, increase the value of wind power by improving
system flexibility, and drive long-term adjustments in generation capacities, including
shifts from peak-load to base-load generation. These system-wide benefits, however,
depend on adoption rates and behavioral responses, which are shown to influence
the redistribution of costs and benefits among consumers.

In McKenna et al. (2021), the demand side flexibility potential and price elasticity
of Austrian households are estimated through an experimental field study. Consec-
utively, the inferred hourly price elasticities are then applied to an Austrian energy
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system model, modelling future power system scenarios. The study sees system cost
reductions between 4-7%.

In another notable study, Guo and Weeks (2022) model customer behavior and
power system impact of dynamic tariff adoption in the scope of a game theoretic
model. The authors find that dynamic electricity pricing leads to increased retailers’
profit and consumer welfare. An interesting finding of the study is that the introduc-
tion of dynamic tariffs does not necessarily lead to reduced electricity consumption,
which is in line with empirical evidence from (Torriti, 2012), underlining that they
do not necessarily have a positive impact on energy conservation.

In Faruqui et al. (2010), the authors estimate the economic impact of dynamic
tariffs in the EU on peak demand reduction potential. Their findings suggest that
time-varying tariffs, combined with household responsiveness enabled by widespread
smart meter adoption, can substantially lower peak electricity demand and reduce
infrastructure costs for peaking plants.

The introduction of dynamic tariffs can also have socioeconomic implications, as
highlighted by (Burger et al., 2020). If not carefully designed, they may result in
higher electricity bills for lower-income households. However, in the context of the
study, implementing two-part TOU tariffs has been able to help mitigate these neg-
ative effects while maintaining system efficiency benefits. These findings emphasize
the importance of considering energy equity when adopting dynamic tariffs to pre-
vent adverse societal impacts.

In summary, these studies demonstrate that dynamic tariffs have the potential
to lower energy system costs, enhance welfare, and reduce peak loads. However,
achieving a positive system impact requires the widespread adoption of dynamic
tariffs. This, in turn, depends on addressing critical challenges and uncertainties
related to policies, operational aspects, household behavior, and the technical effects
on distribution grids. In this dissertation, these challenges are addressed in the
following chapters.
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2.4 Stakeholders on the path to dynamic tariff adop-

tion
Supporting power systems on the path to increased dynamic tariff adoption re-

quires a thorough understanding of the key stakeholders involved and their interac-
tions. The following sections aim to identify these stakeholders and illustrate their
interplay.

Households: At the core of dynamic tariff adoption are humans and households,
which ultimately make essential decisions about adopting dynamic tariffs and uti-
lizing the household’s flexibility potential (Nicolson et al., 2018). As previously
discussed, household responses to price signals can be behavioral adjustments (e.g.,
reducing appliance usage during peak hours), technological responses (e.g., activat-
ing a price-responsive mode in the home energy management system), or both. Key
motivators for these responses include potential cost savings, perceived risks asso-
ciated with dynamic tariffs, and the ease of adapting to them (Nakai et al., 2024;
Nicolson et al., 2018; Buryk et al., 2015). Policymakers play a central role in shaping
these factors, which are explored in the following.

Policymakers: The laws and regulations that shape the operation of power mar-
kets are defined by regulators and policymakers, making them influential actors in
the integration of dynamic tariffs (Pereira and Marques, 2023; Faruqui et al., 2010).
Policymakers can promote dynamic tariff adoption by obligating utilities to offer
these tariffs, making them more economically attractive, or by discontinuing incen-
tives for alternative tariff structures and flexibility strategies, such as those favoring
self-consumption. For instance, from 2025 onward, utilities in Germany with more
than 100,000 customers are obligated to offer dynamic tariffs (Bundesministerium
für Wirtschaft und Klimaschutz, 2023). Policies, including taxes, grid charges, and
feed-in remuneration for PV systems, are critical factors that determine how home
energy management systems are operated (Stute et al., 2024). Consequently, the de-
cisions made by policymakers can have a direct impact on households’ technological
responses to dynamic price signals.

Utilities and aggregators: Utilities serve as the critical link between electricity
wholesale markets and consumers by providing dynamic tariff schemes (Guo and
Weeks, 2022). Therefore, it is essential to incentivize utilities to offer dynamic tar-
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iffs, ensuring that it becomes an economically viable choice for them. Aggregators,
which pool and manage the flexibility of multiple consumers to participate in electric-
ity markets, can also play a significant role in facilitating the adoption and effective
implementation of dynamic tariffs (Ayón et al., 2017). The potential role of aggre-
gators in the adoption process of dynamic tariff schemes is discussed in Chapter 8,
where the concept of household-individual electricity price guarantees is introduced.

Grid operators: Also grid operators have an interest in the adoption of dynamic
tariff schemes by households. Household responses to price signals can significantly
alter load profiles, which in turn impacts stress on power lines and transformers
(Stute et al., 2024). Chapter 9 of this thesis specifically examines how dynamic
tariff adoption affects distribution grid stress and associated reinforcement costs and
proposes policy options to mitigate these effects.

For completeness, it should be noted that the provided overview of stakeholders in
the dynamic tariff adoption process is particularly applicable to European countries
with unbundled utilities and grid operators, where consumers can freely choose their
electricity tariff (Imran and Kockar, 2014). However, the stakeholder landscape may
differ in other regions.

2.5 Dynamic tariff implementation in households
The following offers an overview of the interplay between policies, technology, and

household behavior in the context of dynamic tariff adoption. While not exhaustive,
the overview provided in Figure 2.2 highlights the key relationships and interactions
that are explored throughout the chapters of this dissertation.

To begin with, household attitudes and preferences play a key role in determining
whether and which type of dynamic tariff is adopted (Freier and von Loessl, 2022;
Nicolson et al., 2017). These preferences, combined with household behavior, shape
electricity consumption patterns (Katz et al., 2016) and heating behavior (Haas
et al., 1998), ultimately influencing the household’s load profile and the potential
profitability of dynamic tariffs.

Although not explicitly shown in Figure 2.2, consumer attitudes also affect de-
cisions regarding the adoption of technologies such as rooftop PV (Mundaca and
Samahita, 2020). Regulatory factors, including PV feed-in remuneration policies
and incentives for dynamic tariffs, can impact household decisions and behavior
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Technology for energy flexibility and generation Behavior and preferences

Policies (taxes, fees, 
subsidies, grid charges, laws)

influence

Home energy management 
systems

operate influence

Load and generation forecasts

influence

influence

Electricity spot market

influence

Grid infrastructure

Dynamic tariff

influence

Figure 2.2.: Interplay of dynamic tariffs and households

(Klein et al., 2019).
If a household possesses flexibility assets such as a Battery Energy Storage System

(BESS), their operation and scheduling are managed through a home energy manage-
ment system (Luo et al., 2019). These play an integral role in implementing dynamic
tariffs by optimizing the operation of large consumer devices such as heat pumps and
electric vehicles while managing flexibility resources like BESS and thermal storage
(Oldewurtel et al., 2011). Regulatory frameworks, i.e., grid charge structures, also
influence the operational decisions of home energy management systems (Stute and
Klobasa, 2024).

The effectiveness of home energy management systems in cost minimization un-
der dynamic tariffs relies on accurate load forecasts (Colmenar-Santos et al., 2022),
which enable scheduling of flexibility in response to projected demand. Widespread
adoption of home energy management systems and household responses to dynamic
electricity prices do more than just react to spot market signals—they can actively
influence them. When adoption rates are high, these systems can alter demand pat-
terns in a way that affects market prices (Faruqui et al., 2010; Katz et al., 2016;
McKenna et al., 2021).

Ultimately, the collective response of geographically clustered households to dy-
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namic tariffs can impact grid infrastructure. Simultaneous reactions to price signals
may lead to new peak transformer and line loads, potentially straining the distri-
bution network and leading to costly reinforcement measures (Stute and Klobasa,
2024).

2.6 Summary
To summarize this chapter’s findings, dynamic tariffs offer a promising pathway to

improving energy system efficiency by aligning electricity prices with real-time supply
and demand conditions. Various dynamic tariff designs, including seasonal pricing,
time-of-use pricing, critical peak pricing, and real-time pricing, reflect different lev-
els of temporal granularity and cost-reflectiveness. The success of dynamic tariffs,
however, relies on the overall adoption rate among households and how effectively
they adjust their energy consumption patterns in response to price signals.

Households themselves play a central role in dynamic tariff adoption, with their
behavioral and technological responses driving system-wide impacts. While in this
thesis behavioral response to dynamic tariffs is rather neglected as household loads
are seen as inflexible, the technological, automated response potential is emphasized
and thoroughly investigated. Home energy management systems, along with flexible
technologies like battery storage, EVs, and heat pumps, are critical enablers of this
transition, allowing for automated and efficient responses to dynamic tariffs.

The chapter also emphasizes the influence of policymakers, utilities, aggregators,
and grid operators in shaping the adoption and system impacts of dynamic tariffs.
Policymakers can drive adoption by promoting tariff schemes and removing con-
flicting incentives, while utilities and aggregators play a vital role in offering and
managing dynamic tariffs. Grid operators, in turn, must address the challenges of
altered load profiles and increased grid stress resulting from dynamic tariff adoption.

Finally, the chapter highlights findings from empirical and simulation studies,
demonstrating that dynamic tariffs can reduce peak demand, enhance the integra-
tion of renewable energy, and lower system costs. However, these benefits depend
on widespread adoption, effective policies, and robust grid management strategies,
which are explored in greater detail in the subsequent chapters of this dissertation,
thereby bridging policy, technology and behavior by tackling uncertainty about
regulatory, operational, behavioral and technical issues.
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Policy review





INTRODUCTION TO PART II

Policies play a significant role in determining how flexibility potentials—such as bat-
tery storage systems and home energy management systems—operate within house-
holds. The operation of these systems, in turn, shapes the dynamics of the overall
power grid. Part I introduced this relationship, and this section focuses specifi-
cally on the regulation of household batteries, which are increasingly widespread
in many international energy markets. A common regulatory approach incentivizes
households to prioritize self-consumption of electricity generated by their own PV
installations. However, this operational strategy often disregards market signals,
such as day-ahead electricity prices. Part II expands on household battery storage
regulation by reviewing international policies, conducting empirical investigations
and simulations of alternative policies, and analyzing homeowner preferences.
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CHAPTER 3

EMPIRICAL FIELD EVALUATION OF SELF-
CONSUMPTION-PROMOTING BESS REGULA-
TION

In this chapter, the widely adopted self-consumption-oriented regulation of BESS is
examined. To begin, a framework is developed to illustrate how household BESS
interacts with energy markets based on an extensive review of the literature. Fol-
lowing this, an overview of international policies is presented, highlighting how these
systems are incentivized or regulated in different contexts. Next, a unique dataset
of BESS in Germany is analyzed to assess their potential market impact. Build-
ing on the sample, alternative regulatory and operational approaches for BESS are
explored through a simulative study. Lastly, a survey is conducted to identify the
factors influencing perceptions of BESS effectiveness, offering valuable insights for
shaping future policy design.

This chapter comprises the following article: L. Semmelmann, M. Konermann,
D. Dietze, and P. Staudt. Empirical field evaluation of self-consumption promoting
regulation of household battery energy storage systems, Energy Policy, 2024.

3.1 Introduction
The growing share of renewables in modern energy systems leads to an increasing

need for flexibility on the demand side (Palensky and Dietrich, 2011; Strbac, 2008;
Pedro et al., 2023). One promising technical solution for demand-side flexibility are
BESS (Wu et al., 2015). The latest international statistics show that corresponding
installations are on the rise: In Germany, the country from which we draw our data
for this study, the total number of installed BESS was 320,000 in 2021, with a third
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added that year. Only 0.8% of those BESS were industrial-scale BESS with capaci-
ties over 30 kWh, while the remaining installations were household BESS capacity
(Peper et al., 2022). However, this is an international trend: 227,477 BESS systems
(ANIE, 2023) are installed in Italy, Australia has 180,000 installations (SunWiz,
2023) and Austria reports 17,111 installed BESS (Bundesverband Photovoltaic
Austria, 2023) in 2022. In total, there were over 1 million households in Europe
with Photovoltaic (PV)-BESS systems with an aggregated capacity of 9.3 GWh
in 2021 (SolarPower Europe, 2022). Globally, BESS installation capacity was 43
GWh in 2022. It is assumed that by 2030, 400 GWh will be reached worldwide
(Rystad Energy, 2023). However, the impact of regulation on household BESS and
its subsequent effect on the wider energy system has yet to be empirically evaluated.
The term "household storage regulation" refers to the policies and rules governing
the use of household energy storage systems, including whether dynamic tariffs
are encouraged, the allowance for batteries to be charged from the grid, and the
structure of grid charges (Fett et al., 2019).

Many of the globally installed household BESS are embedded in a regulatory
framework that promotes self-consumption of generated PV power (Mateo et al.,
2018), even though, various studies indicate that the self-consumption-oriented
regulatory pattern is counterproductive for the system overall (Green and Staffell,
2017; Moshövel et al., 2015; Aniello and Bertsch, 2023; Tidemann et al., 2018).
The major caveat of these findings is that they are almost exclusively based on
simulation studies or only feature very small sample sizes. These studies are
based on the assumption that batteries are operated as permitted by regulation
while households do not change their behavior once a BESS is installed. However,
studies on the rebound effect seem to suggest that energy efficiency investments
affect energy consumption behavior (Deng and Newton, 2017), even though other
authors contest its generality (Brockway et al., 2021; Rajabi, 2022). It is therefore
necessary to evaluate the regulatory implications of BESS regulation to derive
corresponding policy implications. To this end, we introduce and analyze the
largest empirical dataset on BESS usage, with 947 BESS profiles from households
measured over one year. We confirm that operating BESS for self-consumption
can actually lead to welfare losses, i.e., costs that are socialized among energy
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consumers. Based on these results, we propose and evaluate the impact of alter-
native regulatory approaches based on simulation using the same data that are
better suited to incentivize a system-friendly battery management system operation.

Another often neglected aspect in literature is the influence of regulation on prefer-
ences and behavior of the households in which BESS are embedded (Ambrosio-Albala
et al., 2020). The charging and discharging behavior of households (i.e., the con-
sumption behavior) determines the performance of the battery against the market,
even in the absence of any market signals directly to consumers. On the other hand,
households that choose to subscribe to a dynamic tariff might reap additional benefits
from their BESS by shifting demand to low-price periods (Zakeri et al., 2021; Green
and Staffell, 2017). Dynamic tariffs lead to time-varying consumer electricity prices
according to signals from the power system instead of fixed electricity rates (Dutta
and Mitra, 2017). Proliferated variants of dynamic tariffs include time-of-use pricing
(varying prices on- and off-peak), critical peak pricing (higher prices during system
peaks) and real-time pricing (prices reflect wholesale market prices) (Dutta and Mi-
tra, 2017). We base our simulative evaluation of alternative regulatory schemes on
real-time pricing, a rate design that is widely available in Europe (Tibber, 2023).

Although potentially beneficial for the power system as a whole, such dynamic
tariffs are not broadly popular (Schittekatte et al., 2023). It has been shown that
this is partly caused by low energy literacy levels of households (Brounen et al.,
2013; Reis et al., 2021).

Consequently, the interaction of households with their BESS has important
implications for the market overall. It is, therefore, a valuable research direction
to better understand how households perceive the effectiveness of their battery
energy management systems. Beyond our empirical analysis of the impact of
battery regulation and the proposal of alternative regulatory approaches, we further
contribute to this question with an exploratory survey approach intended to explain
the perceived effectiveness of BESS within a regulatory framework. We conducted a
corresponding survey among 196 BESS owners. We find that perceived effectiveness
is correlated with trust in the BESS management system and not correlated with
any measures of perceived knowledge regarding energy consumption, the energy



30
Empirical field evaluation of self-consumption-promoting BESS

regulation

system or energy markets. This has implications for the impact of corresponding
BESS regulation.

In summary, this paper makes the following three contributions based on three
distinct methodological approaches(empirical analysis, simulation, survey):

• Based on the first-of-its-kind empirical sample of 947 households over one year,
we show the observed effects of a self-consumption promoting regulation on
the impact of BESS operation on energy markets and provide insights on the
corresponding costs incurred by the system.

• Using the same sample, we use optimization modeling to show how opting
for gradually more dynamic regulatory approaches improves the value of these
BESS for the system and its owners.

• Using a different sample of battery owners, we use survey results to show
the impact of various sociological constructs on the perceived effectiveness of
battery energy management systems and find that trust is more influential than
perceived knowledge on energy consumption, the energy system and energy
markets, which has implications for the impact of corresponding regulation.

These contributions hold various implications. First, the impact of regulation
applied to a large fleet of battery energy management systems shows the danger
of regulating decentral energy resources that are not aligned with overall power
system objectives. Second, small adjustments to the regulatory environment in
alignment with overall system efficiency objectives can greatly increase the value
of resources for the system. Finally, our results suggest that households judge
the effectiveness of their battery energy storage based on trust in third parties
rather than their own system understanding of the energy system. Regulators are,
therefore, well-positioned to incentivize more system-beneficial choices that can also
benefit them and their customers.

Our study is based on an extensive review of related studies and international
regulation of household battery storage systems. The review serves as a basis for our
three-part methodology. First, empirical data from storage systems operated under
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self-consumption-promoting policies is analyzed. Second, based on the presented
sample, alternative policy options are investigated through an optimization-based
simulation. Third, a survey is conducted to contribute a better understanding of
customer attitudes towards their battery storage systems and energy management
systems. Addressing the research questions at hand with three different methods
enables a socio-technical perspective on the regulation of household storage systems.

3.2 Background
In this section, we review the relevant literature along a proposed framework

shown in Figure 3.1. The installation of household BESS in combination with PV
systems has been widely discussed in the literature (Luthander et al., 2015). We
use this variety of studies to build a framework that depicts the interaction of
these systems and their socio-technical embedding within regulatory and market
frameworks in Figure 3.1. Zakeri et al. (2021) and Londo et al. (2020) show that the
regulatory environment heavily influences household decisions to invest in PV-BESS
systems. Besides regulation, the actual sizing decision is further influenced by
consumer preferences and practical considerations (Agnew and Dargusch, 2017).
The installed PV-BESS system is operated through a battery energy management
system that schedules charging and discharging decisions of the BESS (Wu et al.,
2022). The implementation of the energy management system again depends on
the regulatory environment, the household’s general preferences and the electricity
tariff (Aniello and Bertsch, 2023; Wu et al., 2022; Zhou et al., 2018). The operation
of PV-BESS systems impacts the energy spot market and power system as a whole
(Fett et al., 2021). The described relationships are depicted in Figure 3.1 and
further discussed and substantiated in the following using related literature.

Impact of regulation on PV-BESS investment decisions: The initial
decision whether to install a PV-BESS system depends on the existing regulatory
environment (Avilés et al., 2019). For instance, net metering policies, where the
electricity costs of a customer are calculated after deducting its generation from
its consumption, make BESS investments economically unreasonable as the grid
serves as a virtual battery to the PV prosumer (Abdin and Noussan, 2018; Londo
et al., 2020). Self-consumption-focused regulation, in which self-generated energy is
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exempt from taxes and levies and excess production fed to the grid is remunerated
by a feed-in-tariff (which is usually lower than the household tariff), promotes
BESS (Castaneda et al., 2020; Zakeri et al., 2021). Consequently, it is economically
reasonable for households to increase the self-consumption quota by installing a
BESS (Aniello and Bertsch, 2023). For instance, self-generated electricity might be
exempt from network charges, making BESS more attractive (Aniello and Bertsch,
2023). Dynamic tariffs paid by the grid operator for excess PV generation or BESS
subsidies can further influence the sizing decision of PV and BESS systems from
a regulatory perspective (Castaneda et al., 2020; Zakeri et al., 2021). In Section
3, we describe this in more detail and give an overview of international regulatory
frameworks of household BESS.

Impact of consumer preferences on BESS investment decisions: While
the regulatory environment mainly influences the profitability of different sizing
options, the user makes the final decision incorporating factors like a desired safety
from blackouts or maximizing self-sufficiency (Agnew and Dargusch, 2017). Further,
the trust level in BESS technologies and the regulatory environment can be integral
factors in the PV and BESS investment decision (Ambrosio-Albala et al., 2020).
Consumer preferences can lead to a deviation from optimal economically induced
PV and BESS sizes. Furthermore, the financial endowment and consumption
behavior of households, such as ownership of an electric vehicle or roof area, can
influence the PV and BESS sizing decision (Linssen et al., 2017; Wang et al., 2020a).

Impact of battery energy management systems on BESS operation:

After the installation of a PV-BESS system, the daily charging and discharging
decisions of the BESS are implemented through a battery energy management
system (Angenendt et al., 2018; Lokeshgupta and Sivasubramani, 2019). The
system uses various inputs, such as the current PV generation and the household
load, but might also include actual or expected price curves (Mishra et al., 2012)
and regulatory conditions (Young et al., 2019), which are described in the following.

Impact of regulation on battery energy management system operation:

The battery energy management system operates the BESS to optimize household
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utility given the regulatory environment (Zakeri et al., 2021). Important policy
considerations that shape the way the battery management system is operated range
from allowing or disallowing household BESS to charge from the grid (Bundesmin-
isterium der Justiz und für Verbraucherschutz, 2023), setting the remuneration
for energy discharged from the BESS to the grid (Zakeri et al., 2021), exempting
self-produced energy discharged from the BESS from taxes, fees and grid charges
(Bundesnetzagentur, 2023b), to the promotion of dynamic tariff schemes (Parra and
Patel, 2016). The impact of some of the aforementioned international regulatory
approaches on operations of battery energy management systems is elaborated on
in Section 3.

Impact of consumer preferences on battery energy management system

operation: While regulation sets the boundaries in which a BESS can be operated
and for its profitability, households control the selected tariff, pre-determining the
way the battery energy management system schedules charging and discharging
decisions (Zhou et al., 2018). Further, households are theoretically able to determine
the operation schedule of a battery energy management system as they see fit.
However, this requires technical capabilities and a market understanding that most
households do not possess (Brounen et al., 2013). The decision for or against a
dynamic tariff alters the scheduling of the battery energy management system
(Zhou et al., 2018). The impact of consumer preferences and behavior on how their
BESS is operated has not been investigated in detail yet.

Interaction of battery energy management systems with the spot

market: Through the respective operation strategy, the BESS interacts with the
spot market and has an impact on the overall power system (Fett et al., 2021).
The share of households that operate their BESS with dynamic, price-responsive
strategies influences the price level of the market and the power system as a
whole. For instance, a responsive BESS fleet might reduce the curtailment of
renewables (Fett et al., 2021) or change power system peak loads (Young et al.,
2019). Household BESS can also influence wholesale prices for households without
storage systems by impacting the dispatch of power plants (Say et al., 2020). An
increased share of households with wholesale market-oriented tariffs can further
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relieve the grid by reducing PV feed-in peaks (Günther et al., 2021).

Behavioral influence of consumers on battery usage: First studies indi-
cate that household electricity consumption might change after the installation of a
PV-BESS system, thereby altering the discharging requirements of the BESS. For
instance, a recent empirical study from Arizona has shown that after co-installing
electric vehicles, PV systems and a BESS, consumers have changed their daily load
profiles (Shen et al., 2023). Al Khafaf et al. (2022) find that the installation of PV
and BESS leads to behavioral changes of consumers in a case study that analyzes
smart meter data of Australian energy consumers. This finding should be taken into
account when analyzing different policy or tariff options. However, existing simula-
tion studies in the field of household PV-BESS operation strategies assume constant
household load profiles, neglecting the potential impact of behavioral changes (Say
et al., 2020; Linssen et al., 2017).

Figure 3.1.: Factors influencing battery installation decision and operation strategy

Due to a lack of empirically observed BESS load profiles, the studies mentioned in
this section rely on various assumptions and corresponding optimization and simula-
tion models (Angenendt et al., 2018; Linssen et al., 2017; Hesse et al., 2017; Naumann
et al., 2015). This leads to certain shortcomings: First, the resulting BESS load pro-
files are dependent on the underlying household load profiles, which are often only
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available in a low number or derived from standard load profiles (Linssen et al., 2017).
As a consequence, the outcomes are based on a small sample and less varied. Second,
the BESS sizing decisions are often directly derived from an optimization model, ne-
glecting that BESS might only be available in certain sizes or that the investment
decision is based on personal preferences, beliefs or expectations (Schopfer et al.,
2018). Third, the naive simulation of battery energy management systems based on
household load profiles without any consideration of changes in household behavior
and decisions, neglects the possible influence of user perception and actions on the
resulting BESS operation strategy and contradicts first empirical studies showing
behavioral change after PV-BESS installations (Al Khafaf et al., 2022).

Given the rising number of household storage systems in Europe and globally
(SolarPower Europe, 2022), it is becoming increasingly important to give battery
operations a regulatory framework to align them with the overarching goals of the
power system. This requires researchers to evaluate possible regulatory designs for
residential BESS to enable policymakers to make informed decisions, especially about
the promotion of the widely proliferated self-consumption operation strategy of PV-
BESS systems. Although there are various studies discussing the impact of policy and
tariff options (Parra and Patel, 2016; Green and Staffell, 2017; Zakeri et al., 2021), a
thorough analysis of empirical data and its implications is still missing. Past studies
are hence calling for a consideration of socio-technical and non-monetary factors
for investment decisions (Say et al., 2020; Schopfer et al., 2018) and an analysis of
heterogeneous, real-world household load profiles (Aniello and Bertsch, 2023).

We are contributing to this research gap with the first study that analyzes a
large-scale sample of residential BESS operation profiles and evaluates consumer
attitudes towards BESS in their regulatory framework. The analysis of the empir-
ically observed data allows us to draw conclusions about the market performance
of PV-BESS systems operating in a self-consumption-promoting regulatory environ-
ment with fixed household tariffs as the observed systems have been operated in this
environment. Based on these results, we can draw conclusions about the efficiency
of current regulation without the limitations of neglecting consumer behavior. Fur-
thermore, we can explore the impact of possible alternative tariff options with an
optimization-based simulation. Finally, we contribute to the overall understanding
of household perspectives on their BESS, thus addressing the socio-technical per-
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spective on BESS through a survey amongst battery owners.

3.3 International regulation of household BESS
In this section, we portray various international BESS regulation approaches to

describe the international regulatory context of BESS. The two fundamental types
of national regulatory policies of BESS are self-consumption promoting and net me-
tering or net billing policies (Fett et al., 2019).

Self-consumption: In self-consumption-promoting regulation, households are
encouraged to increase the consumption of self-generated energy, typically from
PV making household BESS an attractive option (Castaneda et al., 2020; Zakeri
et al., 2021; Angenendt et al., 2018). This is promoted, for instance, by exemp-
tions from taxes and levies or a gradual decrease of feed-in tariffs (Fett et al., 2019;
Castaneda et al., 2020) making feed-in less attractive. In Germany, self-generated
energy from PV installations under 30 kW is exempt from most taxes and levies
(Bundesregierung, 2023; Fett et al., 2019). At the same time, feed-in tariffs are re-
duced (to 0.086 Euros in 2023, compared to an average household electricity price
of 0.452 Euros) (Bundesnetzagentur, 2024a, 2023a). In addition, charging the BESS
through the grid leads to a loss of the previously listed benefits (Bundesministerium
der Justiz und für Verbraucherschutz, 2023). A comparable regulatory framework
is implemented in Austria, where self-generated energy up to 5,000 kWh is exempt
from taxes and levies, thereby encouraging the installation of storage systems (Un-
ternehmensserviceportal (USP), 2024). Similarly, in Croatia, self-generated PV is
exempted from fees and network charges (Croatian Parliament, 2021). The United
Kingdom (UK) is also supportive of batteries used to increase self-consumption in
households (Department for Business, Energy and Industrial Strategy, 2021), further
promoted by a VAT relief for battery installations introduced in 2024 (HM Revenue
and Customs, 2024). In the UK, energy exports to the grid are compensated by
a "Smart Export Guarantee", which replaced feed-in tariffs in 2019 (Department
for Energy Security and Net Zero, 2020). Smart Export Guarantees are offered by
a couple of utilities and can vary amongst them, in contrast to a nationwide uni-
form feed-in tariff. Contrary to Germany, the UK actively encourages households to
charge their batteries from the grid and to be compensated for feed-in from batteries
with the respective Smart Export Guarantee. Japan implements a self-consumption
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scheme with no additional costs for self-generated PV electricity (International En-
ergy Agency, 2021). In Australia, the exemption from relatively high volumetric grid
charges (Say et al., 2019) for self-generation, sets a strong incentive for installing
BESS (SunWiz, 2023). In Italy, the government offered feed-in tariffs until 2013,
which led to a mandatory opt-out from the net metering scheme, thereby encourag-
ing self-consumption (Abdin and Noussan, 2018), which is still the most attractive
option for BESS owners even in the absence of feed-in tariffs.

Net metering and net billing: The general idea of net metering regulation is
that electricity can be sold to the grid at the price for consuming electricity at that
point in time (Londo et al., 2020; Abdin and Noussan, 2018). The easiest way to
understand this regulation is that in the presence of flat volumetric tariffs, the elec-
tricity meter runs backward when electricity is provided to the grid. This makes the
grid a virtual battery for prosumers. A more detailed classification of the regulatory
framework depends on the way the PV feed-in is compensated. The policy scheme
is then either called net metering (compensation at retail rates including taxes and
levies) or net billing (compensation only at current wholesale prices). Italy intro-
duced an optional net billing scheme in 2008, which is seen as the main driver of PV
installations in the country after the end of feed-in tariffs (Autorità di Regolazione
per Energia Reti e Ambiente, 2008; Abdin and Noussan, 2018). The scheme values
PV feed-in weighted at the national market price, which is then deducted from the
customer’s electricity bill. In the United States, net metering and net billing policies
are implemented on a state level in various states (Gregoire-Zawilski and Siddiki,
2023). Policy elements vary from state to state. For instance, in Texas, Oregon
and Maine, the policy design is rather utility-favoring and implements a net billing
scheme, including a valuation of feed-in at market prices rather than retail rates and
no possibility to roll-over credits to upcoming periods (e.g., months or years). On
the other hand, Florida, New York and New Mexico, pursue a customer-favoring de-
sign that resembles net metering with a valuation of excess generation at retail rates
and a compensation for remaining credits at the end of the year (Gregoire-Zawilski
and Siddiki, 2023). In Spain, a net billing scheme was introduced in 2018, which is
based on a monthly balance of electricity consumption drawn from the grid and PV
feed-in, whereas the feed-in is valued by a rate set by the system operator, which
is marginally lower than the wholesale price (Ordóñez et al., 2022). Since negative
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balances are not rewarded, the regulatory framework encourages proper sizing of the
PV installation. Ecuador implements a net metering scheme with rather long credit
transfer periods (Ordóñez et al., 2022). Negative balances can be used as rolling
credits up to two years after being generated. Although the presented regulatory
net metering policies incorporate different features, they all take away incentives to
install household BESS as the grid serves as a virtual battery (Abdin and Noussan,
2018; Ordóñez et al., 2022). However, there are endeavors to incentivize household
storage installations, even in regions with net metering or net billing policies in
place. California, a state with a plain-vanilla net billing policy, moved away from
fixed feed-in compensation to a new model called "NEM 3.0", which implements a
time-variable compensation. This should encourage homeowners to install battery
systems alongside their PV installation and to shift their feed-in away from peak
feed-in periods (California Public Utilities Commission, 2023).

The different regulatory frameworks and the wide range of individually imple-
mented policy features for BESS regulation show that a best practice for storage
regulation has yet to emerge. This may be due to a lack of experience with large
market penetration of battery storage or because of different national electricity
market designs. In any case, our results can provide some guidance for making cor-
responding policy decisions. Our study is an important contribution to this policy
discussion since we are the first to evaluate a large empirical dataset from a region
promoting self-consumption to describe the impacts of the regulation framework.
Furthermore, the study also allows us to evaluate alternative regulatory strategies.

3.4 Methodology
The review underlines the need for an empirical analysis of household battery

storage systems operated in a self-consumption-focused regulatory setting. We tackle
the identified research gap with an approach divided into three parts, as depicted in
Figure 9.1.

First, we analyze spot market profits of an empirical year-long sample of 947
household battery storage system profiles. This analysis fills a research gap address-
ing the potential effects of customer behavior on the market performance of battery
storage systems. We find that the system benefits of household BESS are currently
markedly low. We therefore evaluate alternative regulation.
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We thus extend our empirical perspective with an analysis of alternative policy
options, derived from our review of international regulation and related work. While
the empirical characteristics of the 947 systems at hand set the boundaries for the
analysis of alternative regulatory options, the resulting charging and discharging
profiles are obtained using optimization. The results of the simulation allow for a
comparison of the empirical analysis with policy options, such as the promotion of
dynamic tariffs or allowing household storage systems to charge from the grid. Given
that households need to adapt to this changing regulation, we further analyzed the
attitudes of households towards their BESS to better understand antecedents for
household behavior.

We, therefore, conduct a survey amongst battery owners. Thereby, we also provide
a behavioral perspective on the problem at hand, which is often neglected in related
studies.

Overall, our three-part approach allows us to analyze household battery storage
systems operated in a self-consumption regulatory framework as a socio-technical
policy problem, rather than from a purely techno-economic perspective.

Figure 3.2.: Paper structure and methodological overview.
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3.4.1 Evaluating empirical BESS operation

First, we evaluate the effectiveness of the self-consumption-promoting regulatory
framework through an empirical dataset from Germany. Germany implements a
self-consumption promoting regulation that makes it financially attractive to con-
sume self-generated energy. This evaluation is unique as it is the first to evaluate the
empirical consumption behavior of households that own a BESS. This differentiates
the results from simulation results that assume no change in behavior or optimal re-
sponse to signals (Angenendt et al., 2018; Naumann et al., 2015; Aniello and Bertsch,
2023). We can calculate the effectiveness of household BESS by evaluating the hypo-
thetical market performance on the spot market. This indicator is representative of
the overall value the BESS is adding to the system. To do that, we multiply charg-
ing and discharging actions aggregated over an hour with the spot market price in
the respective time interval on the day-ahead market. The underlying economic
rationale is that high spot market profits for household BESS operation indicate a
high overall power system utility generated from shifting loads from periods with
high demand and costly generation (and high prices) to periods with lower demand
and cheap generation (and correspondingly low prices) (Zafirakis et al., 2016; Lamp
and Samano, 2022). We underline this point with a complementary analysis in the
Appendix, showing that German day-ahead market prices are strongly positively
correlated with balancing energy costs, fossil fuel-powered conventional production
and residual load.

To analyze the profitability of the BESS charging and discharging decisions on the
European EPEX spot day-ahead market within the German market zone (EPEX
Spot, 2023), we aggregate the battery load profiles to an hourly resolution matching
the day-ahead market contract duration (Märkle-Huß et al., 2018). We model the
BESS as price takers, thereby having no impact on market prices and always finding
a counterparty for possible trades. We assume that every sell- and buy-order could be
conducted at market prices, which is a reasonable assumption given the liquidity of
the market in question and the current capacity of market-oriented BESS operation
strategies (Naseri et al., 2023; Wankmüller et al., 2017).

We evaluate the spot market profits (denominated as Π) of household BESS oper-
ation using Equation 3.1, which is similar to objective functions used in simulation
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studies of market-focused battery operation (Schneider et al., 2020; Krishnamurthy
et al., 2017). The same objective function is used in the following section to evaluate
alternative tariff structures. In the evaluation of the empirical case, we ignore the
inverter efficiency losses ηinv because the observed values already incorporate these
losses.

Π =
∑
t∈T

(ηinvptP
d
t τ − 1

ηinv
ptP

c
t τ) (3.1)

When the BESS is charged with power P c
t over a period τ , costs at the current

market price pt occur. This is irrespective of whether the battery is actually charged
from the grid or from self-generation, as self-generation could be sold on the mar-
ket, which, therefore, leads to opportunity costs. We proceed correspondingly for
discharging of the BESS with power P d

t , which leads to revenues either as market
income or as foregone costs. The charge and discharge operations correspond to the
empirically observed operations P d,real

t and P c,real
t . We use this definition of BESS

energy flows to the empirically observed behavior further in the following section to
differentiate the empirical case from hypothetical alternative regulation approaches
and dynamic tariff options.

P d
t = P d,real

t , P c
t = P c,real

t ∀t ∈ T. (3.2)

3.4.2 Simulative analysis of regulatory alternatives

Second, given that our empirical analysis confirms the assumption that a BESS
operation schedule prioritizing self-consumption does not necessarily align with
the power system’s needs (Green and Staffell, 2017), we propose several alterna-
tive approaches by building on more dynamic regulatory policies. We gradually
increase the degrees of freedom with the following suggestions. We consider four
different variations of the baseline optimization problem, varying from the actual,
empirically observed BESS operation to a completely market-oriented operation.
Through the cases, we explore different regulatory options for BESS and their
influence on market profits on the day-ahead market. The cases increasingly
deviate from the known, self-consumption-promoting empirically observed pro-
file. Comparing different possible operation strategies to the empirical profiles
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allows us to draw conclusions about the economics of current BESS operations.
This perspective is again simulation-based, which we further discuss in Section 9.7.3.

Various constraints are accommodated to analyze different operation strategies
derived from the empirical profiles. First, the maximum charge and discharge power
Pmax of the BESS Pmax must never be exceeded for P c

t and P d
t (Equation 4.8b).

Second, the SOC of the BESS is connected to the previous SOC and the cur-
rent charging or discharging operation, as denoted in Equation 4.8c. Finally, the
SOCt has to be kept within the boundaries of the minimum SOCmin and maximum
SOCmax, as in Equation 4.8d (Krishnamurthy et al., 2017). To realistically con-
sider efficiency losses, the marketable discharge power has to be multiplied by the
DC-AC inverter efficiency ηinv and the charging power has to be divided by it. A
round-trip inverter efficiency of 90% is assumed, based on Soini et al. (2020). Since
efficiency losses are considered for charging and discharging the BESS, ηinv is set
at

√
90%. Since the empirical SOC measurements and the charging power derived

from it already include charging efficiency losses, we divide the charged energy by
the efficiency rate of

√
90%. Thereby, we prevent a double consideration of efficiency

losses, which would potentially distort the comparison of the empirical case with
alternative approaches.

max
∑
t∈T

(ηinvptP
d
t τ − 1

ηinv
ptP

c
t τ) (3.3a)

s.t. Pmax ≥ P c
t , Pmax ≥ P d

t , ∀t ∈ T, (3.3b)

SOCt = SOCt−1 + τ(P c
t − P d

t ), ∀t ∈ T, (3.3c)

SOCmin ≤ SOCt ≤ SOCmax, ∀t ∈ T (3.3d)

Using this basic optimization problem and the notation of restricted charging and
discharging powers in Equation 3.2, we can formulate alternative regulatory options
and tariff designs mathematically. We establish the following alternative regulatory
options based on our review of existing policies and studies from Section 3.

Case 1: Flexible Discharging We begin by only slightly deviating from the
self-consumption promoting regulation by only allowing battery charging from self-
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generated energy while subscribing the household to a real-time pricing tariff that
sets the price for buying and selling energy to or from the grid. We model this
mathematically by limiting the charging power P c

t at time t to the respective em-
pirical observation P c,real

t , while P d
t can be freely chosen within the given battery

constraints.

P c
t ≤ P c,real

t ∀t ∈ T. (3.4)

.
By replacing Constraint 3.2, which limits BESS operations to the underlying em-

pirical observations, with the new Constraint 3.4, we ensure that the battery is only
charged with available excess PV power of the household (Parra and Patel, 2016).
Since only the upper bound for BESS charging is set, it is now possible to sus-
pend charging operations at periods of high market prices and sell electricity to the
grid, thereby reducing opportunity costs. It is now also possible to discharge the
BESS to provide energy to the grid at the current market price. This operation
strategy incorporates dynamic tariff elements (Parra and Patel, 2016), as well as a
time-variable feed-in compensation component, comparable to the newly introduced
variable "NEM 3.0" policy in California (California Public Utilities Commission,
2023).

Case 2: Calendaric limits Case 1 offers more potential to react to market sig-
nals than the empirical self-consumption, but is still similar due to Constraint 3.4,
which limits charging to the empirical observations. To enable a higher degree of
market price exploitation, we replace Constraint 3.4 with Constraint 3.5a, which only
limits the sum of all charging operations P c

t to the sum of all empirically observed
charging operations P c,real

t . By employing Constraint 3.5a, we enforce that the bat-
tery is not discharged more than in the actual empirically observed case. Case 2 can
therefore be thought of as a compromise between real-time pricing with grid charges
and net billing similar to the Texan regulatory approach (Gregoire-Zawilski and Sid-
diki, 2023). Under a net metering regime, the grid essentially serves as a BESS for
prosumers with PV generation. Using the proposed approach, households are for-
given grid charges for the energy they provide to the system through their BESS.
This incentivizes further flexibilization as households can provide energy when it is
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expensive in the system and buy it back later as incentivized through real-time pric-
ing without having to pay additional grid charges or levies. This right of buying back
provided energy is temporally restricted to avoid the usage of the grid as long-term
storage. For instance, one might want to avoid households providing energy during
the summer to buy it back in the winter. We, therefore, differentiate between Case
2Y, Case 2M and Case 2W, where the limiting sum of charging operations is applied
either for the whole year or within every month m or for every week w, for the set
of all months M and respectively all weeks W , as depicted in Constraints 3.5b and
3.5c.

∑
t∈T

P c,real
t ≥

∑
t∈T

P c
t . (3.5a)

Since by omitting Constraint 3.4, the BESS can also be charged in times with-
out PV excess power (P c

t ≥ P c,real
t ), potential differences in market prices can be

exploited more flexibly.

∑
t∈T,m

P c,real
t ≥

∑
t∈T,m

P c
t . ∀ m ∈ M. (3.5b)

∑
t∈T,w

P c,real
t ≥

∑
t∈T,w

P c
t . ∀ w ∈ W. (3.5c)

Case 3: Market responsive Finally, in Case 3, all constraints on charging and
discharging based on the empirically observed data are dropped. This enables a
fully flexible BESS operation based on market prices and represents a pure real-time
pricing tariff. Case 3 resembles the optimization case from Schneider et al. (2020),
but without considering battery degradation in the optimization problem. From
a policy perspective, the implementation of Case 3 requires allowing household
battery charging from the grid, which is, for instance, in Germany, penalized by the
loss of self-consumption tax and levy exemptions (Bundesministerium der Justiz
und für Verbraucherschutz, 2023).

We further differentiate between Case 3, where BESS are assumed to be exempt
from grid charges, and Case 3NE, in which charging the BESS from the grid causes
additional charges pgrid. We add the grid charges pgrid to the current market price
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pt in time steps where the charging power P c
t exceeds the empirically observed value

P c,real
t as this indicates charging the BESS from the grid. We use hypothetical grid

charges pgrid in the amount of 0.0735 Euros per kWh in our optimization model based
on the actual charges of a Southern German distribution grid operator (Netze BW,
2021). While seemingly very different from the empirical case, Case 3NE represents
households that subscribe to a real-time tariff within the context of self-consumption
promoting regulation.

p′t =

pt + pgrid P c
t > P c,real

t

pt P c
t ≤ P c,real

t

(3.6)

Figure 3.3 provides a graphical overview of the presented cases. The cases represent
an increasing degree of market flexibility, but also decreasing similarity to the original
operation strategy from the Empirical Case.

Figure 3.3.: Properties of investigated cases

3.4.3 Survey of household storage owners

The results of our analysis and our proposed regulatory adjustments show the
importance of the interaction between regulation and system. Besides regulation,
the interaction of BESS and the energy spot market is also governed by personal
preferences and behavior. For instance, households that decide to subscribe to
a real-time pricing tariff already have an incentive to operate their BESS in a
more system-friendly way as they are exposed to temporally differentiated external
price signals. However, few consumers choose to do so. The reasons for this lack
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of engagement with more dynamic tariff designs are unclear. Recent research
has shown that consumers with a higher energy literacy are more likely to adopt
time-of-use pricing (Reis et al., 2021). We, therefore, acquired additional sample
data from a survey conducted by Bilendi2 to better understand the attitude of
household BESS owners towards their battery energy management systems. Due
to data privacy regulation, we were unable to directly contact the consumers from
the described empirical sample. We, therefore, acquired an additional sample to
conduct the survey with.

We focus our analysis on understanding the determinants of the perceived effec-
tiveness of household BESS. We choose this as our dependent construct as we aim to
better understand how households perceive the interaction of their BESS with the
external energy spot market. Perceived effectiveness is instrumentalized using the
scales proposed by Luo et al. (2008). As potential determinants of perceived effec-
tiveness, we choose trust in the system (Gefen et al., 2003), the perceived behavioral
control (Sheeran and Orbell, 1999), the importance of financial profitability and the
sustainability of BESS (Bucher et al., 2016), the overall satisfaction with the BESS
(Liao and Chuang, 2004) and several indicators to measure the perceived self-rated
individual knowledge on personal energy consumption, the energy system and the
energy market (Schlösser et al., 2013). We use an Ordinary Least Squares (OLS)
regression, a statistical method that estimates the relationship between independent
variables and a dependent variable by minimizing the sum of the squared differences
between observed and predicted values, to determine the impact of these variables
on perceived effectiveness (Craven and Islam, 2011; Jia et al., 2021).

3.5 The dataset: Empirical BESS load profiles
We begin by introducing the empirical dataset of 947 battery load profiles. The

BESS profiles were measured over the course of the year 2021 and include state
of charge (SOC) measurements with a one-minute resolution. The profiles come
from regionally distributed German households and were anonymized before being
provided to us for this study. All the residential BESS within the study are installed
with corresponding PV systems. They have an energy capacity of 2.5 kWh (6.7%), 5

2https://www.bilendi.de

https://www.bilendi.de
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kWh (37.2%), 7.5 kWh (31.5%), or 10 kWh (24.6%). The BESS’ maximum discharge
power Pmax is either 1.25 kW (6.7%), 2.5 kW (68.7%) or 3.75 kW (24.6%). On
average, the Power-to-Energy ratio, which is often used to set the power rating in
relation to the energy capacity, lies at 0.41. These figures provide important insights
into the current distribution of household BESS in Germany.

The provider of the BESS guarantees the nameplate energy capacities for ten
years by oversizing the systems to account for degradation. It operates a dedicated
battery management system that ensures the nameplate capacity even as the total
(oversized) capacity diminishes (SENEC GmbH, 2024). As a result, the BESS
is operated with the guaranteed nameplate capacity throughout the observed period.

(a) EFC (b) SOC (c) Energy Throughput

Figure 3.4.: Descriptive statistics of empirically observed BESS usage

The empirically observed battery charging or discharging power P real
t is based

on the SOC change between two time steps SOCt+1 and SOCt, divided by the
time resolution τ , as in Equation 3.7. We aggregate the values to an hourly time
resolution to link the data to the contract duration of the European EPEX spot
market (Märkle-Huß et al., 2018).

P real
t =

SOCt+1 − SOCt

τ
(3.7)

As battery cycling influences the battery degradation and, therefore, the battery’s
lifetime (Kucevic et al., 2020), we also analyze the BESS usage throughout this
study. We, therefore, determine the number of Equivalent Full Cycles (EFC), which
set the Energy Throughput (Etp) of the BESS in relation to its nominal capacity.
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The energy throughput Etp is the sum of the absolute charging (P c
t ) and discharging

power (P d
t ) of the BESS over time T measured in steps of the time resolution τ , as

formulated in Equation 3.8 (Koltermann et al., 2023).

Etp =
T∑
t=0

|(P c
t + P d

t )τ | (3.8)

The energy throughput of one entire charging and discharging cycle in the amount
of the nominal BESS energy capacity EBESS represents one EFC. Hence, we divide
Etp by two times EBESS to calculate the resulting EFC (Kucevic et al., 2020; Ma-
heshwari et al., 2020):

EFC =
Etp

2EBESS
(3.9)

Cycle depth is also commonly mentioned as a source of battery degradation. Deep
cycles lead to faster BESS degradation (Schimpe et al., 2018). We are neglecting
an analysis of the cycle depth and focusing instead on EFC. We do so because the
empirically observed self-consumption-oriented BESS operation strategy - charging
until the battery is full, discharging until it is empty - already leads to the highest
possible cycle depths. Hence, any alternative operation strategies could even lead to
comparable or even lower cycle depths.

Figure 3.4 presents the introduced measures for the empirical sample. Most house-
hold BESS exhibit 198 EFC on average, with few outliers. The SOC measurements
are distributed between 0 and 1 as the share of charged total capacity, with most
measurements lower than 0.5, indicating that the BESS is more frequently empty
than fully charged. The 75th percentile of the mean daily energy throughput of the
individual BESS is below 10.7 kWh, while there are again a couple of outliers. Some
of them are caused by the BESS still being charged from the day before, and then
being discharged during the beginning of the day. Others are caused by multiple
charging and discharging cycles per day. These patterns are only observed in a few
households.
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3.6 Results
In this section, we apply the first two steps of our methodology - an empirical

analysis of BESS load profiles and the simulative analysis of alternative regulatory
options - to the underlying dataset.

In Figure 3.5, we depict the cumulated empirical annual profits per individual
household. The average profit per installed BESS is 5.0 Euros. This means that
every installed BESS only contributes 5.0 Euros to the overall system welfare per
year. In total, 23.02% of households operating a BESS exhibit negative spot market
returns as depicted in Figure 3.5. This means that this BESS operation leads to
additional costs for the system overall. More expensive power stations have to be
operated because these BESS are operated within the system. This finding strongly
calls into question the effectiveness of the corresponding regulation.

Figure 3.5.: Cumulated yearly household market profits in the empirical case (in EUR)

In the following, we compare the market results from the empirically observed
BESS operation in a regulatory environment that promotes self-consumption with
the introduced alternative regulatory policies. To do that, we assume perfect fore-
sight for market prices and load values, which is common in studies focusing on
BESS profitability (Olk et al., 2019; Wankmüller et al., 2017; Sioshansi et al., 2009).
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Sioshansi et al. (2009) observe in a study about battery trading profitability on the
PJM market that the perfect foresight assumption overestimates battery trading
revenues by 10-15% compared to a backtesting-based trading strategy. In addition,
we evaluate the efficiency of the respective BESS operation strategies in different
regulatory environments by considering EFCs. We also relate the EFCs to the eco-
nomic performance Π by calculating the Profit per Cycle (PPC), as in Equation
3.10. Assessing the efficiency of BESS operations is especially important in light of
the scarce resources used to build lithium-ion BESS (Costa et al., 2021).

PPC =
Π

EFC
(3.10)

To better understand the BESS charging and discharging operations induced by
the presented strategies, we depict the BESS SOC of an exemplary household over
a day in Figure 3.6. The y-axis represents the SOC and the x-axis shows the time of
day. The lines represent the progression of the SOC over the day for the empirical
case and for the simulated alternative regulatory approaches, while the green dots
depict the hourly day-ahead spot market prices. We note that we only discuss an
exemplary profile for the sake of comprehensibility. However, in the Appendix, we
plot the SOC curves of all households and all cases, underlining that the exemplary
Figure 3.6 is representative of the whole sample, exhibiting comparable patterns.
Furthermore, we depict all diurnal day-ahead price curves and their average over
the year in the Appendix, illustrating their resemblance with the price curve from
Figure 3.6.

The empirically observed operations follow the expected self-consumption pattern.
The BESS is charged in the morning until midday, when it is completely charged.
In the afternoon and evening, the BESS is discharged. Our results are specifically
important in light of the solar duck curve (California Independent System Operator,
2015). When prices are very low during the afternoon in spring or summer, battery
storage are often already fully charged and cannot absorb energy during times of
negative wholesale prices (Denholm et al., 2015). We can observe a deviation from
the empirical profiles when we analyze the resulting alternative regulatory options.
Two peak price hours in the evening are used to discharge the BESS. In Cases 1, 2W
and 3, the battery energy management system also discharges the BESS during a
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morning price peak at 6 AM. Most observed battery energy management strategies
under alternative tariff designs directly feed morning PV generation into the grid
due to a relatively high price level rather than using it to charge the BESS on this
exemplary day. Cases 2W and 3 ’s midday charging decision at 1 PM coincides with
the lowest daily electricity price of 0.08EUR/kWh. Thereby, we illustrate a general
outcome of the more flexible operation strategies: The alternative BESS operations
follow the overall market signals of the power system.

Case 2Y, 2M, 2W allow flexible BESS operation but restrict the maximum
amount of EFC to the empirically observed values. By restricting battery cycles
yearly, Case 2Y shifts most grid charging to the more lucrative winter months. In
contrast, Cases 2M and 2W keep the cycle amount at the monthly and weekly level
of the empirically observed values. From a household perspective, this might lead
to months, weeks, or days without BESS usage, representing a significant difference
to the empirically observed status-quo operation profiles from the Empirical Case.

Case 3 differs from Case 3NE because the latter incorporates grid charges in the
optimization problem when the BESS is charged through the grid. Apart from that,
both cases allow fully flexible BESS operations. As a result, in Case 3, the BESS
is used most, but at the cost of a higher amount of cycles, whereas Case 3NE even
reduces the number of cycles by weighing up grid charges against possible profits
while considering direct feed-in of PV instead of charging from self-generation.

Table 3.1 provides an overview of market results and EFC for the considered
regulatory and tariff cases and a comparison to the analysis of the empirical data. In
the scope of the alternative tariff options, the market profits and hence, the added
value to the power system from storage operation, increase significantly, compared
to the empirical case. Even moderate changes to the regulatory environment as Case
1 (flexible discharging) would lead to a ten-fold increase of average welfare gain per
storage system. Case 1 even leads to less EFC. This means a Pareto improvement
under such a regulatory regime as system benefits increase, while costs for the
individual are decreased. In Case 2 (calendric limits), system welfare can be further
increased, also leading to the highest profits per cycle, indicating the most efficient
use of the systems from an economic point of view. In Case 3 (market responsive),
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(a)

Figure 3.6.: BESS SOC of exemplary household and spot market price for different opera-
tion strategies over one day

the high flexibility and highest returns come at the price of the highest amount
of EFC, possibly leading to faster degradation of the BESS (Schimpe et al., 2018;
Kucevic et al., 2020). Implementing grid charges for charging the BESS from the
grid as in Case 3NE (market responsive with grid charges for grid charging) leads
to the lowest EFC. When we compare the actual implementation of the operation
strategies in Figure 3.6, we can observe that Case 3NE resembles Case 1. Looking
at profits per cycle in Table 3.1, we can see that the current operation leads to the
worst efficiency. Given the scarcity of the materials used in lithium-ion batteries
(Costa et al., 2021), these systems should be used more effectively and efficiently.

Profit [EUR] Equivalent Full Cycles Profit per Cycle [EUR/EFC]
Case

Empirical Case 5.0 198 0.03
Case 1 54.7 141 0.39
Case 2Y 159.5 208 0.76
Case 2M 118.0 208 0.57
Case 2W 113.7 208 0.55
Case 3 225.2 640 0.35
Case 3NE 44.7 87 0.51

Table 3.1.: Average annual results per household on the day-ahead market
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Figure 3.7.: Cumulated yearly household market profits in Case 1 (in EUR)

Figure 3.7 shows the cumulated annual profits per individual household for Case
1 (flexible discharging). In contrast to the empirical case, the relatively constrained
regulatory option of Case 1 leads to consistently positive returns for every household
in the dataset. This result shows that instead of mandating or clearly incentivizing
specific behavior, regulators should focus on system objectives and provide guardrails
to be respected that lead to those ends. However, in order to do that, a detailed
understanding of household attitudes towards their BESS and its antecedents is
necessary.

3.7 Consumer preferences and attitudes
The survey sample for this analysis was provided by Bilendi, a European sample

provider and included 333 data points. In their internal characterization of partici-
pants, Bilendi keeps a flag for "owning a PV installation", which is unique and useful
for our purposes since the installation of PV is an indicator for the installation of
a BESS (Figgener et al., 2021). In addition to the final sample, 111 participants
started the survey but failed an attention check and were, therefore, immediately
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Construct Reference Items Cronbach’s α

Perceived effectiveness Luo et al. (2008) 4 0.81
Trust in system Gefen et al. (2003) 6 0.94
Perceived behavioral control Sheeran and Orbell (1999) 4 0.84
Importance financial profitability Bucher et al. (2016) 5 0.93
Importance sustainability Bucher et al. (2016) 4 0.89
Satisfaction Liao and Chuang (2004) 3 0.92
Knowledge energy consumption (Schlösser et al., 2013) 2 0.55
Knowledge energy market (Schlösser et al., 2013) 2 0.72
Knowledge energy system (Schlösser et al., 2013) 2 0.72

Table 3.2.: Evaluation of constructs

screened out. Of the 333 valid completions, 79 participants were removed because
they failed a comprehension check. Finally, another 59 participants were screened
out because their answers to the questions about what BESS they used were in-
comprehensible or the provider did not exist. This led to a final cleaned sample of
195 BESS owners. 33% of those respondents are female, 79% stated a household
income of more than 3000 Euro per month, 72% are older than 40 years and 99%
have some form of advanced education. This shows that the sample consists of a
group with high socio-economic advantage, which can be expected as investing in
household BESS requires substantial financial resources.

Table 3.2 provides an overview of the used constructs, including the number of
items, original reference, and Cronbach’s alpha based on the resulting responses. All
Cronbach’s alpha values are in the acceptable range except for self-rated knowledge
on energy consumption. In the following regression, the items of this construct are,
therefore, used individually, while the other constructs are based on the average of
the corresponding items.

The results of regressing the perceived effectiveness against the other discussed
constructs are presented in Table 3.3. The adjusted R2 value of 0.74 signals a rea-
sonable explanatory power of the corresponding model.

The individual coefficients and p-values show a strong correlation between trust in
the battery energy management system and its perceived effectiveness. Interestingly,
self-rated knowledge is not correlated to perceived effectiveness across all constructs
and items capturing this concept. This means that perceived effectiveness increases
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Residuals:
Min Q1 Med Q3 Max
-2.16 -0.28 0.01 0.31 1.27

Residual standard error: 0.47
Degrees of freedom: 185
Adjusted R2 0.74
F-statistic: 60.9

Coefficients Estimate Std.Error t-value p-value
(Intercept) 0.57 0.28 2.03 0.043 *
Energy Knowledge Consumption 1 -0.04 0.04 -1.03 0.306
Energy Knowledge Consumption 2 -0.01 0.03 -0.27 0.790
Energy Knowledge System 0.02 0.05 0.43 0.666
Energy Knowledge Market 0.08 0.04 1.77 0.079
Perceived Behavioral Control 0.06 0.03 2.06 0.041 *
Satisfaction with System 0.04 0.04 0.86 0.393
Trust in System 0.56 0.04 12.70 0.000 ***
Financial Importance 0.11 0.04 3.00 0.003 **
Sustainability Importance 0.08 0.04 2.36 0.020 *

Table 3.3.: Regression on Perceived Effectiveness (*p<0.05, **p<0.01, ***p<0.001)

with trust but not with increasing or decreasing self-perceived knowledge of energy
consumption, the energy system, or the energy market. Additionally, perceived be-
havioral control positively affects perceived effectiveness. Similarly, the importance
of financial performance and the importance of a sustainable operation of the BESS
positively influence the perceived effectiveness. Interestingly, satisfaction with the
energy system does not correlate with perceived effectiveness. The implications of
this model are further discussed in the following discussion section.

3.8 Discussion
With this study, we contribute to an improved integration of household BESS into

the energy system and a socio-technical understanding of the phenomenon BESS
usage. To this end, we use empirical data to show the effect of regulation and
corresponding consumption behavior on the effect of market integration.

Our results show that under the regulatory policy of self-consumption promotion
and the resulting household behavior, the average welfare gain per BESS is virtually
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zero. In other words, the installed BESS do, on average, not lead to any balancing
benefit for the power system. This is not to say that they do not benefit the
individual, but based on their operation and the corresponding household behavior,
they do not lead to a benefit for the other market participants. In specific cases,
they even add costs for other energy consumers. It is advisable that incentives
would be designed so that individual benefits also lead to a global welfare gain. One
might argue that the use of local renewable generation is a value in itself. However,
this energy would be consumed in any case.

Our study has a few limitations. We are limited to the observations we report.
We cannot say whether the absence of BESS would impact the price such that the
outcome could be different. However, the results still show that the coordinated
behavior of all household BESS is not beneficial or even detrimental to the energy
system as a whole. Our sample might still be categorized as early adopters with
corresponding biases in their behavior. We have no specifics on the households as the
sample is anonymous. However, given the already considerable market penetration
of BESS, it is unlikely that the demographics of battery owners will shift beyond
single-family homes as of now. In any case, based on the data, households seem to
behave according to the incentives given by the regulation and charge their storage
fully during the day before depleting it in the early evening. These results show that
uniform and homogeneous regulation of BESS without specific economic signals is
likely to yield suboptimal results.

We only analyze empirical BESS load profiles without considering connected PV
and household load profiles, as this data was not available due to privacy reasons.
Although this does not change the overall direction of our results, since the BESS
load profiles are directly connected to household loads and PV generation, we see
potential for more granular analyses in future studies that also have access to the
corresponding data.

Given that current regulation leads to seemingly suboptimal results, we propose
alternative regulation and tariff structures utilizing price signals with a higher res-
olution derived from existing designs. This approach is, of course, based on the
simulation of behavior, which, as we argue throughout this paper, does not nec-
essarily represent empirical behavior. However, the simulation results in this study
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represent behavior based on empirical data of battery-owning households that would
not be impacted. Therefore, there is no reason to believe that they would change
their behavior only because their batteries are operated differently. Corresponding
battery energy management systems could redirect power flows without any effect
on comfort or change in the behavior of households, leading to lower cycle numbers
and more income as in Cases 1 and 3NE. The alternative regulation is, therefore, a
Pareto improvement compared to the current regulation.

Although our study was solely conducted with a sample of German households, it
yields important insights for lawmakers internationally. As described in Section 3.3,
various countries, such as the UK, Australia or Japan, are also promoting battery in-
stallations to increase self-consumption of household PV generation in a comparable
way. Hence, we argue that the results of our study can be generalized to some extent
to other countries. Nonetheless, we call for a comparable empirical investigation in
other countries under self-consumption-promoting regulation.

To round off our research on household behavior and BESS, we conduct a survey
to better understand the perception of battery owners of their BESS effectiveness.
We conducted this study with a sample different from that used for the empirical
BESS usage evaluation. This was necessary because this sample is anonymous to
us due to data privacy reasons. Again, the survey sample is not representative of
the general population, but we are unaware of any study that describes the repre-
sentative demographics of a battery owner. This survey should be understood as an
exploratory study that can only provide some indication in regard to the relationship
of the perceived effectiveness of BESS with other constructs. Yet, the results are in-
teresting and open avenues for further research. They seem to indicate that trust
in the system supplier is linked to perceived effectiveness, while different types of
self-perceived knowledge are not. This suggests that the perception of effectiveness
currently is independent of the perception of knowing what is effective but rather
linked to a general positive feeling towards the BESS. It is also noteworthy that
having an objective that is pursued with the BESS (be it financial or sustainable)
positively influences perceived effectiveness. This seems reasonable as judging effec-
tiveness is easier when it is clearly understood to what end one expects the system to
be effective. Interestingly, satisfaction is not correlated with perceived effectiveness,
while perceived behavioral control over personal energy consumption is. This might



58
Empirical field evaluation of self-consumption-promoting BESS

regulation

be caused by the fact that those who feel that they would have an idea of how to act
in the absence of the storage feel that the storage does what they would otherwise
do. These results highlight the importance of proper regulation as households trust
their supplier who will adapt operation to the corresponding regulatory policies.

The results indicate the need for further research. For instance, it is unclear
how potential additional market profits should be optimally distributed between the
aggregator and BESS owner to incentivize market-friendly behavior or to maximize
perceived fairness. Furthermore, we only considered the participation of BESS in
energy spot markets. We, therefore, ignored the potential of residential BESS to
participate in reserve markets. This could further increase the revenue potential of
market-oriented BESS operation strategies (Naseri et al., 2023). Finally, our findings
on the perceived effectiveness of battery energy management systems lead to further
questions in regard to the perception of information systems in household appliances.

3.9 Conclusion and Policy Implications
Distributed battery energy storage systems are an important asset for future en-

ergy systems that will continuously rely more on intermittent renewable generation.
Therefore, the regulation and resulting battery energy storage system operation are
highly relevant. However, there is currently no international consensus on an op-
timal regulatory framework, as shown by the variety of international policies. One
widely proliferated regulatory framework incentivizes households to increase the self-
consumption of electricity generated by their PV installations. Although previous
research questions the benefits of self-consumption promoting regulation, this has
never been analyzed empirically. To this end, we analyze an empirical sample of
947 year-long load profiles of household battery energy storage systems. We find
that a self-consumption promoting regulation causes an operation of battery energy
storage systems that leads to virtually no additional welfare for the energy system
overall, while it does benefit battery owners. In individual cases, this regulation even
leads to additional costs for the system that are socialized among energy consumers.
These results hold important implications for policymakers worldwide. Given our
results based on empirical field behavior, we show that self-consumption regulation
needs to be carefully designed in order to contribute to the overall optimization of
the energy system.
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We, therefore, move on to simulate alternative regulatory approaches and tariff
designs and show that these may lead to a Pareto improvement. This highlights the
positive impact of slightly adjusting regulatory policies. We propose only slight ad-
justments to a self-consumption promoting regulation such as delayed feed-in, time-
varying feed-in compensation, dynamic tariffs and structures from net billing. Our
analysis shows that these adjustments lead to universally system-beneficial house-
hold battery energy storage systems. The paper is, therefore, a valuable point of
reference for energy regulators and academics in the field.

Furthermore, we present a framework to describe the relationships between house-
hold battery regulation, battery energy management systems, household preferences,
and the energy market, contributing to the understanding of these systems. We find
that household preferences and behavior are often neglected when analyzing regu-
latory options. To contribute to this research gap, we complete the research with
a third methodological approach with an exploratory perspective on the perceived
effectiveness of battery energy storage systems. To this end, we conduct a survey
among battery owners. The results indicate that trust in the system operator rather
than self-perceived competency correlates with perceived effectiveness. This shows
the important role of regulation in the operation of household battery energy storage
systems as it shapes behavior. In conclusion, our study suggests that regulatory ap-
proaches towards household BESS operation should employ carefully designed and
temporally differentiated signals to be more aligned with overall energy policy ob-
jectives.





Part III.

Operational Uncertainty





INTRODUCTION TO PART III

The operational performance of home energy management systems plays a critical
role in the successful implementation of dynamic tariffs. These systems manage the
scheduling of appliances such as battery storage systems, heat pumps, and electric
vehicle charging. To leverage the flexibility potential of these appliances, accurate
forecasting of future loads and access to comprehensive data for optimization and
planning are necessary. Accurate load forecasting is essential for households to op-
timize the scheduling of their flexibility potentials, for aggregators to manage the
flexibility of multiple households, and for grid operators to predict stress on the
network infrastructure and take necessary measures in response.

The following part of this dissertation aims to address operational uncertainties
in the operation of home energy management systems, ultimately enhancing their
performance in the context of dynamic pricing. The contributions include an anal-
ysis of forecasting methods in light of the integration of novel appliances such as
heat pumps (Chapter 4), the development of improved forecasting techniques to
accurately predict peak loads (Chapter 5), the exploration of privacy-preserving ap-
proaches for peak time load forecasts (Chapter 6), and the proposal of a method to
generate synthetic heat pump load profiles based on weather data (Chapter 7).
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CHAPTER 4

THE IMPACT OF HEAT PUMPS ON DAY-
AHEAD LOAD FORECASTING

This chapter examines the impact of heat pump installations on the selection of
forecasting methods for predicting day-ahead electricity loads for groups of house-
holds, which are referred to as energy communities, throughout this chapter. With
the growing number of heat pump installations and their significant potential for
flexibility, accurate load forecasting becomes increasingly important for scheduling
flexibility options and aligning electricity price signals with household energy demand
in the context of dynamic tariffs.

Furthermore, this chapter investigates the influence of having access to separate
historical data on heat pump electricity consumption on the quality of forecasts. This
analysis provides valuable insights into key operational data retrieval considerations
for aggregators managing home energy management systems under dynamic pricing
schemes. Additionally, a battery-based peak shaving use case is implemented using
the forecasted day-ahead electricity loads to evaluate the practical applicability of
the forecasts in real-world scenarios.

This chapter comprises the following article: L. Semmelmann, M. Hertel, KJ.
Kircher, R. Mikut, V. Hagenmeyer and C. Weinhardt. The impact of heat pumps on
day-ahead energy community load forecasting, Applied Energy, 2024.

4.1 Introduction
Many European countries plan to install hundreds of thousands of heat pumps

annually over the coming decades (Bundesverband Wärmepumpe, 2023). This leads
to additional loads and burdens for distribution grids, for instance, through the over-

65



66 The impact of heat pumps on day-ahead load forecasting

loading of transformers and power lines (Protopapadaki and Saelens, 2017; Çakmak
and Hagenmeyer, 2022). To postpone heat pump-induced grid reinforcement mea-
sures, alternatives such as Demand Side Management or Battery Energy Storage
Systems (BESS) can be used (Logenthiran et al., 2012; Stecca et al., 2020). One
widely discussed concept for managing low voltage nodes are so-called energy com-
munities, which combine tens to hundreds of households in a neighborhood to manage
electricity needs (Barone et al., 2023) collectively. Operators of energy communities
have to plan supply and demand under grid constraints to minimize purchase costs
for the community members. A critical aspect of managing energy communities
and distribution girds is scheduling flexibility measures. This requires an accurate
forecast of upcoming and day-ahead loads (Coignard et al., 2021).

Although several studies discuss different methods to forecast day-ahead loads
in energy communities and distribution grids, most focus on traditional load pat-
terns, mainly dominated by conventional household appliances (Kuster et al., 2017;
Coignard et al., 2021). These traditional load patterns will change in many countries
by transforming the heating sector towards heat pumps (Love et al., 2017). This de-
velopment has a severe impact on the operators of energy communities. Previous
studies have not addressed two main questions: First, it is unclear if the same fore-
casting methods perform well for traditional household loads and heat pump loads.
Second, the potential impact of the aggregation level on energy community load
forecasts has not been investigated: it is unclear if operators of energy communi-
ties should directly forecast the whole load of the energy community, consisting of
heat pump and traditional household loads, or if separate forecasts for the house-
hold and heat pump loads should be conducted and then aggregated. Several past
studies underline that a higher aggregation level improves the quality of the forecast
(Shaqour et al., 2022; Sevlian and Rajagopal, 2018). However, it has not been inves-
tigated if this holds true for forecasting different types of loads that follow distinct
distributions.

In summary, this paper addresses the following research questions:

• Do the same methods perform well for forecasting traditional household loads
and heat pump loads?

• Does the aggregation level of energy community loads – in particular, the
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decision between directly forecasting the whole energy community load vs.
forecasting heat pump loads and household loads separately – have an impact
on the forecasting quality?

• How are the presented forecasting methods and aggregation strategies per-
forming in an actual battery-based peak shaving use case of energy community
operators?

We answer these questions by suggesting a state-of-the-art methodology, including
feature engineering, feature selection, sophisticated Bayesian hyperparameter opti-
mization, sliding window forecasting, and detailed benchmarking. The presented
methodology is applied to a recent dataset of heat pump and household loads from
an energy community in Hamelin, Germany (Schlemminger et al., 2022). We pub-
lish our pre-processing approach, the feature-engineered data, our results and the
best-performing methods open-source.

The present paper is structured as follows. In Section 4.2, state-of-the-art related
work is presented. Section 4.3 covers our methodology, focusing on the investigated
models. Section 4.4 depicts the researched case study with energy community load
data from Hamelin, Germany (Schlemminger et al., 2022). Section 9.7 presents our
results in light of the previously introduced research questions. In Section 4.6, the
results are discussed in detail. Finally, Section 9.8 presents the conclusion.

4.2 Related work
A wide range of studies discuss potential methods for load forecasting (Kuster

et al., 2017; Coignard et al., 2021; Wang et al., 2022c). The overarching goal of these
methods is to forecast upcoming loads based on previous observations. The time
horizon of the load forecast can range from the next minutes to the next day, up to
several days, months, and years (Kuster et al., 2017; Khuntia et al., 2016; Hahn et al.,
2009). Also, the time resolution of the underlying data can range from a few minutes
to a single hour, multiple hours, and whole days. All these factors play a role in the
resulting quality of the forecast and the selection of the best-performing methods
(Kuster et al., 2017). Our study mainly focuses on a day-ahead forecast of hourly
loads, which is especially relevant for operational aspects in energy communities such
as energy trading or scheduling flexibilities, as applied in several studies (Xu et al.,
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2015; Javadi et al., 2022; Anees et al., 2021; Parra et al., 2017).
A broad spectrum of possible methods for day-ahead load forecasting tasks is dis-

cussed in the literature. The first advances in the field were made through statistical
models such as the Autoregressive Integrated Moving Average (ARIMA) method
(Hagan and Behr, 1987). The Seasonal Autoregressive Integrated Moving Average
with Exogenous Factors (SARIMAX) (Tarsitano and Amerise, 2017) is an extension
of the method. A different approach for load forecasting is using tree-based methods
such as random forests (Dudek, 2015) or XGBoost (Tarsitano and Amerise, 2017).
Tree-based methods use decision trees at their core to split the input data to make
predictions over upcoming loads. Advantages of tree-based methods, for instance,
XGBoost, are a high computational efficiency, good performance, and easy handling
of multivariate data (Chen and Guestrin, 2016). For multivariate load forecasting,
further input features like temperature measurements can be used, which can also
be an important factor of electrical load forecasts (Semmelmann et al., 2023b). Over
recent years, also neural networks have been increasingly used for load forecasting
tasks, such as Long Short-Term Memory neural networks (Kong et al., 2017) or
Transformers (Gao et al., 2023; Hertel et al., 2023). The same methods are anal-
ogously commonly used for heat load forecasts (Gong et al., 2022; Chung et al.,
2022).

Most papers on load forecasting strictly differentiate between forecasts for tradi-
tional household loads and heat loads, which are either based on district heating
systems (Gong et al., 2022; Powell et al., 2014), radiators installed at single-family
houses (Bacher et al., 2013) or individual heat pumps (Xu et al., 2019; Song et al.,
2023). However, the effective and reliable management of distribution grids and en-
ergy communities of the future requires consideration of heat pump-induced loads,
which will lead to significant additional loads (Fischer and Madani, 2017). This leads
to several practical considerations. First, it is unclear if the same methods that per-
form well for the forecasting of common household loads also perform well for the
task of heat pump load forecasting. Through an increased share of heat pumps and
thereby, a change of load structures, the recommended forecasting methods might
also change. Second, whether the aggregation type impacts the load forecasting qual-
ity has not been investigated. Although many studies have shown that the higher
the aggregation level, the better the forecasting quality due to stochastic smoothing
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(Shaqour et al., 2022; Sevlian and Rajagopal, 2018), it is unclear if this holds true for
aggregating household and heat pump loads. Hence, we investigate if household and
heat pump loads should be directly aggregated and then forecasted or if the different
loads should be individually forecasted, and then the forecasts should be aggregated.
This also has practical implications for the management of the energy community: If
individually-aggregated forecasts perform better than a directly-aggregated forecast,
it might be worthwhile to advocate for data sharing of heat pump loads of households
(Semmelmann et al., 2022). Fourth, most forecasting studies are decoupled from the
actual use case in energy communities and distribution grids. The quality of the
presented forecast methodologies is solely measured in terms of metrics such as the
Mean Absolute Percentage Error (MAPE) or Root Mean Squared Error (RMSE)
(vom Scheidt et al., 2020), without a thorough discussion of the metrics and its ap-
plicability for distribution grid-related tasks, such as peak shaving at transformers
(Reihani et al., 2016).

The present paper fills these research gaps with a state-of-the-art methodology
that considers the latest developments in load forecasting research (Hou et al., 2022).
We also aim to address some common pitfalls in forecasting and machine-learning-
based science itself. Recent studies found that many machine learning results are
not reproducible due to a lack of transparency (Kapoor and Narayanan, 2023; Pfen-
ninger et al., 2017), which is further aggravated through scarce open-source datasets
(Gilbert et al., 2023). We address that by making our underlying data, results, and
evaluation methodology open-source, thereby enabling researchers to easily build
upon our results and benchmark their results against this study. In addition, for the
sake of reproducible results (Pfenninger et al., 2017), we avoid the use of complex
hybrid models and instead focus on base models. However, we encourage researchers
to use our open-source data set, results, and benchmarking methodology to show
possible advances of sophisticated hybrid models over the presented models.

4.3 Methodology
Our methodology follows the latest advances and common practices in load fore-

casting literature (Hou et al., 2022; Wang et al., 2022c). In the first step, additional
input features are engineered to enrich the dataset. Subsequently, the feature set
is reduced through a feature selection technique. Then, several forecasting mod-



70 The impact of heat pumps on day-ahead load forecasting

els are presented. In the next step, we introduce another recent advance in load
forecasting, the decomposition technique Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (CEEMDAN) (Ran et al., 2023). We conclude our
methodology by introducing the two investigated aggregation levels, the underlying
metrics, and our investigated peak shaving application of the presented forecasting
strategies.

4.3.1 Feature engineering

An integral step in load forecasting is to create additional features that might help
to capture additional patterns underlying the data (Zhu et al., 2022). We create
the following features, in addition to given load and perfect foresight weather data,
based on previous studies:

Type-of-day features: Several load forecasting related studies create additional
features for type-of-day variables (Ziel, 2018). These binary features indicate if the
given observation lies on a weekday, weekend, or holiday. We create the correspond-
ing binary type-of-day features based on the timestamps of given observations.

Cyclical calendric features: Features such as the hour or month have a cyclical
character, which might not be captured by representing them with their actual val-
ues (Haben et al., 2021). For instance, hour 0 and hour 24 would be interpreted as
far away through a regression model, although they are the same value. This misin-
terpretation can be avoided by applying a sine and cosine transformation to the day
and month observations, as described in Haben et al. (2021). We also create features
for a twofold and fourfold sine and cosine transformation for possible consideration
of patterns that occur with a higher frequency.

Rolling average of apparent temperature: It has been shown that rolling
averages of the observed temperature are important input features for load fore-
casts due to the thermal inertia of buildings (Wang et al., 2016; Semmelmann et al.,
2023b). Hence, we create a rolling average for the apparent outdoor temperatures’
last 24 and 48 hours. We selected these intervals based on a pre-evaluation of correla-
tions between temperatures and loads. We created the rolling temperature features
based on the apparent temperature instead of the actual temperature due to the
higher correlation between loads and apparent temperature observations. The ac-
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tual temperature is the objective air temperature measurement, while the apparent
temperature includes factors that affect the perception of temperature, for instance,
humidity, wind speed and solar radiation.

Average load at same time step: For a better capture of the medium-term
effects on (heat) load, Chung et al. (2022) suggest creating an additional feature
with the average load at the same hour over the last week. Considering the load
of the previous seven days goes beyond including lagged variables, which are only
provided for two days in this study for computational reasons.

Past loads: Previous studies showed that past loads are amongst the most im-
portant load forecasting features (Hou et al., 2022). How these previous loads are
given as input features to the model depends on the type of the model. While the
following neural network-based methods, such as LSTMs, can handle whole feature
vectors as input (Gers et al., 2000), classical machine learning methods, such as
Random Forests, require a tabular representation of the data (Chen and Guestrin,
2016). This means a one-dimensional feature vector is used to predict one target
value. Past load features are included as lagged to accommodate the tabular repre-
sentation. On day d, the feature vector includes 48 past loads xt based on the first
timestep t0(d): {xt0(d)−1, xt0(d)−2, ..., xt0(d)−48}. Given the hourly time resolution, we
consider 48 past loads, which equal two days, based on literature and initial exper-
iments (Fan and Chen, 2006; Liang and Cheng, 2002). We take lagged features in
relation to the first timestep of the respective day, t0(d), to ensure that the classical
machine learning methods are working with the same input features as the neural
network-based methods, which receive the two day-before past loads as an input
vector.

4.3.2 Feature selection

We select the most relevant features through a filter and an embedded feature selec-
tion method (Pudjihartono et al., 2022) for computational efficiency and a reduction
of potential overfitting. We separately conduct the feature selection process for the
household-only, heat pump-only and aggregated energy community datasets, to en-
sure a fair comparability of the aggregation levels, which is described later in further
detail. First, we filter out irrelevant features with a Pearson correlation lower than
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0.1 (Koprinska et al., 2015). Then, the Random Forest algorithm is used as an ad-
ditional embedded method to rank the potential features based on their predictive
power (Pudjihartono et al., 2022). We only consider the ten features with the high-
est Random Forest feature ranking (Koprinska et al., 2015). The Random Forest
method itself is explained in detail in the following "Models" subsection. Thereby,
we combine the advantages of the correlation-based filter method (quickly reduc-
ing the search space) and the random forest-based embedded method (identifying
features with high predictive power through a forecasting model) (Hu et al., 2015;
Pudjihartono et al., 2022). The final feature set includes only features that pass
both feature selection methods. The feature selection process is applied before en-
riching the dataset with the lagged features, to ensure comparability between neural
network-based and classical machine learning methods.

We note that we include the cyclical hourly features, based on the previously
described sine and cosine transformation, independently from the feature selection
results, to maintain a relationship between past loads and the current observation
for the classical machine learning methods. Since the past loads are based on the
first daily time step t0(d) for the classical machine learning methods, the timesteps
of the observations are essential to capture the relationship with past loads.

4.3.3 Models

In the following section, we introduce the investigated models in our study. We
selected the underlying models based on a thorough analysis of benchmarking studies,
identifying the most common and latest methods used for load forecasting tasks
(Chung et al., 2022; Hou et al., 2022). We note that we excluded hybrid models for
the sake of reproducibility of our results and that there are several further potential
candidate models whose evaluation would go beyond the scope of this study.

Random Forests: Random forests are a machine learning method that combines
an ensemble of decision tree predictors with random sampling (Breiman, 2001). In
the first step, random samples are drawn from the underlying dataset used to build
decision trees. The splitting of these trees is based on a random subset of features
from which the best split is used. Possible splitting decisions are evaluated according
to decision tree algorithms such as the Classification and Regression Tree (CART)
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method. Finally, an ensemble of a large number of trees is created, which is then
used to make its prediction as the average of the included trees. Random forests
have been applied in several studies for day-ahead load forecasting tasks due to their
high computational efficiency, rather low overfitting, and good quality of forecasts
(Lahouar and Slama, 2015; Fan et al., 2022).

XGBoost: The XGBoost algorithm, introduced by Chen and Guestrin (2016),
is a highly efficient machine learning algorithm applied in various forecasting tasks.
Comparable to the previously introduced Random Forest method, XGBoost uti-
lizes an ensemble of CART models. During the model’s training, the loss function’s
gradient is constantly calculated. At the same time, new tree learners are added
iteratively to the model to reduce the error of the model. The optimization function
of the model includes a regularization term, which helps the model to prevent overfit-
ting. Additional measures to prevent overfitting are the "shrinkage method" which
reduces the influence of individual trees in the model, and column subsampling,
which also increases the computational speed of the model. In general, the high
computational efficiency and strong prediction accuracy make XGBoost a popular
model for load forecasting studies (Abbasi et al., 2019).

LSTMs: A highly popular method for time series forecasting problems are Long
Short-Term Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000). LSTMs are a special form of Recurrent Neural Networks, that use gate
units and memory cells to "forget" irrelevant information over long-term patterns but
remember important information. The ability to recognize patterns and to capture
long-term dependencies makes LSTMs a popular choice for time series forecasting
problems, amongst other load forecasting tasks. The original study from Hochreiter
and Schmidhuber (1997) only contains one input layer, one hidden layer (which
includes the memory cells and gate units and can be called "LSTM layer") and one
output layer. Based on recent studies that apply LSTM networks for load forecasting,
we include an additional hidden layer (Kong et al., 2017) and the option to include
a dropout layer to prevent overfitting (Lin et al., 2022).

Transformers: A novel neural network architecture was introduced by Vaswani
et al. (2017), which is increasingly used for natural language processing and computer
vision tasks. Recently, the Transformer architecture was successfully applied to
short-term load forecasting problems, due to its good performance in handling long-
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term patterns (Hertel et al., 2022; Ran et al., 2023). In a more recent study, the
applicability of Transformer models for long-term time series forecasting was debated,
given that simple linear models were outperforming them on several datasets (Zeng
et al., 2023). However, with the right training strategy and enough training data,
Transformers outperform linear models and other baselines for short-term and long-
term load forecasting (Hertel et al., 2023; Emami et al., 2023).

The standard Transformers are based on an encoder-decoder structure, although
other variants exist (Nie et al., 2023). The load, calendar and weather features for
the past time steps are fed into the encoder, and the calendar and weather features
for the time steps to predict are fed into the decoder. The encoder layer consists
of a stack of identical layers which in turn include two sublayers: a multi-head self-
attention mechanism and a fully connected feed-forward network. The multi-head
attention layer allows the model to access information from various representation
subspaces at varying positions. The decoder contains, in addition to the multi-head
self-attention layers, multi-head cross-attention layers accessing the output of the
encoder. Overall, the Transformer architecture incorporates attention mechanisms
at three different points: self-attention in the encoder, self-attention in the decoder
and cross-attention that allows the decoder to access the output of the encoder. A
final linear layer transforms the decoder output into the predicted load values.

4.3.4 Bayesian hyperparameter selection

An essential part of setting up machine learning models is the selection of the right
model parameters, so-called hyperparameter tuning. A novel method for the optimal
selection of hyperparameters is based on a Bayesian Optimization model (Wu et al.,
2019), which especially comes with the benefit of high computational efficiency and
fast convergence times. The model utilizes a Gaussian Process probabilistic model to
map hyperparameters to an underlying optimization function, which aims to min-
imize the forecasting error of the model. The model uses an acquisition function
to determine new hyperparameters, as a trade-off between exploration of new ar-
eas in the space of possible hyperparameters and the exploitation of existing well-
performing observations. Our Bayesian hyperparameter model is initialized with 10
randomly drawn hyperparameter sets, the κ value of the model is set at 3, determin-
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ing the trade-off between exploration and exploitation. We run the Bayesian model
for 100 iterations. For every iteration, we run the target model with the respective
hyperparameters given by the Bayesian model, which is then updated with the Root
Mean Squared Error (RMSE) achieved by the target model. The data used for the
hyperparameter tuning is not included in the test dataset, which is later used for
the evaluation. We note that we discretize the hyperparameter search space, which
is commonly done, but comes with some drawbacks, since the parameter spaces of
categorical variables, such as the activation function of neural network methods, are
disjoint (Wistuba et al., 2015; Lévesque et al., 2016). We accept this drawback for
the sake of the computational efficiency of the method and given the fairness since
all models are using the same approach.

4.3.5 CEEMDAN Decomposition

An increasing number of load forecasting studies is applying decomposition tech-
niques to improve the model performance (Ran et al., 2023; Li et al., 2023a; Karijadi
and Chou, 2022). Decomposition techniques decompose a given signal - such as a
time series of loads - into subcomponents for a better understanding of underly-
ing patterns and trends. One recent advance is the so-called Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method (Torres
et al., 2011). The method first adds white noise to the target signal. Then, the
signal is decomposed into different Intrinsic Mode Functions (IMFs) and the respec-
tive residue is calculated. The process is repeated and the IMFs are re-calculated
until the residue cannot be decomposed anymore. For a thorough description of
the method we refer to Torres et al. (2011) and Ran et al. (2023). Aggregating the
resulting IMFs and residue yields the underlying signal.

The CEEMDAN algorithm has several advantages over alternative decomposition
methods like the Empirical Mode Decomposition: it exhibits an improved handling
of the mode mixing problem (having similar oscillations in different modes), it is
more robust to noise, as well as being non-stationary (Torres et al., 2011). We first
decompose the target load time series into IMFs with the CEEMDAN method on a
monthly rolling basis (Duan et al., 2023). Then, we train a dedicated model for every
IMF. Finally, we aggregate the forecasts of the forecasted IMFs to get the resulting
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forecast for the target load. We compare the CEEMDAN method extension with the
respective base models, taking over the same Bayesian-optimized hyperparameters
from the base model.

4.3.6 Aggregation levels

Our study aims at forecasting loads at a low-voltage transformer (which would be for
our German case between the 400V low-voltage level and the 20kV medium-voltage
level (Bayer et al., 2018)), to which multiple households of an energy community are
connected. Given a dataset of multiple individual household loads, we retrieve the
aggregated energy community household load PHH

t by aggregating the individual
loads of all N households for each time step t:

PHH
t =

N∑
i=1

P i,HH
t ∀t ∈ T (4.1)

The same procedure is repeated for the energy community heat pump load PHP
t :

PHP
t =

N∑
i=1

P i,HP
t ∀t ∈ T (4.2)

The final transformer power PComb
t consists of the sum of the household and heat

pump load:

PComb
t = PHH

t + PHP
t ∀t ∈ T (4.3)

From the perspective of the energy community or distribution grid operator, it
remains unclear if household and heat pump loads should be:

• Separate: equaling to an individual forecast of the aggregated heat pump
and household loads, and then summing the forecasts up to get the whole
transformer load. This approach is reasoned by the different underlying distri-
butions of heat pump and household load data (as shown later in the paper),
which might make it reasonable to train distinct models for more accurate
forecasting results (Kell et al., 2018).

• Combined: equaling to aggregating first all heat pump and household loads,



Methodology 77

and then predicting the whole transformer load. This approach is reasoned
by the frequently observed pattern that the higher the aggregation level, the
better the forecasting results (Sevlian and Rajagopal, 2018).

Analyzing the effects of the aggregation level on forecasting quality has practical
implications: predicting household and heat pump loads individually requires the
operator to be able to separately access them, which might be challenging given the
currently low level of observability in distribution grids (Bhela et al., 2017). Our
study investigates if having additional, separate heat pump load data leads to a
respective improvement in forecasting accuracy, justifying additional efforts for data
retrieval.

(a)

Figure 4.1.: Forecasting methodology.

We illustrate the overall methodology in Figure 4.1. To enable a fair compar-
ison of methods, we conduct a separate feature engineering, feature selection and
Bayesian hyperparameter optimization for every dataset (Households (HH), Heat
Pumps (HP ) and Combined Load (Comb)). Thereafter, we conduct a sliding window
forecast over one year for the presented forecasting models, either as a standalone
model or combined with the CEEMDAN decomposition. Based on the sliding win-
dow forecast, we train the models on every first day of the investigated months based
on the data from the past year. Then, the day-ahead loads of every day in the in-
vestigated month are forecasted. The process is repeated for every month in the test
set. Then, the forecasting results are evaluated based on the metrics depicted in the
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following.

4.3.7 Metrics

We evaluate the forecast quality by widely proliferated evaluation metrics, such as
the Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and R2 (vom Scheidt et al., 2020). The presented
metrics combine advantages like intuitive interpretability (MAPE, MAE, R2), share
of explained variance through the forecasting model (R2), appropriate consideration
of large errors (RMSE) and reduced sensitivity to outliers (MAE) (Willmott and
Matsuura, 2005; vom Scheidt et al., 2020; Chicco et al., 2021).

The MAPE is calculated as the mean of the percent deviation from predicted loads
P predict
t from real observations P real

t over all timesteps T , multiplied by 100:

MAPE =
1

T

T∑
t=1

∣∣∣∣∣P predict
t − P real

t

P real
t

∣∣∣∣∣× 100 (4.4)

The RMSE is calculated as the root of the mean squared deviation between P predict
t

and P real
t :

RMSE =

√√√√ 1

T

T∑
t=1

|P predict
t − P real

t |2 (4.5)

The MAE is the mean of the absolute errors:

MAE =
1

T

T∑
t=1

|P predict
t − P real

t | (4.6)

R2 is calculated by dividing the squared error between P predict
t and P real

t and the
squared error between the average load Pmean and actual values P real

t :

R2 = 1 −
∑T

t=1(P
predict
t − P real

t )2∑T
t=1(P

mean − P real
t )2

(4.7)

Higher values of R2 indicate a higher forecast quality; values can range from -∞ to
1. When a model yields negative R2 values, it indicates that its predictions for the
target variable are less accurate than simply using the mean as a forecast (Chicco
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et al., 2021).

4.3.8 Applicability

Most forecasting literature solely focuses on comparing and improving methods based
on widely proliferated metrics, such as the MAPE or RMSE (vom Scheidt et al.,
2020). However, a critical evaluation of how well the presented methods perform in
actual use cases is often missing. Hence, our study compares the performance of the
presented forecasting methods for the whole energy community load in an actual use
case: reducing the peak aggregated energy community load by scheduling day-ahead
charging and discharging of a BESS based on the day-ahead load forecast (Reihani
et al., 2016). Reducing the peak load of the energy community is important to save
the underlying distribution grid from degradation, to avoid costly reinforcement
measures and to reduce possible peak power grid charges (Uddin et al., 2018).

We formulate the underlying optimization based on Reihani et al. (2016), simul-
taneously targeting peak shaving and load smoothing. For that, we minimize the
squared sum of the forecasted load P (t)predict and the BESS power P (t)BESS mul-
tiplied by the time resolution ∆t, over the forecasting horizon N , as depicted in
Equation 4.8. The BESS operations are accommodated with a few constraints: the
maximum power Pmax shall never be exceeded (Constraint 4.8b). The State of
Charge SOC at time t is defined by the previous charging operations P (t)BESS mul-
tiplied with the time resolution ∆t and divided by the maximum BESS capacity Etot

(Constraint 4.8c). Furthermore, the SOC has to be kept within 0 and 1 (Constraint
4.8d). For our study, we simply set the maximum BESS capacity Etot at the peak
load of the previous year Pmax,y−1 times the time resolution ∆t, which is in our case
one hour. The maximum BESS charging and discharging power Pmax is set at half
the capacity Etot, divided by the time resolution ∆t. Finally, in Constraint 4.8e, we
limit the amount of allowed full cycles to one equivalent full cycle per day d (equal-
ing to one full charging and one full discharging cycle). We note that investigating
different BESS sizes and peak shaving strategies might bring additional insights, but
this would go beyond the scope of this study.



80 The impact of heat pumps on day-ahead load forecasting

min

(
T∑
t=1

∆t[P (t)predict + P (t)BESS]2

)
(4.8a)

s.t. Pmax ≥ |PBESS
t |, ∀t ∈ T, (4.8b)

SOCt = SOCt−1 +
∆t · P (t)BESS

Etot , ∀t ∈ T, (4.8c)

0 ≤ SOCt ≤ 1, ∀t ∈ T, (4.8d)
T∑
t=1

|P (t)BESS| · ∆t ≤ Etot · ∆t ·D · 2 (4.8e)

For every forecasting method, the previously depicted peak shaving and smooth-
ing optimization is conducted using the Mixed-Integer Linear Programming solver
Gurobi (Gurobi Optimization, LLC, 2023). Then, the suggested BESS charging op-
erations PBESS are applied to the actual observed loads P real. Subsequently, based
on the respective forecasting methods, we can compare the achieved peak reductions
through a day-ahead scheduling of BESS operations. Thereby, we can evaluate the
actual applicability of the presented methods for an energy community peak shaving
task.

4.4 Case study
In this section, the underlying dataset and the results of our hyperparameter

tuning process are presented.

4.4.1 Data

The previously presented methodology is applied to a high-quality dataset of house-
hold loads in an energy community in Hamelin, Germany (Schlemminger et al.,
2022). Initially, the dataset includes active and reactive power, voltage and current
measurements of 38 households equipped with water-to-water heat pumps and an
additional heating rod as backup heater. The dataset includes separate measure-
ments for the households and heat pumps in 10 seconds to 60 minutes resolution
from mid-2018 to the end of 2020. The heat pumps from the dataset are both re-
sponsible for covering heating and hot water demand. For our study, we use the
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hourly resolution of the active power and 21 out of the 38 households that do not
have missing data. We see the agglomeration of the 21 households as an exemplary,
small energy community, which can be found in a comparable size in existing studies
(Van Der Stelt et al., 2018; Dong et al., 2020). We note that we are solely focusing
on forecasting the aggregated active power. However, phase imbalance or voltage
issues might arise through the installation of heat pumps (Navarro-Espinosa and
Mancarella, 2014) in single- or three-phase configurations, and these are interesting
directions for future work.
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Figure 4.2.: Exemplary load profiles of energy community in Hamelin, Germany

We depict an exemplary weekly load profile of the household and heat pump loads
in Figure 4.2. We can observe that the underlying household loads follow a com-
pletely different pattern than the heat pump loads. While the household loads follow
a daily pattern, with load peaks in the morning and evening, and load valleys in the
night, the heat pump loads are rather on a constant high level over days, mainly
caused by low temperatures. Furthermore, the heat pumps are for the exemplary
illustrated winter weeks up to 8 times higher than the household loads, underlining
the additional stress caused by heat pump installations on distribution grids (Pro-
topapadaki and Saelens, 2017). Overall, through the installation of heat pumps the
peak load in our dataset is raised from 20.1kW to 80.1kW, which represents a fourfold
increase.

In Figure 4.3, the yearly energy community load is illustrated, showing again the
heavy impact of heat pump installations on the load curve, with distinct new peak
loads during winter months. Also, the autocorrelation profile depicted in Figure
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(a)

Figure 4.3.: Yearly aggregated energy community load.

(a)

Figure 4.4.: Autocorrelation of household and heat pump loads.

4.4 shows the differences between heat pump and common household loads. While
household loads are strongly correlated with the same daily hours, heat pump loads
strongly correlate with loads in the previous hours. Potential autocorrelation pat-
terns of future energy communities, including both household and heat pump loads,
rather resemble the heat pump load autocorrelation structure.

The distinct profile of heat pump loads and their difference to the regular household
loads underlines our question if separately forecasting aggregated household and heat
pump loads before summing them might yield an advantage over directly forecasting
the whole energy community loads, due to the different distributions and properties
of the load curves.

Of the presented dataset, we use observations between the beginning of 2019 till the
end of 2020 for our study. The data of 2019 is used for hyperparameter selection, with
the first 6 months being used for training and the last six months for testing. We split
our data half-half during the hyperparameter tuning process, since we want to cover
different seasonalities. Then, the data in 2020 is used for the actual benchmarking of
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the methods, with the previously determined parameters. We use a sliding window
forecast, that trains the models at the beginning of each month based on the last
twelve months. For forecasting the day-ahead hourly loads, features from the past
two days are used, as previously described.

In the following, we present the results of the feature selection process and the sub-
sequent hyperparameter selection, as well as the particular structure of the utilized
models.

4.4.2 Feature selection

After conducting our feature selection process for the household, heat pump and
combined dataset separately, we obtain the resulting feature sets in Table 4.1. We
conduct separate feature selection processes to ensure an unbiased evaluation process
in light of the comparison between individually aggregated or directly combined
energy community load forecasting.

Table 4.1.: Resulting feature sets for different load models. Features that were excluded by
the feature selection process, but were kept in the dataset to maintain temporal
relationships, are marked in brackets (further details in the text).

HH HP Comb

Apparent Temperature ✓ ✓
Apparent Temperature: Rolling Average 24 Hours ✓ ✓ ✓
Apparent Temperature: Rolling Average 48 Hours ✓ ✓ ✓
Past loads (48 hours) ✓ ✓ ✓
Probability of Precipitation ✓
Relative Humidity ✓ ✓ ✓
Temperature ✓ ✓
Wind speed ✓ ✓ ✓
Cosine of hour ✓ (✓) ✓
Sine of hour (✓) (✓) (✓)
Average load at same hour last week ✓ ✓ ✓
Dropped features (e.g. wind direction, ...)

We find differences in relevant features between the different types of loads. For
instance, the cosine of the hour would usually not be included in the heat pump load
dataset, which is instead more focused on temperature features such as the apparent
temperature or the probability of precipitation, which would not be included in the
household and directly combined model. We note that we include the sine and cosine
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of the hour nonetheless (marked in brackets in Table 4.1), to maintain the temporal
relationship between current and past loads for the tree-based models, as explained
in Section 4.3.1.

4.4.3 Hyperparameters and model structure

Based on the previously described Bayesian hyperparameter optimization and se-
lected feature sets, we investigate for each model optimal parameters.

We use the first six months of 2019 for training during the hyperparameter se-
lection process, and evaluate based on the last six months. Through our Bayesian
hyperparameter optimization, we obtain different hyperparameters for heat pump,
household and directly combined loads, as depicted in Table 6.2. The XGBoost pa-
rameter search space is based on Chung et al. (2022) and Wang et al. (2020b), the
Random Forest (RF) search space is based on Walther et al. (2019) and Chung et al.
(2022), the LSTM parameters are based on He and Tsang (2021) and Semmelmann
et al. (2022), and the Transformer search space is based on Hertel et al. (2023).

The LSTM neural network is built with one bi-directional LSTM layer, two dense
layers, from which the second dense layer has half the neurons of the first ones, and
one dropout layer, before one final dense layer with neurons in the amount of the
prediction horizon (in our case 24 hours) (Semmelmann et al., 2022).
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MAPE MAE RMSE R2

Random Forest 12.84 959.35 1362.61 0.74
Random Forest CEEMDAN 15.51 1093.85 1481.39 0.69
XGB 13.11 969.79 1362.03 0.74
XGB CEEMDAN 14.53 1036.19 1421.26 0.71
LSTM 14.08 1041.63 1447.21 0.70
LSTM CEEMDAN 17.12 1161.97 1522.47 0.67
Transformer 13.19 965.39 1352.30 0.74
Transformer CEEMDAN 15.60 1049.55 1373.21 0.73

Table 4.3.: Household load forecasting results for evaluation data set (2020).

4.5 Results
In this section, we present the results of our study. First, reached metrics for

household and heat pump load forecasting are presented. Second, the results of
different aggregation strategies are depicted. Finally, we show the results for the
application of the forecasted loads on the peak shaving case study.

4.5.1 Forecasting results

Table 4.3 displays the results for the forecasting of household loads. Depending
on the metrics the best results are achieved by the Transformer (RMSE, R2) and
Random Forest (MAPE, MAE) model. Although the Transformer model is amongst
the best models, we do not see a remarkably better performance of it over tree-
based models such as the Random Forest. In addition, the CEEMDAN extension
deteriorates the models rather than improving them.

Table 4.4 shows the forecasting results for heat pump-only loads, which differ
strongly from the household-only results. The Transformer models significantly
outperform the alternative models. Based on the MAPE and MAE, the Trans-
former model yields the best results, while based on the RMSE and R2 metric, the
Transformer-CEEMDAN model yields the best results. The CEEMDAN extension
improves the forecast quality for the neural network-based methods while signifi-
cantly deteriorating the tree-based methods. We note that we have compared the
variance of the forecasting results over multiple runs of the underlying methods af-
ter obtaining the initial results, to analyze the uncertainty connected with them, as
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MAPE MAE RMSE R2

Random Forest 52.20 2054.40 2756.48 0.88
Random Forest CEEMDAN 97.54 2985.40 3897.60 0.76
XGB 49.17 2064.44 2817.45 0.88
XGB CEEMDAN 70.06 2617.10 3458.96 0.81
LSTM 70.51 2240.22 2908.37 0.87
LSTM CEEMDAN 49.32 1860.33 2482.39 0.90
Transformer 33.03 1602.49 2280.83 0.92
Transformer CEEMDAN 47.93 1690.77 2226.14 0.92

Table 4.4.: Heat pump load forecasting results for evaluation data set (2020).

depicted in the Appendix. Although we observe a higher standard deviation of the
RMSE of the neural network-based methods, the order of the results remains the
same.

4.5.2 Aggregation level

Table 4.5 presents the results over the aggregation levels and methods. Overall,
the results underline the superiority of the Transformer models: the "Transformer-
CEEMDAN: combined" model achieves the best result for two of four metrics
(RMSE, R2), the "Transformer: separate" model achieves the best results for three
of four metrics (MAPE, MAE, R2). All Transformer models reach the highest ob-
served R2 score of 0.9. While the tree-based methods yielded comparable results
for the household-only case, they are significantly worse when heat pump loads are
added. This has implications for energy community and grid operators: forecasting
models that have achieved good results in the past might not be the most suitable
ones in a future with significant heat pump loads.

We compare the effects of the aggregation level in Figure 4.5. Although separately
forecasting heat pump and household loads and then aggregating the forecast brings
improvements for some methods, especially the best-performing methods only exhibit
negligible performance differences, or even perform better when using the directly
combined aggregation level (Transformer-CEEMDAN).
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MAPE MAE RMSE R2

Random Forest: Separate 16.79 2377.94 3137.00 0.87
Random Forest: Combined 17.24 2466.57 3269.30 0.86
Random Forest CEEMDAN: Separate 25.40 3274.45 4247.91 0.77
Random Forest CEEMDAN: Combined 22.94 3277.46 4478.73 0.74
XGB: Separate 16.48 2375.88 3168.89 0.87
XGB: Combined 16.58 2432.93 3256.33 0.86
XGB CEEMDAN: Separate 20.80 2913.93 3827.78 0.81
XGB CEEMDAN: Combined 21.31 3056.01 4097.77 0.78
LSTM: Separate 18.76 2525.47 3265.96 0.86
LSTM: Combined 17.11 2509.65 3330.41 0.86
LSTM CEEMDAN: Separate 16.47 2314.98 3029.79 0.88
LSTM CEEMDAN: Combined 17.66 2426.39 3167.11 0.87
Transformer: Separate 13.43 2014.11 2743.59 0.90
Transformer: Combined 13.76 2062.61 2776.97 0.90
Transformer CEEMDAN: Separate 16.16 2150.27 2754.22 0.90
Transformer CEEMDAN: Combined 14.95 2089.65 2736.40 0.90

Table 4.5.: Forecasting results for the whole energy community, including household and
heat pump loads, for evaluation data set (2020).

(a)

Figure 4.5.: RMSE per method and aggregation level.



Results 89

(a)

Figure 4.6.: Achieved peak reduction based on day-ahead scheduling of BESS.
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(b)

Figure 4.7.: Peak shaving results on the day with the highest peak load.

4.5.3 Applicability

In the following, we investigate the applicability of the presented forecasts for day-
ahead scheduling of a BESS sized at the hourly peak energy consumption of the year
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before (80.1 kWh). The overall yearly peak reduction, based on the optimization
model detailed in Section 4.3.8, is presented in Figure 4.6. We can again observe
a strong performance of the Transformer-based methods, yielding solid peak reduc-
tions. The highest peak reduction of 5.7kW is achieved with the Transformer model
and the "combined" aggregation level, which represents 57% of the theoretical opti-
mal peak reduction based on a perfect foresight forecast.

On the other hand, models with weak forecasting performance, such as the Ran-
dom Forest CEEMDAN model, yield negligible or even negative peak reductions
through the day-ahead scheduling, underlining the importance of high-quality fore-
casts. We compare peak shaving on the day with the highest peak load with the
method that yields the best peak reduction results (Transformer Combined) and the
worst (Random Forest CEEMDAN Combined) by considering the load curves de-
picted in Figure 4.7. The Random Forest CEEMDAN method forecasts the highest
peak in the afternoon, while the actual peak takes place in the morning. In addi-
tion, the load is consistently underestimated. Consequently, the peak load is not
sufficiently reduced. Although the Transformer model also forecasts an afternoon
peak, the overall load level and timing of peaks is forecasted better. Consequently,
the BESS operation reduces the peak load level. We also observe that the three
methods achieving the highest peak reduction follow the "combined" aggregation
level, thereby delivering another indication that obtaining separate heat pump mea-
surements does not necessarily lead to an operationally relevant improvement of the
forecasting quality.

Although we see a tendency that models with good overall forecasting quality yield
a reasonable decision basis for day-ahead BESS peak shaving scheduling, the "LSTM-
CEEMDAN: Separate" or "Transformer-CEEMDAN: Separate" forecast with indi-
vidually predicted household and heat pump loads raise awareness for potential prob-
lems when relying too much on forecast results. Even though both methods exhibit
a solid forecasting performance, they lead to only limited peak reductions since they
fail to correctly forecast the peak shape on the day with the worst peak load.

4.6 Discussion
The results of our study have implications for energy community and grid re-

searchers and operators. We show that through the installation of heat pumps in



Discussion 91

energy communities, the autocorrelation patterns and peak load magnitudes signif-
icantly change. Based on that, the choice of adequate forecasting methods should
be reviewed and re-evaluated. While for traditional energy communities, tree-based
forecasting models, such as XGBoost or Random Forests, are delivering reasonable
forecasting results, it is not the case anymore when heat pumps are installed. Then,
in our case study, Transformer-based models are significantly outperforming all other
investigated models.

Thereby, we also contribute to the general discussion about Transformer models in
load forecasting: Zeng et al. (2023) find that linear models outperform multivariate
Transformer models for long-term forecasting. However, with a global training strat-
egy, Transformer models outperform linear models and other baselines for short-term
and long-term forecasting (Hertel et al., 2023; Nie et al., 2023; Emami et al., 2023).
On very aggregated load time series, Transformer models can also outperform sev-
eral baselines significantly (Hertel et al., 2022). In our experiments with traditional
household loads, we see no large difference in forecasting quality between the Trans-
former model and tree-based models. However, when investigating heat pump loads
and total energy community loads including heat pumps, the Transformer models
considerably outperform the other models.

We can see a comparable pattern for the CEEMDAN technique, which decom-
poses the load time series in different Intrinsic Mode Functions that are separately
forecasted and later aggregated. While the method does not improve the traditional
energy community forecast, it constitutes one of the best methods for forecasting
loads of heat pumps and energy communities with them.

We can transfer these results also to our application case, in which peak loads
are reduced through an external BESS, based on the forecast of the depicted meth-
ods. The highest peak reductions are consistently reached through the Transformer
method, which also achieved good forecasting results. However, we note that we
only analyzed a limited case study with a given storage size and limited load data.
Hence, future research should also critically evaluate the applicability of load fore-
casts on energy community- and grid operation-related, actual tasks. Although the
forecasting methods that achieve good forecasting metrics also tend to show good
results in the actual peak reduction task, we can also see discrepancies between fore-
cast quality and actual effectivity, for instance through failing predicting the peak
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load. Since most forecasting literature is focused on evaluating common metrics like
the RMSE, without considering an actual use case, we call for a more task-centric
forecast evaluation and the consideration of alternative metrics that might be more
aligned with the task at hand.

Our result that separately predicting aggregated household and heat pump loads
and then summing the forecasts up does not bring a meaningful advantage over
forecasting directly the load of the whole energy community indicates that efforts to
gather separate heat pump data might not be worthwhile. Instead, energy commu-
nity and grid operators should focus on gathering solid load measurements at the
transformer level, which can be used for forecasting models and operational decisions
built upon them. We note that our study is focused on the low-voltage level. It has
to be investigated if our findings hold true for the medium- and high-voltage levels.

Our study is based on the energy community household and heat pump load data
from Schlemminger et al. (2022). The water-to-water heat pumps from the dataset
are operated based on desired household temperature levels, neglecting potential
price-based demand response signals (Klaiber et al., 2015). Through an increasing
level of households with dynamic household prices, the load forecasting uncertainty
could also rise, which should be considered in future studies (Klaiber et al., 2015).
In addition, new heat pump technologies, tariff structures and regulation can lead to
concept drifts that make an adjustment of forecasting models necessary (Gama et al.,
2014). For instance, the German government has announced a new set of rules for
controllable consumer devices – which will be implemented from 1st January 2024
on (§14a EnWG) (Bundesnetzagentur, 2023) – allowing grid operators to reduce
the electricity consumption of heat pumps and electric vehicle chargers down to 4.2
kW during overloading events. Applying these new rules could lead to considerable
changes of heat pump load profiles and an increase in forecasting uncertainty. Also,
we note that the most proliferated type of heat pumps in Germany are air-to-water
ones (Bundesverband Wärmepumpe, 2023), which can exhibit slightly different load
profiles than the water-to-water heat pumps from in the underlying data set. How-
ever, due to comparable heat pump coefficients of performance, we argue that the
heating demand of energy communities with water-to-water and air-to-water heat
pumps – and respective forecasting outcomes – should be comparable (Çakır et al.,
2013).
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Overall, we understand our work as a first step towards the discussion of forecast-
ing energy community loads with heat pumps, which will get increasingly important
over coming years, given the increasing number of heat pump installations (Bun-
desverband Wärmepumpe, 2023). Because of the observed changes in load curves,
novel forecasting methods should be discussed and applied. However, we note that
we have only explored a limited amount of models, given the high number of novel
models published in recent years (Wang et al., 2022c). Hence, we publish large parts
of our study open-source, including the feature engineering and selection steps, the
underlying final data set, the evaluation pipeline, the peak shaving application, the
best-performing methods and our resulting forecast. Thereby, we simplify bench-
marking novel methods against our results and contribute to open-source load fore-
casting research3.

We note that our study has a couple of limitations. The peak shaving application
of our forecasted loads is based on a retrospective simulation, which might neglect
practical factors. We aim to empirically validate our results in further studies. Also,
we focus on forecasting aggregated energy community loads. In further studies, it
might be interesting to analyze the effects of forecasting individual household loads
before aggregation. Furthermore, the underlying dataset includes perfect foresight
weather data, which might lead to slightly overestimating the forecasting quality.
We argue that this does not interfere with the general direction of our results, given
the overall good level of weather data forecasts and that all models are based on the
same data, hence a fair comparison is given.

4.7 Conclusion
Our study investigates the impact of the installation of heat pumps in energy com-

munities on day-ahead load forecasting with a state-of-the-art forecasting pipeline.
The installation of heat pumps leads to remarkable changes in autocorrelation pat-
terns and peak loads of the energy community. This has implications for the overall
load forecasting process. In particular, we find that:

3Our best performing forecasting models, all our feature-engineered and preprocessed data, our
benchmarking pipeline and all our results are published open-source at https://github.com/
leloq/load-forecasting-with-heatpumps. We encourage fellow researchers to benchmark
novel forecasting methods against our results.

https://github.com/leloq/load-forecasting-with-heatpumps
https://github.com/leloq/load-forecasting-with-heatpumps
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• The best-performing forecasting methods change after the installation of heat
pumps. While for traditional energy communities, also tree-based models such
as Random Forests or XGBoost deliver a reasonable forecasting quality, after
installing heat pumps, Transformer-based methods outperform them signifi-
cantly.

• The day-ahead energy community load forecasting quality cannot be notably
increased by obtaining separate measurements of heat pump loads, which would
constitute an additional effort for energy community or distribution grid oper-
ators.

• Transformer-based models are also delivering the best performance in a real-
world peak reduction BESS use case for the investigated energy community
with heat pumps. However, we see a discrepancy between forecasting metrics
and actual results in the application task for some models.

Our findings have practical implications for operators of distribution grids and
energy communities, making a re-evaluation of applied forecasting methods necessary
and advocating against potentially expensive efforts to obtain separate heat pump
load measurements.

We note that our study has some limitations: it is limited to a selected energy
community, the practical application is based on a retrospective simulation and has
not been empirically validated, the underlying data only includes water-to-water heat
pumps, the forecast is based on perfect foresight weather data and only a selection
of forecasting methods were applied.

Hence, we encourage researchers to use our dataset, results and evaluation pipeline,
which we publish open-source, to benchmark novel methods against them to advance
accurate forecasting techniques for loads of energy communities with heat pumps and
to apply our methodology on alternative datasets. We also call for a more task-centric
evaluation of forecasting methods, which might include the introduction of novel
metrics that are more aligned with the application area of the produced forecasts.
Also, future studies should investigate the impact of heat pump installations and
aggregation levels on the forecast quality of the medium- and high-voltage grid, and
empirically validate our results for energy communities and underlying low-voltage
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grids. Further studies should also consider the effect of severe weather events on the
forecasting quality of energy communities with heat pumps.





CHAPTER 5

A NOVEL LSTM-XGB FORECASTING MODEL
BASED ON SMART METER DATA

This chapter introduces a novel hybrid forecasting algorithm that combines an LSTM
model for predicting day-ahead load patterns with an XGBoost-based approach for
correcting peak load forecasts. Additionally, the impact of aggregators’ access to
smart meter load measurements on forecast accuracy is examined. Forecasting peak
loads is important from both an economic perspective due to potential peak demand
charges and a technical perspective, considering the risk of transformer or line over-
loading. The investigation into the role of smart meter data further contributes to
understanding the data retrieval considerations of aggregators.

This chapter comprises the following article: L. Semmelmann, S. Henni and C.
Weinhardt. Load forecasting for energy communities: A novel LSTM-XGBoost hy-
brid model based on smart meter data, Energy Informatics, 2022.

5.1 Introduction
Day-ahead load forecasting is an essential task for grid operators and utilities in

modern smart power systems to optimize balancing groups and to match upcom-
ing demand and supply. Currently, standard load profiles, which are provided by
the German Federal Association of the Energy and Water Industry in every year,
are widely used by grid operators and modelers to approximate energy consumption
(Peters et al., 2020). However, sector-coupled smart grids require improved forecast-
ing methods, since new large consumers, such as heat pumps and electric vehicles,
add significant loads to residential households. In addition, intermittent renewable
generation, especially from photovoltaic, changes traditional load patterns. In smart
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grids, more accurate forecasts could enable an improved management of emerging
flexibility potentials, e.g., from battery storage, electric vehicles and heat pumps.
The emergence of smart meters creates further possibilities in the field of day-ahead
forecasting through the availability of high-resolution load data on household level.
The authors of Zufferey et al. (2016) show with smart meter data from over 10,000
households in Basel, Switzerland, that a higher number of smart meter load profiles
increases the general prediction accuracy significantly.

Improving day-ahead load forecasts also plays a vital role for (smart) energy com-
munities. Energy communities are an emerging concept in research and practice,
where local communities are collectively managing and optimizing their electricity
production and consumption, e.g., through peer-to-peer trading or the joint utiliza-
tion of storage systems (Shrestha et al., 2019; Henni et al., 2021). The importance of
energy communities has been recognized by the European Union who plans to pro-
mote and strengthen decentral structures and has introduced the concept of “Citizen
Energy Communities” in the 2019 Directive on common rules for the internal market
for electricity (Golla et al., 2020; European Parliament and Council of the European
Union, 2019). A central task in these energy communities will be the planning and
management of flexibility potentials and electricity production. By improving com-
munity load forecasts, energy management can be improved, costs can be lowered
and CO2 emissions reduced (Wen et al., 2019; Grundmeier et al., 2014). While (day-
ahead) load forecasting plays an important role on all levels of future smart grids,
we specifically focus on energy communities in this work. A special feature of energy
communities is their level of aggregation within a smart grid. In literature, energy
communities typically consist of usually in between 2 to 500 households: in Coignard
et al. (2021), communities between 2-95 households are analyzed, in Reijnders et al.
(2020), 47 Dutch households are regarded, while Schlund et al. (2018) focus on 500
distributed households within a network section. This makes (day-ahead) load fore-
casting of energy communities based on smart meter data a different task than in
individual households or larger grid sections. In individual households, smart me-
ter data is either available or not, and load profiles may differ significantly from
one household to another. In energy communities, there is already some level of
aggregation which means that standard load profiles could be applied here as a
(naive) forecast. However, the level of aggregation is much lower than in the case of
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grid-level forecasts which can contain 10,000s of households (Zufferey et al., 2016).
(Day-ahead) load forecasting in energy communities therefore deserves special atten-
tion, since the question arises whether smart meter data can be utilized strategically
(e.g., by only installing smart meters in selected households) to improve load fore-
casts. This work thus aims at investigating the potential to improve day-ahead load
forecasting of smart energy communities.

Recent research works like Wang et al. (2019a) have identified bi-directional Bi-
directional long Short-Term Memory recurrent neural networks (Bi-LSTM) as suit-
able method to achieve high load forecasting accuracy. Although Bi-LSTM-based
forecasts often enable high prediction accuracy in general, the forecasting of peak
load hours and peak load quantities remains an important issue, as shown in Sar-
duy et al. (2016) and Liu and Brown (2019). Previous works in the field consider
the forecasting of peak loads and peak load hours as part of the overall forecast-
ing process, instead of separating the forecasting of the general load pattern (e.g.,
through an LSTM) from the explicit forecasting of peak loads. Forecasting peak
loads is especially important for grid operators that have to prevent possible conges-
tion situations in the grid or at transformer stations (Kucevic et al., 2021b). Only
a fraction of existing works in the load foreacasting field incorporates smart meter
data into the (LSTM-based) forecasting process. Furthermore, selection criteria for
smart metered-households are rarely discussed (Haben et al., 2021; Kong et al., 2017;
Ghiani et al., 2019).

In this work, we therefore contribute to the field of community load forecasting
through two extensions of previous works. First, we demonstrate the improvements
that can be achieved by incorporating smart meter data into day-ahead community
load forecasts. We use the concept of feature permutation importance to identify
the most important features for the training of a LSTM. This information could
potentially be used to install smart meter infrastructure selectively by targeting the
most relevant households for the community forecast. Second, we tackle the short-
comings regarding the incorporation of accurate peak load forecasting in previous
works by proposing a hybrid bi-directional LSTM-XGBoost forecasting model. In
the hybrid model, we deploy a LSTM which is suitable to accurately predict the
general trend of aggregated community load. We then separately forecast peak load
time and quantity with an XGBoost model using on smart meter data. Lastly, we
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combine the peak load forecast with the LSTM-based general forecast to obtain a
holistic community load forecast. Also, cyclical type-of-day features, such as the sin

and cos transformation of the hour, are engineered to further improve the forecast
quality without requiring additional data as demonstrated in Haben and Giasemidis
(2016).

We therefore aim to investigate (i) if smart meter data can improve existing LSTM
load forecasting models of energy communities and (ii) whether the problem of insuf-
ficient peak forecasts can be tackled with a novel hybrid model. The contributions
of this work are thus threefold:

1. A bi-directional LSTM-based model for the forecast of the aggregated load of
an energy community using individual and aggregated smart meter data as
input.

2. The identification of the most important forecast input features in terms of
type-of-day data as well as smart meter data of individual households using
feature permutation.

3. A novel hybrid LSTM-XGBoost approach is proposed to incorporate accurate
peak load forecasting and to improve overall accuracy of existing day-ahead
aggregated load forecasting methods.

The remainder of this study is structured as follows. The first section covers the
theoretical background of LSTM-based day-ahead load forecasting and XGBoost.
The second section describes the methodology of this study and additional feature
engineering steps that were undertaken. The third section describes the underlying
dataset and the setup of the case study in which we demonstrate the developed
methodology. The fourth section gives an overview of the results, whereas the fifth
section discusses the findings of the case study. The final section summarizes the
results and gives an outlook on further research directions in the field.

5.2 Theoretical Background
Day-ahead load forecasting has been a relevant topic in research for years. A tra-

ditional approach is the Autoregressive moving average (ARIMA) method, mostly
combined with other methods like the lifting scheme (Lee and Ko, 2011), generalised



Theoretical Background 101

autoregressive conditional heteroscedasticity (Hor et al., 2006) or artificial neural
networks (Dube et al., 2017). More recent works have shown the good applicabil-
ity and performance of LSTMs for day-ahead forecasting problems (Kong et al.,
2017). LSTMs, which were first introduced by Hochreiter et. al. in Hochreiter and
Schmidhuber (1997), are based on Recurrent neural networks (RNNs). RNNs are
sequence-based networks that can establish temporal correlations between previous
and current information. This makes RNNs suitable for load forecasting problems,
since upcoming loads often depend on daily patterns and routines as well as past load
data. In Bouktif et al. (2018), France’s metropolitan electricity loads are forecasted
with a combined model of LSTMs and genetic algorithms for feature selection and
hyperparameter tuning. The forecasting error, compared with an ExtraTree model,
can be reduced by over 20%. In Jiao et al. (2018), LSTMs are used to forecast the
electricity consumption of 48 non-residential consumers. By using LSTMs, a Mean
absolute percentage error (MAPE) in the amount of 22.45% is reached. In compar-
ison, with the traditional ARIMA method only a MAPE of 35.87% is achieved. As
stated in Bouktif et al. (2020), it is important to find the right combination of LSTM
hyperparameters in order to achieve accurate load forecasting results.

Load forecasting in energy communities is a special form of day-ahead load fore-
casting due to the level of load aggregation. For instance, the authors of Coignard
et al. (2021) evaluate energy community load forecasts from 2 to 95 households. Fur-
thermore, in Coignard et al. (2021), the importance of peak-load hour forecasts is
emphasized in energy communities since, through accurate forecasts, the scheduling
of battery storage systems and flexible loads can be optimized for high self-sufficiency
rates.

Another recent development in machine learning is the so-called Extreme gradient
boosting (XGBoost), which was introduced by Chen and Guestrin (2016). XGBoost
is an efficient implementation of gradient boosting that is based on parallel tree learn-
ing and efficient proposal calculation and caching for tree learning. The XGBoost
algorithm has found a wide variety of use cases, also in the context of energy sys-
tems research. In Zheng and Wu (2019), the framework is used for short-term wind
power forecasting. In Wang et al. (2017), next month’s electricity consumption is
forecasted through a hybrid wavelet transform and XGBoost model. The first works
have also combined XGBoost with day-ahead load forecasting models. For instance,
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in Wang et al. (2021), an adaptive decomposition method is used together with an
XGBoost-based regression model to forecast loads of industrial customers in China
and Ireland. The authors of Li et al. (2019) separately forecast day-ahead loads
through an LSTM neural network and XGBoost. Subsequently, an error-reciprocal
method is used to combine the forecasts. However, both methods are used for a gen-
eral load forecast instead of focusing the XGBoost forecast on peak loads. Previous
works like Shwartz-Ziv and Armon (2022) have shown that XGBoost outperforms
neural networks for regression and classification tasks on tabular data.

Several studies have shown that LSTM models accurately capture temporal de-
pendencies but often underestimate peak values (Karimian et al., 2019; Feng et al.,
2020). Hence, this study combines the LSTM day-ahead forecast, which generally
depicts the temporal structure of the load, with a XGBoost forecast of peak load
times and quantities. To our knowledge, no studies have pursued this approach so
far.

In machine learning, feature importance measures help to better understand rele-
vant inputs. A commonly used method for feature importance analysis is the permu-
tation importance measure, which was introduced by Altmann et al. (2010). In this
method, the decrease of prediction accuracy is measured after permuting input fea-
tures. Thereby, a permutation importance score can be calculated for every feature
to assess its importance for the model.

Building on these previous findings, we first develop a LSTM-based day-ahead
forecast model and identify the most important input features in terms of easy-
to-observe and smart-meter data using permutation importance. We then expand
previous models by introducing an XGBoost model for forecasting both peak load
time and quantity and combine the two approaches into one holistic hybrid model
to improve overall accuracy of day-ahead aggregated load forecasts of energy com-
munities.

5.3 Methodology
In this section, we describe our methodology for smart meter data-based LSTM

forecasting of day-ahead aggregated community loads. An overview of the research
framework of this study is depicted in Figure 9.1. In the following, we describe each
component of the framework in detail.
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Figure 5.1.: Proposed research methodology.

Input data and type-of-day features. In a first step, the underlying smart
meter data is preprocessed to create additional input features and to create the
aggregate load of all smart meters , which serves as target variable. The aggregate
load at time t can be calculated by summing up every load Pn,t of all smart metered
households: Pagg,t =

∑N
n=1 Pn,t.

As shown in Kanda and Veguillas (2019), adding additional type-of-day features
to the underlying dataset can improve the general forecasting accuracy. Type-of-day
features in this work include variables for the weekday, hour and month. To achieve
periodicity for type-of-day variables, sinusoidal transformation is used as described
in Haben and Giasemidis (2016). Also, a binary variable for weekends is added.

Data preprocessing. For the use of LSTM neural networks, the input data has
to be preprocessed first. Every input feature I can be seen as a sequence of data
points for the past timesteps, as stated in Equation 5.1:

I = {it−K , . . . , it−2, it−1} (5.1)

In our case, represents the amount of timesteps per day in the underlying dataset.
Due to the sensitivity of LSTMs to the data scale, all input vectors are normalized
to the range of (0,1) by min-max-normalization. The input matrix for the forecast
of any day d in the dataset consists of all input features I :

Xd = {I1, I2, ...} (5.2)
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LSTM model. LSTMs are a special form of Recurrent neural networks (RNN),
which solves the problem of exploding and vanishing gradients by adding a memory
cell and gate (Wang et al., 2019a). Thereby, long-distance relationships between
elements in sequence data can be processed. To create these temporal relationships,
the LSTM defines and maintains a memory cell state over its life cycle. Three
different types of timing modules exist in LSTMs: an input gate, a forget gate and
an output gate. In turn, every timing module maintains its own memory cell and has
its own task. The input gate is used to process incoming information, the forget gate
decides about information retention of the historical cell state and the output gate
processes outgoing information. The decision about information affecting the cell’s
state can be made selectively by using sigmoid activation functions. The output of
the gates lies between 0 and 1. Thereby, a decision is made about the amount of
information that is passed through the respective structure. A recent advance of
LSTMs are Bi-directional long Short-Term Memory recurrent neural networks (Bi-
LSTM), which can process both past and future information. In contrast, traditional
LSTMs can only work with one-way transmission of information. Several works
have shown that Bi-LSTM neural networks outperform traditional LSTMs in load
forecasting problems (Wang et al., 2019a; Atef and Eltawil, 2020). Hence they are
preferred over traditional LSTMs in this work. The unfolded structure of a Bi-LSTM
is depicted in Figure 5.2.

Figure 5.2.: Structure of Bi-LSTM network that both processes past and future information

The bi-directional LSTM layer in this study is followed by a dense layer, another
bi-directional LSTM layer, two dense layers and a dropout layer to prevent overfitting
(Tang et al., 2019).

LSTM hyperparameter tuning. To achieve a good combination of computa-
tional effort and accuracy, a randomized grid search is conducted for hyperparameter
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tuning based on Wang et al. (2019b). The parameters listed in Table 6.2 represent
the parameter search space, 100 runs are conducted with new random combinations
of hyperparameters. The parameters for the search space itself are defined based on
existing studies that use LSTM neural networks for load forecasting (Kong et al.,
2017; Muzaffar and Afshari, 2019; Zheng et al., 2017; Bouktif et al., 2018; Jiao et al.,
2018; Bouktif et al., 2020; Jahangir et al., 2020).

Hyperparameter Value
Past input timesteps as multiple of 1, 2, 3

Batch size 32, 64
Epochs 50, 75, 100

Steps per epoch 75, 100, 125, 150, 200
Learning rate 0.1, 0.01, 0.005, 0.001

Number of units in LSTM-layer 20, 70, 130, 200, 260
Number of units in dense layers 20, 70, 130, 200, 260

Table 5.1.: In each run, a random combination of hyperparameters is tested.

Feature importance. Since this paper also aims to improve the general under-
standing of LSTM neural networks for energy community forecasting, the importance
of the respective input features is investigated. Therefore, the measure importance
Permutation importance (PIMP) is used, which was introduced by Altmann et al.
(2010). The permutation feature importance metric is deployed in many load fore-
casting studies and is model-agnostic (Huang et al., 2016; Lahouar and Slama, 2015).
To evaluate the importance of a certain feature I through permutation importance,
its values are randomly shuffled to create a permuted input vector Iξ. Now, the
decrease in prediction accuracy in terms of MAPEIξ is compared to the MAPE of
the unpermuted baseline model, as stated in Equation 5.3:

PIMPI = MAPEI,ξ −MAPE (5.3)

A higher PIMPI means the model gets worse through a randomization of feature
I, which indicates a higher feature importance.

XGB feature engineering. Previous studies on LSTM-based aggregated day-
ahead load forecasting have shown improvements over alternative methods. However
they are less well suited to predict varying peak load times and (extreme) peak
quantities, as a time series forecast will always try to predict an expected value
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rather than extreme events. To improve the accuracy of peak load prediction within
our day-ahead aggregated load forecast, we therefore rely on a classification approach
that specifically predicts peaks. We divide the task of peak load forecasting into two
sub-tasks: predicting the time and quantity of the next day’s peak load. Therefore,
two XGBoost models are separately trained to forecast peak load quantities and
times. For the model input, the whole data set of smart meter loads is reduced to
daily load indicators. Each day d is depicted as vector of consecutive timesteps t,
thus d = [t1, . . . , tK ].

The two target variables and are calculated for every day d. In Equation 5.4,
the peak load is obtained by getting the highest load Pt,d,agg on day d:

Pmax,d,agg = Max(P1,d,agg, . . . , PK,d,agg) (5.4)

In Equation 5.5, the peak time is obtained by getting the time step of the previ-
ously determined Pmax,d,agg:

tPmax,d,agg
= t(Pmax,d,agg) (5.5)

Then, for every day d a range of statistical measures is calculated, as noted in Table
5.2, based on the previous day d− 1 or up to 21 previous days d− 1, . . . , d− 21. In
detail, maximum loads, minimum loads, mean loads, median loads and load standard
deviations are regarded. The subscript n denotes input features that are derived
for each individual household in the respective community, whereas the subscript
agg denotes that the input features are derived based on the aggregated energy
community load. For the peak time tPmax forecasting model, also the peak times of
the 20 smart metered households with the largest annual energy consumption, Nlarge,
are regarded for the past 21 days. Only the 20 largest households are regarded due
to computational limitations.
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Feature tPmax input data Pmax input data
Pmax,d−1,n ∀ n ∈ N Yes Yes
Pmin,d−1,n ∀ n ∈ N Yes Yes
Pmean,d−1,n ∀ n ∈ N Yes Yes
Pmedian,d−1,n ∀ n ∈ N Yes Yes
Pσ,d−1,n ∀ n ∈ N Yes Yes
tPmax,d−1,agg

, . . ., tPmax,d−21,agg
Yes No

tPmax,d−1,n
, . . ., tPmax,d−21,n

∀ n ∈ Nlarge Yes No
Pmax,d−1,agg, . . ., Pmax,d−21,agg No Yes
Pmax,d−1,agg No Yes
tPmax,d−1,agg

Yes No

Table 5.2.: Features for XGBoost datasets

XGBoost model. XGBoost was introduced by Chen and Guestrin (2016). The
approach builds upon gradient tree boosting algorithms, which are extended by a
second-order Taylor expansion for a faster optimization process and to avoid over-
fitting. Previous works have shown that the XGBoost algorithm can be well applied
for load forecasting tasks. For instance, the authors of Wang et al. (2021) apply
XGBoost to the load forcasting of industrial customers in Ireland and China.

XGBoost is based on an ensemble of Classification and Regression Tree (CART),
which are used as weak learners. Weak learners are usually performing slightly better
than random guesses in classification and prediction tasks and are modified over the
iterations of the optimization process to form a well-performing ensemble model.
The prediction for sample i is defined by Equation 5.6,

ŷi =
M∑

m=1

fm (i) (5.6)

where M is the number of Classification and Regression Trees, and fm(i) is the
forecasted value for the sample i in tree m. The underlying objective function is
introduced in Equation 5.7:

Obj =
∑
i∈Ij

l (yi, ŷi) +
M∑

m=1

Ω (fm) (5.7)

where Ij is the set of all samples in leaf j and l is the second-order loss function
that measures the difference between predicted value ŷi and actual value yi. The
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regularization term , as defined in Equation 5.8, consists of the number of leaf nodes
T . The score of leaf j is measured by wj. γ and β are parameters of the tree:

Ω (fm) = γT +
1

2
β

T∑
j=1

w2
j (5.8)

The structure of the Classification and Regression Trees and exact split points
are determined by the quadratic objective function, which is simplified through the
aforementioned second-order Taylor expansion, as noted in Equation 5.9:

Obj =
T∑

j=1

∑
i∈Ij

gi

wj +
1

2

∑
i∈Ij

hi + β

w2
j

+ γT (5.9)

where gi is the first derivative of the loss function and hi is the second derivative.
The quadratic equation 5.9 is solved to obtain the leaf node score :

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + β
(5.10)

As a scoring function , Equation 5.11 is introduced to evaluate the quality of the
tree structure q:

L̃(t)(q) = −1

2

T∑
j=1

(∑
i∈Ij gi

)2∑
i∈Ij hi + β

+ γT (5.11)

Finally, to determine the tree structure and splitting decisions , a greedy algorithm
is used that starts with one leaf and then iteratively adds branches, as noted in
Equation 5.12:

Lsplit =
1

2

[ (∑
i∈IL gi

)2∑
i∈IL hi + β

+

(∑
i∈IR gi

)2∑
i∈IR hi + β

−
(∑

i∈I gi
)2∑

i∈I hi + β

]
− γ (5.12)

where IL are sample sets of left nodes and IR are sample sets of right nodes. Given
that I = IL∪ IR, the loss reduction after a split is denoted by Lsplit. Through Equa-
tion 5.12, possible split candidates are evaluated. For a more detailed explanation
of the XGBoost algorithm, we refer to Chen and Guestrin (2016).

Based on the previously introduced approach, two separate XGBoost models are
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trained to forecast and . Since forecasting is a classification problem, the Receiver
Operating Characteristic Curve (ROC AUC) is used as optimization metric. For the
forecasting model of , the Mean squared error (MSE) is used as optimization metric,
since this is a regression task.

The parameters of the XGBoost model are also determined through a hyperpa-
rameter search, based on parameters from Zheng et al. (2017); Wang et al. (2021);
Li et al. (2019). The parameter search space is described in Table 5.3. Parameters
are separately determined for the peak time and peak load model. In total, 1000
runs are conducted per model.

Hyperparameter Space Distribution
N estimators [40,1000] Randint
Max depth [1, 100] Randint

Learning rate [0.01, 0.59] Uniform
Subsample [0.3, 0.6] Uniform

Colsample bytree [0.5, 0.4] Uniform
Min child weight [0.05, 0.1, 0.02,1, 2, 3, 4] None

Gamma [0,0.5,2,10] None

Table 5.3.: Hyperparameter search space.

Hybrid LSTM-XGB model. After forecasting and with the XGBoost model,
the results have to be incorporated into the LSTM forecast, which is a vector of
forecasted loads : {P̂1, . . . , P̂k, . . . , P̂K}. For readability, we simplify the outputs of
the XGBoost prediction as tXGB = tPmax,d and PXGB = Pmax, d.

The most straightforward approach would be to simply replace the value of the
original LSTM load forecast, ˆ̂

kP at time step k = tXGB with the predicted peak load
quantity P̂XGB. However, this bears the risk that in case the peak load time has not
been predicted correctly, the prediction will extremely overestimate the true load.
We therefore scale down the predicted peak load by a parameter λ ∈ [0,1]. In our
case, we set λ = 1

2
and calculate the new peak value according to Equation 5.13.

P̂tXGB
= P̂t +

1

2
(P̂XGB − P̂t) (5.13)

Since load peaks are usually patterns of subsequent, elevated loads, in Equation
5.14 also the previous load and subsequent load are adapted by a quarter of the
difference between the XGB and LSTM-based peak load forecast:
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P̂tXGB−1 = P̂t−1 +
1

4
(P̂XGB − P̂t) P̂tXGB+1 = P̂t+1 +

1

4
(P̂XGB − P̂t) (5.14)

Thereafter, the adjusted values are inserted into the forecasting vector:

{P̂1, . . . , P̂tXGB−1, P̂tXGB
, P̂tXGB+1, . . . , P̂k, . . . , P̂K} (5.15)

Performance evaluation. Finally, the forecasting performance is evaluated by
the most commonly used metric in day-ahead forecasting, the Mean absolute per-
centage error (MAPE). The MAPE divides the sum of percentual deviations from
the forecasted loads Pft by the actual loads Prt with the number of time steps , as
described in Equation 7.2:

MAPE =
1

K

K∑
t=1

∣∣∣∣Pft − Prt

Prt

∣∣∣∣× 100 (5.16)

As a second metric, the Root-mean-squared error is used, which is the root of the
mean squared error from Pft and Prt, as denoted in Equation 5.3:

RMSE=
√

1
n

∑n
i=1 |Pft − Prt|2(5.17)

In this work, the MAPE is calculated for all forecasted day-ahead loads as well as
only for the highest forecasted load, averaged over all days in the test data set. For
the general load forecast, also the RMSE metric is regarded. Through this, we can
assess both overall load forecast quality and the peak load forecasting capabilities of
our model.

In order to achieve more stable and unbiased results, the dataset is further split
with a twelvefold-cross-validation, where every split represents 30 days (Burman,
1989). To achieve comparable results within splits and even-sized train-validation-
test sets, the dataset is shifted for 30 days in every iteration.

In the following, we apply the developed methodology to a case study in order
to demonstrate the achievable improvements in energy community load forecasting
through our developed model.
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5.4 Case study
In this section, the setup of our study is described. In particular, the underlying

dataset is described, the results of the LSTM and XGBoost hyperparameter tuning
are presented and the four forecast scenarios are introduced.

Dataset. The introduced method is evaluated based on a dataset of German
smart meter household data from 2019 published by Beyertt et al. (2020). The
dataset includes 200 households that agreed on the publication of their loads, and
70 households participated in a behavioral experiment. The data of the remaining
130 households is used in this study. The households from the study are distributed
all over Germany, which prevents us from adding geographically dependent weather
features to the data set. The calculated aggregated load of all 130 households rep-
resents the load of a hypothetical energy community. In Table 5.4, the dataset is
described. In Figure 5.3, an exemplary load of the energy community is depicted.
We can observe a repeating pattern of load peaks in the morning and evening and
load valleys in the night. The households in the dataset are relatively small with a
mean annual household consumption of 779kWh.

The number of households in the energy community constructed in this paper lies
within the range of community sizes from existing studies. In Coignard et al. (2021),
the communities are randomly sampled with 5 to 95 households with 4MWh annual
consumption each, resulting in an aggregated load between 20MWh to 380MWh.
In a case study from Heeten, Netherlands an energy community of 47 households is
depicted, with a calculated energy usage of 164.500kWh per year (Reijnders et al.,
2020). In Schlund et al. (2018), different configurations of up to 500 distributed
households are regarded.

The dataset is split in twelve parts for the twelve-fold cross-validation. The first
252 days (36 weeks) of data serve as training data, the following 83 days (11.86
weeks) for validation and the remaining 30 days (4 weeks) as test data, representing
approximately one month each. After every iteration, the dataset is shifted by 30
days. Therefore, our train-validate-test split is 70%, 23% and 7%.

LSTM model. The proposed LSTM is set up based on best practices from
existing research (Kong et al., 2017; Muzaffar and Afshari, 2019; Zheng et al., 2017;
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Parameter Value
Time covered 01.01.2019 - 31.12.2019
Time resolution 15 min
Smart-metered households (N) 130
Minimum annual household consumption 116.65kWh
Maximum annual household consumption 2011.03kWh
Mean annual household consumption 779.91kWh
Aggregated annual load of energy community 101.4 MWh
Mean load of energy community 11.57 kW
Minimum load of energy community 4.92 kW
Maximum load of energy community 31.57 kW

Table 5.4.: Descriptive statistics about the underlying dataset.

Figure 5.3.: Aggregated energy community load from 07.01.2019 to 14.01.2019.

Bouktif et al., 2018; Jiao et al., 2018; Bouktif et al., 2020; Jahangir et al., 2020).
Several optimizers are compared (SGD, Adagrad, RMSProp, Adam). Due to slightly
better results, the Adam optimizer is used. For improved computational efficiency,
training is stopped early when no further improvements in valuation loss can be
observed. The final LSTM parameters obtained from the hyperparameter search are
listed in Table 5.5.

The models are trained and evaluated on a Google virtual machine with 8 virtual
CPUs and 64 GB RAM. The LSTM neural networks are realized with the help of
the TensorFlow toolkit (Abadi et al., 2016).

XGBoost. To find the optimal parameters for the XGBoost models for peak
time and peak load forecasting, a hyperparameter search has been conducted. The
resulting parameters are listed in Table 5.6.
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Parameter Value
Optimizer Adam
Time steps per day 96
Past input timesteps as multiple of 1
Batch size 64
Epochs 75
Steps per epoch 200
Learning rate 0.001
Number of units in LSTM-layer 200
Number of units in dense layers 130

Table 5.5.: Final LSTM parameters.

Parameter Value peak time model Value peak load model
N estimators 87 929
Max depth 41 96

Learning rate 0.18 0.43
Subsample 0.88 0.46

Colsample bytree 0.75 0.88
Min child weight 4 0.05

Gamma 10 2

Table 5.6.: Final XGBoost parameters for peak time and peak load model.

Scenarios. In this work, four different scenarios are compared. Standard load
profiles (SLP) for the year 2019 are used as baseline case, obtained from Stromnetz
Berlin GmbH (2019). The standard load profiles are scaled proportionally to the
aggregated energy community load (Meier, 2000). In a second scenario, the LSTM
is used to forecast day-ahead energy community loads, with the only input features
being day-before aggregated energy community load and type-of-day features as
inputs, such as the sin and cos of the hour, weekday or month. The second scenario
is in the following, denoted as LSTM. In the third scenario, we add the smart metered
loads of the last day of each household of the 130 consumers (LSTM SM). Finally,
in the fourth scenario, we combine the results of the third scenario with the XGB
peak load finetuning (LSTM SM XGB). All four scenarios and the respective input
datasets are summarized in Table A.2.
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Scenario Standard Load Profiles LSTM Smart Meter Data XGB Finetuning

SLP Yes No No No
LSTM No Yes No No
LSTM SM No Yes Yes No
LSTM SM XGB No Yes Yes Yes

Table 5.7.: Summary of datasets and included data.

5.5 Results
In this section, we describe and compare the results of the four introduced scenar-

ios. We also evaluate the standalone performance of the XGBoost model and present
the results of the permutation feature importance analysis.

In Figure 5.4, the day-ahead forecast for October 17 2019, a weekday, is displayed
for the standard load profiles (SLP), the general LSTM model (LSTM) and the
LSTM model with smart meter data (LSTM SM). We can observe that both the
LSTM and LSTM SM manage to forecast the general load pattern quite well, whereas
the SLP overestimates the actual load profile on this certain day. When we also take
the day-ahead forecasts of other days into account, we can see that the SLP follows
a rather generic pattern, that only manages to match the daily load irregularly. We
also note that the LSTM SM forecasts the day-ahead loads slightly better than the
LSTM.

Figure 5.4.: Day-ahead forecasts for 2019-10-16
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Before its integration into the LSTM model, the peak load and peak time fore-
casting performances of the XGBoost model are compared to a forecast based on
historical values. The XGBoost model is compared with a day-ahead forecast based
on the peak load and peak time of the same day in the week before. For the eval-
uation, a twelvefold cross-validation is conducted in the same way as described in
the previous chapter. For the peak load forecast, the averaged XGBoost MAPE
over the twelvefold cross-validation (M = 7.75, SD = 1.35) compared to the aver-
aged MAPEs of the forecast through week-before peak loads (M = 9.65, SD = 1.45)
demonstrated a significant improvement, t(20) = 3.2, p = .005. For the peak time
forecast evaluation, the amount of correctly forecasted peak times is compared first.
Again, comparing the averaged matches of the XGBoost peak time forecast (M =
2.82, SD = 1.54) with the matches of the forecast with week-before values (M =
1.55, SD = 1.37) yields a significant improvement, t(20) = -2.05, p = .05. As final
metric, it is counted how often the forecasted peak time is amongst the five highest
day-ahead load time steps. Comparing the averaged top five occurrences through
the XGBoost model (M = 19.27, SD = 3.26) and the top five occurrences through
the week-before forecast (M = 16.64, SD = 3.32), a slightly significant improvement
can be observed once again, t(20) = 1.87, p=.07.

After evaluating the standalone performance of the XGBoost model, the forecast
of the hybrid LSTM-XGBoost model is depicted in Figure 5.5. For this exemplary
day it can be seen how incorporating the XGBoost-based peak load and peak time
forecast can improve the overall forecast quality.

The results of the twelvefold cross-validation of the four scenarios are depicted in
Table A.2 and Table 5.9. We can observe that, on average, the LSTM SM XGB
outperforms all other models regarding overall MAPE. Compared with the LSTM
SM, an average improvement of 0.14 percentage points is achieved. Within the test
period between the 28.10.-26.11., the LSTM SM XGB model manages to improve
the accuracy by 0.4 percentage points compared to the LSTM SM model. Another
remarkable observation is that adding individual smart meter data as additional
input data significantly improves the model. Compared to the simple LSTM model,
LSTM SM reaches a MAPE of 16.95 compared to 21.64 without smart meter data,
an improvement of 4.69 percentage points. Only in the second evaluated period
did the LSTM model perform better than the LSTM SM. All models consistently
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Figure 5.5.: Day-ahead forecast for 2019-10-16

Evaluated MAPE (overall) [%] / RMSE (overall)
Period SLP LSTM LSTM SM LSTM SM XGB

01.01 - 30.01. 24.85 / 3.52 19.63 / 3.70 18.25 / 3.27 17.98 / 3.23
31.01. - 01.03. 25.64 / 3.87 19.42 / 3.20 25.35 / 3.87 25.04 / 3.83
02.03. - 31.03. 24.05 / 3.94 17.82 / 2.79 11.18 / 2.14 11.04 / 2.11
01.04. - 30.04. 24.95 / 3.97 25.63 / 3.00 19.40 / 2.83 19.13 / 2.79
01.05. - 30.05. 28.03 / 4.71 24.81 / 2.84 23.57 / 2.79 23.61 / 2.79
31.05. - 29.06. 27.53 / 4.78 28.50 / 3.33 10.71 / 1.60 10.70 / 1.59
30.06. - 29.07. 27.76 / 4.81 16.69 / 1.96 11.00 / 1.41 11.15 / 1.43
30.07. - 28.08. 27.01 / 4.87 23.68 / 2.60 20.41 / 2.35 20.39 / 2.35
29.08. - 27.09. 28.64 / 4.90 21.61 / 2.68 17.36 / 2.06 17.40 / 2.06
28.09. - 27.10. 27.19 / 4.46 16.89 / 2.19 11.29 / 1.73 11.20 / 1.71
28.10. - 26.11. 21.50 / 3.21 17.38 / 2.52 15.39 / 2.74 14.99 / 2.67
27.11. - 26.12. 26.20 / 3.71 27.63 / 4.13 19.52 / 3.36 19.16 / 3.30
Average 26.11 / 4.23 21.64 / 2.91 16.95 / 2.51 16.81 / 2.49

Table 5.8.: MAPE and RMSE results by periods, for overall forecasting accuracy

outperform the SLP. The outperformance of the LSTM SM XGB model is confirmed
by the RMSE metric.

Furthermore, we evaluate the MAPE of forecasted peaks. Again, the LSTM SM
XGB outperforms all other models. In comparison with the LSTM SM, an improve-
ment of 3.55 percentage points is reached on average. In 9 out of 12 months, the
LSTM SM XGB outperforms the other models in terms of overall MAPE. In 8 out of
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Evaluated MAPE (forecasted peak) [%]
Period SLP LSTM LSTM SM LSTM SM XGB

01.01 - 30.01. 33.71 22.86 14.64 9.22
31.01. - 01.03. 33.91 20.04 10.36 10.2
02.03. - 31.03. 38.99 14.75 17.02 12.27
01.04. - 30.04. 43.61 13.19 13.62 11.45
01.05. - 30.05. 68.92 25.7 26.99 23.24
31.05. - 29.06. 69.35 37.44 9.61 10.11
30.06. - 29.07. 71.47 19.48 13.80 19.04
30.07. - 28.08. 82.33 36.48 31.64 27.42
29.08. - 27.09. 72.80 36.32 22.98 18.99
28.09. - 27.10. 60.94 18.05 12.61 9.72
28.10. - 26.11. 33.02 12.97 20.54 10.09
27.11. - 26.12. 30.87 11.44 22.03 11.52

Average 53.33 22.39 17.99 14.44

Table 5.9.: MAPE results by periods and accuracy of forecasted peaks

12 periods, the LSTM SM XGB forecasted peak MAPE outperforms the other mod-
els. Once again, we can observe that adding smart meter data (LSTM SM) improves
the forecast accuracy from a MAPE of 22.39 to a MAPE of 17.99, which reflects an
improvement of 4.4 percentage points. Most notably is the improvement in peak
forecast accuracy compared to the SLP, with an improvement of 38.89 percentage
points between SLP and LSTM SM XGB.

As the addition of individual smart meter data significantly improved the overall
community forecast performance, we are interested in finding out which features,
and especially which households’ smart meter data, is important to improve forecast
quality. This information could be used to identify characteristics of households in
which it is particularly helpful for forecasting tasks to install smart meters.

The Permutation importance (PIMP) for the LSTM SM are depicted in Figure
5.6. We can observe that the aggregated energy community load (sum) is by far the
most important feature. Further important features are the sin and cos transformed
hour and day, as well as the binary variable for weekends. Also, the loads of selected
customers are important input features for the LSTM. While the feature importances
of the households seem relatively low in comparison to the sum and the cyclical
features, we know from the results in Table 8 and 9 that the addition of smart meter
data leads to significant improvements and therefore even though seemingly small,
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these feature importances should not be neglected. Most of the households with a
high feature importance are also households with relatively high annual electricity
consumption. For instance, household 147 is the fourth largest household amongst
the 130 smart metered households with an annual electricity consumption of 1,700
kWh. Household 177 is the 8th largest household with an annual consumption of
1,448kWh, household 181 is 11th with 1,352kWh annual consumption. However,
there are also several households with high feature importances that do not belong
to the largest households.

Figure 5.6.: Average feature importances for smart meter-based LSTM (LSTM SM)

5.6 Discussion
In this section, we discuss the results presented and their implications for day-

ahead load forecasting in energy communities. The study was conducted with load
data from a limited number of German households. Hence, it has to be investigated
if the results of this study still prove valid in communities with a higher number of
smart metered households, as well as data from other countries and differing com-
munity configurations. Also, we were not able to include weather data as an input
feature due to the geographic distribution of the households from the underlying
dataset. This leaves opportunities for further research. In the following, we discuss
two aspects of our work in particular.



Conclusion 119

First, we observe that the addition of smart meter data in energy communities
can significantly improve the day-ahead forecasting accuracy of energy communities
in our case study. This confirms the results of Zufferey et al. (2016), where also a
higher accuracy in aggregated load prediction was reached by increasing the number
of smart meters. Hence, we suggest to consider the installation and implementation
of smart meters in the planning process for energy communities. Our results indicate
that selected households contribute more to improving forecasting quality than oth-
ers. For instance, households with a larger annual consumption seem to have a larger
impact on the forecast than smaller households. Still, this does not hold true for all
households with a high feature importance. Thus, further research has to focus on
identifying characteristics of households that improve the forecasting quality. With
this information, grid operators and energy community managers could selectively
install smart meters to optimize their day-ahead forecasting model.

Our feature importance analysis showed that the most important factor for fore-
casting day-ahead loads of energy communities is the past aggregated energy com-
munity load itself. It has to be noted that engineered type-of-day features, such as
the sin and cos transformation of the hour, are by far the second most important
input features. Hence, we strongly propose that coming works in the field of load
forecasting also include sin and cos transformed type-of-day features.

Second, we introduce a novel hybrid LSTM-XGBoost model that enables improved
peak load forecasts by separately forecasting the general load pattern and peak loads.
To our knowledge, we are the first ones to propose peak load time and quantity
forecasting through a dedicated XGBoost model and to combine an LSTM and
XGB forecast into a holistic model. By using the hybrid LSTM-XGBoost model, we
can improve the overall model performance and peak forecasting performance in our
study. In addition, we propose that further research also evaluates the performance
of a hybrid peak load forecasting XGBoost model in combination with other recent
proposed algorithms like temporal attention-based convolutional networks Tang et al.
(2022) or federated learning Fekri et al. (2022).

5.7 Conclusion
In this paper, we propose a framework for smart meter-based day-ahead forecasting

in energy communities with bi-directional LSTM neural networks and a combined
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LSTM-XGBoost model. Furthermore, we contribute to the general understanding of
important input features in smart meter-based energy community load forecasting.
We can draw three main conclusions.

First, our results confirm that the LSTM-based models achieve significantly higher
accuracy than forecasting based on standard load profiles. In addition, using smart
meter data as additional input further improves the accuracy of forecasting in our
case study.

Second, the novel hybrid LSTM-XGBoost manages to further increase the fore-
casting accuracy of smart meter-based models, especially in terms of peak load fore-
casting.

Third, the most important features for the forecast of the aggregated energy com-
munity load are, in our case study, the past aggregated load itself, transformed hour
and day data, a binary weekend variable, and past loads of selected households.
We see a tendency that the past loads of households with higher annual consump-
tion may be more important features, but this needs to be confirmed and further
investigated in future research.

This paper gives scope for further research in the field of energy community load
forecasting. Future work should further confirm and deepen the assessment of the
hybrid LSTM-XGBoost model and its viability in cases without smart meter data or
in combination with alternative forecasting algorithms. Furthermore, adding weather
data to the forecasting process could be an interesting addition to this study.



CHAPTER 6

PRIVACY-PRESERVING PEAK TIME FORE-
CASTING

This chapter addresses the challenge of forecasting peak times for aggregated elec-
tricity loads from a privacy-preserving perspective. Predicting peak load times is
critical for the operational efficiency of aggregators and grid operators. To tackle
this, the concept of Learning-to-Rank is introduced and applied to the task of peak
time forecasting. The results demonstrate that this approach delivers comparable
accuracy in predicting peak times while relying solely on the ranks of load data rather
than precise measurements. This method directly addresses data privacy concerns,
offering households the potential to share ranked load information with third parties
instead of disclosing their exact load measurements, thereby enhancing data privacy.

This chapter comprises the following article: L. Semmelmann, O. Resch, S. Henni
and C. Weinhardt. Privacy-preserving peak time forecasting with Learning to Rank
XGBoost and extensive feature engineering, IET Smart Grid, 2024.

6.1 Introduction
Ensuring a balance between power supply and demand is essential for electrical

grids’ stable and efficient operation. In this context, forecasting future electrical
loads plays an integral role (Bunn and Farmer, 1985). Load forecasting is performed
for various planning horizons, from long-term over medium-term to short-term load
forecasting with annual, monthly, or daily planning horizons, respectively (Srinivasan
and Lee, 1995). It can additionally be classified by the aggregation level considered
(Groß et al., 2021).

One essential discipline of load forecasting is peak load forecasting. Peaks are
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the occurrence of the maximum load in a specific timeframe (e.g., a day) and can
be characterized by two dimensions: peak time and peak load quantity. Peak time
describes the timestep where the maximum load occurs, while peak load quantity
describes the maximum load measured in the respective timestep (Dai et al., 2021).
As peaks constitute the maximum strain on the grid, predicting the maximum load
and especially the timing of peaks is crucial for grid stability. Yet, most approaches
in the discipline of electrical peak demand forecasting are either concerned with only
predicting the peak load quantity (Lee and Cho, 2022) or the peak time forecast is
inferred from an overall load forecast by considering the time when the predicted
load curve is at its maximum (Goia et al., 2010; Haida and Muto, 1994). As a high
general prediction accuracy does not necessarily imply a good prediction quality
concerning peak loads and peak times (Semmelmann et al., 2022), further research
specifically about peak times is necessary.

Another increasingly important aspect of load forecasting is the privacy preserva-
tion of load data. By sharing exact load data, new potential data security vulnera-
bilities are created. For instance, in case of a data leak, the load data of an industrial
firm could allow conclusions about the current economic situation of the respective
firm. Substantial industrial customers see data security as a significant barrier to
participation in load shifting programs - and thereby a barrier to sharing load data
(Olsthoorn et al., 2015). Hence, to motivate industrial customers to share their load
data, participate in grid provider programs, and reduce potential vulnerabilities, it
is essential to work on privacy-preserving methods to work with load data.

This paper combines a focus on peak time forecasting with a privacy-preserving
Learning to Rank model in the context of the BigDEAL Challenge 2022. In this
international competition organized by Dr. Tao Hong, Duke Energy Distinguished
Professor at UNC Charlotte and Director of the Big Data Energy Analytics Labora-
tory (BigDEAL), 78 international teams competed along different tracks related to
peak load forecasting. The challenge consisted of a qualification and a final round.
In the final round, the three tracks of the challenge were targeted at forecasting
peak load quantities, peak times, and the shape of the load in a five-hour timeframe
around the peaks. The findings presented in this paper stem from the approach
followed by Team SGEM KIT in the final round of the BigDEAL Challenge for the
track peak time forecasting.
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We propose a novel approach to forecasting peak times with a Learning to Rank
extreme gradient boosting (XGBoost) model, also used for the peak time forecasting
track of the BigDEAL Challenge. We compare our results with a naive day-before
benchmark forecast and a general state-of-the-art XGBoost-based load forecasting
model that delivers load forecasts for every time step. The latter model achieved the
fourth rank in the peak load forecasting track of the final round of the BigDEAL
challenge and can hence be seen as a relevant benchmark. The Learning to Rank
model only requires ranks of loads, instead of their actual magnitude, as input.
Thus, it can be used in application areas where protecting actual load data is highly
relevant, thereby, for instance, potentially encouraging customers to share their data
with grid operators.

This paper shows that the Learning to Rank XGBoost model yields comparable
forecasting accuracy as a well-performing baseline XGBoost model. Furthermore,
we conduct extensive feature engineering. We investigate which features are most
important for the general XGBoost and Learning to Rank models. Additionally, we
use Bayesian Hyperparameter Optimization to find optimal hyperparameter combi-
nations.

In conclusion, we aim to make the following contributions:

• An extensive feature engineering process is described, including the imple-
mentation of rolling averages and type-of-day features, thereby significantly
improving the peak time forecasting accuracy.

• The Learning to Rank XGBoost algorithm is used for peak time forecasting,
working only with ranks of loads instead of absolute loads as target feature,
thereby offering potential privacy-preserving properties. The model is com-
pared to a conventional XGBoost load forecasting model, from which peak
time forecasts are inferred.

• The XGBoost-based models are optimized with a state-of-the-art Bayesian hy-
perparameter optimization, enabling further increases in prediction accuracy.

The remainder of this paper is structured as follows. In the second chapter follow-
ing the introduction, we set our study in the context of related work. In the third
chapter, we describe our general methodology. We depict our feature engineering



124 Privacy-preserving peak time forecasting

process, the utilized XGBoost models as well as the regarded metrics. In the fourth
chapter, we present the BigDEAL case study and the underlying data. Subsequently,
we describe the case study results and the achieved forecasting accuracy according
to the previously introduced metrics in chapters five and six. Finally, in chapter
seven, we discuss our results and give an outlook to further research questions.

6.2 Related Work
In this section, we give an overview of related peak load and peak time forecasting

studies, with a special focus on works that cover privacy-preserving features.
Most load forecasting-related studies focus on an overall load forecast, most often

through neural network-based methods, Support Vector Machines (SVM), or Auto-
Regressive Integrated Moving Average (ARIMA) (Kong et al., 2017; Nti et al., 2020;
Tang et al., 2022; Wang et al., 2022b). The first advances in load forecasting were,
amongst others, made with ARIMA-based models. In Juberias et al. (1999), an
hourly short-term electrical ARIMA load forecasting model is introduced. Lee et
al. improve the ARIMA model by using a lifting scheme wavelet transformation to
enhance the forecasting accuracy in Lee and Ko (2011). Another way of enhancing
the ARIMA load forecasting is suggested by Nie et al. (2012), employing a hybrid
ARIMA and SVM model, where the ARIMA model forecasts the linear basic load
component and the SVM is used for non-linear components.

In contrast, recent load forecasting studies mostly focus on neural network-based
methods. In Kong et al. (2017), the authors use Long Short-Term Memory (LSTM)
recurrent neural networks to forecast single-residential household loads. Also, Lin
et al. (2022) use a dual-stage model, based on an LSTM and an attention-based
encoder, for a probabilistic load forecasting model. The temporal attention mech-
anism, in combination with a Convolutional Neural Network, is employed by Tang
et al. (2022) as well. Another type of neural network is suggested by Wang et al.
(2022b), who use a transformer model based on an encoder-decoder architecture for
a multi-energy load forecasting problem.

For the planning and operation of modern power systems and distribution grids,
especially the forecasting and subsequent reduction of peak loads are essential (Kuce-
vic et al., 2021a,b). Besides the fact that the previously mentioned studies are fo-
cused on an overall load forecast, several studies emphasize the tendency of neural
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network-based approaches to underestimate peak loads (Syed et al., 2021; Semmel-
mann et al., 2022; Amjady, 2001). Hence, Syed et al. (2021) adapt the LSTM cost
function to penalize underestimation of the load. The authors of Semmelmann et al.
(2022) pursue another approach by combining LSTMs with a dedicated peak time
and peak load XGBoost forecast. Thereby, the overall load and peak load forecasting
accuracy are improved. Also Dai et al. (2022) develop a hybrid LSTM-XGBoost load
forecasting model. The authors state that the XGBoost forecast could be further im-
proved by employing a Bayesian hyperparameter optimization method to find more
suitable parameters. Our study implements the suggested Bayesian hyperparameter
search approach for improving forecasting accuracy.

Haida and Muto (1994) were amongst the first to focus on peak load forecast-
ing specifically. The authors combine a transformation technique to consider sea-
sonal load changes and annual load growth with a multivariate regression analysis.
Thereby, the authors reduce forecasting errors in transitional seasons such as spring
and fall. In Amjady (2001), the importance of peak load forecasting for dispatching
centers in power networks is highlighted. The authors focus on peak load forecasts
with a dedicated ARIMA model alongside the overall hourly load forecast. In Saini
(2008), the peak loads for up to 7 days ahead were forecasted with a feed-forward
neural network, combined with a Principal Component Analysis for factor extraction.
Besides peak loads itself, also forecasting the time of peak loads plays an essential
role. The authors of Haq and Ni (2019) show that significant improvements in over-
all load forecasting accuracy can be reached by focusing on peak time forecasting.
Within the study, the load demand time series is decomposed into low-frequency
components. Then, a peak load binary variable is derived from the value at risk
concept, to improve forecasting accuracy during peak times. Finally, a deep belief
network is trained to forecast future loads. We remark that there are - to the extent
of our knowledge - no studies solely focusing on predicting peak times.

Another research stream in smart grid research deals with implementing privacy-
preserving methods. In Chin et al. (2019), the authors discuss two potential privacy
protection schemes for short-term load forecasting: model-distribution predictive
control (MDPC) and load-level, in combination with support vector regressions.
The study concludes that the MDPC has a slight negative impact on forecasting
accuracy for smaller aggregations of loads, which diminishes with higher aggregation
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levels. On the other hand, the load-leveling approach improves load forecasting
accuracy. Another privacy-preserving load forecasting approach is presented in Hou
et al. (2020), where load forecasting models of residential customers are trained
on distributed smart meters and handled locally. Only the forecasting outputs are
reported to the cloud through fog nodes. The authors of Dong and Liu (2022)
are suggesting a privacy-preserving model for electricity theft detection by adding
Gaussian noise to the consumption data of customers before applying a Convolutional
Neural Network, aiming to achieve a balance of customer privacy and model accuracy.

A further important concept in privacy-preserving forecasting research is differen-
tial privacy (Dwork, 2006). In the context of differential privacy, noise is added to
the input data until it can no longer be used to confidently predict which individual
delivered the underlying data. In Li et al. (2020b), differential privacy is granted by
adaptively controlling the gradients of training data, combined with a framework to
allocate privacy budgets. Le et al. introduce a novel, privacy-preserving adaption of
the XGBoost framework for federated learning (Le et al., 2021). The authors use a
secure matrix multiplication method and a noise perturbation approach in a sepa-
rate model. In a comparable approach, in Fernández et al. (2022), a combination of
federated learning and differential privacy is utilized for short-term load forecasting.
One outcome of the study is that increasing the number of participating consumers
leads to enhanced forecasting results and potentially too high computational costs,
especially for complex neural network architectures. Also, in Venkataramanan et al.
(2022), a federated learning model for privacy-preserving forecasting of distributed
energy resources, such as solar PV, EV storage or flexible loads, is developed. The
authors validate their study with 1,000 IoT nodes and show that the approach can be
used for grid services like predicting curtailment events or load swings. A recent ad-
vance of federated learning models for privacy-preserving forecasting has been made
in He et al. (2023), where a hierarchically federated model exploits all underlying
datasets while enabling information exchange of users with similar load patterns.
The state-of-the-art model enables a significant improvement in forecasting accu-
racy over benchmark models while maintaining a high fault tolerance. For a better
balance between privacy and data quality, in Tran et al. (2022) a two-step model
is suggested. In the first step, a distributed perturbation method is applied on the
underlying high-frequency load data. In the second step, through a private noise dis-
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tribution protocol, noise elements are distributed over the smart meters of individual
customers. In a case study, the authors show the utility of the data is maintained
while preserving the privacy of users. Also the authors of Eibl et al. (2018) inves-
tigate the impact of differential-privacy on forecasting quality, underlining that for
some methods the introduction of differential-privacy leads to significantly worse
forecasts.

We can observe that many past privacy-preserving methods focus on adding noise
to the underlying data, e.g., the hourly loads, sometimes at the cost of worse fore-
casting accuracy. Another possible approach to change the underlying data could be
the transformation of actual loads to less sensitive ranks of loads, which can then be
used to forecast peak times, e.g., through the Learning to Rank method introduced
by Chapelle and Chang (2011). The Learning to Rank method has been applied with
the XGBoost method (Vidović et al., 2021), but not in the context of peak time fore-
casting. The transformation of loads to ranks could yield one big advantage over
more sophisticated methods: it is likely to be easier for end-users to implement and
comprehend, which, as various studies have shown, is essential for the adoption of
novel technologies and smart grid applications (Syed et al., 2020; Rajapaksha and
Bergmeir, 2022; Bharadiya, 2023; Herm et al., 2021).

Our study fills two essential gaps in research. In the context of the BigDEAL
Challenge, we primarily focus on the peak time forecasting task, which has only
been discussed to a small extent in prior research. Furthermore, we provide a de-
tailed examination of suitable features for the peak time forecasting problem. Sec-
ond, we employ the Learning-to-Rank XGBoost algorithm to forecast peak times.
We are analyzing its performance compared to benchmark approaches, which use
actual loads instead of ranks of loads. Thereby, we make an essential contribution
to privacy-preserving peak time forecasting.

6.3 Methodology
This section aims to provide a comprehensive overview of the methodology used in

the BigDEAL Challenge to forecast peak load times and quantities. First, we give an
overview of our general forecasting framework. The following subsections describe
the respective steps, beginning with our feature engineering approach. Then, we
describe the models we utilized and our Bayesian Hyperparameter Optimization.
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Finally, we introduce the metrics used to evaluate the performance of the previously
engineered models.

6.3.1 Forecasting framework

Figure 6.1.: Graphical overview of the research approach

The final stage of the BigDEAL challenge consisted of several rounds, each includ-
ing respective historical load and temperature observations. For the to-be-forecasted
time horizon, only temperature data was given. In the first step, we enrich the given
dataset through extension with additional features, which are explained in detail in
the following section. The colour of the arrows indicates which data is used as input
for the respective steps. All the next steps use fully feature-engineered data. We
distinguish between two model types: a dedicated peak time model and a general
load forecasting model. The latter serves as a solid, well-performing benchmark and
reflects the predominant approach in the existing literature to infer the peak load
and peak time forecast from the whole daily forecast (Dai et al., 2021; Goia et al.,
2010; Haida and Muto, 1994). Both model types are described in Section 6.3.3. For
the peak time models, we differentiate between an XGBoost model with standard
parameters and a model with tuned hyperparameters. The overall hyperparameter
tuning approach is introduced in Section 6.3.4. The forecasts are then evaluated
according to the metrics defined in Section 6.3.5.

Overall, the utilized forecasting framework can be structured as depicted in Figure
6.1.



Methodology 129

6.3.2 Feature Engineering

Feature engineering describes the process of creating representations of the raw data
that can improve the models’ effectiveness. For a high prediction quality, adequate
feature engineering is essential, with the effect of feature selection surpassing that of
selecting different models in many cases (Kuhn and Johnson, 2019). Below, the dif-
ferent feature engineering techniques used to transform the input data are described:

Type-Of-Day Features. Type-of-day features are variables that are created by
categorizing dates, for instance, in groups of working days and non-working days.
Past studies have shown that type-of-day features can improve the overall forecasting
accuracy when added to the feature set Kanda and Veguillas (2019). Hence, we added
binary variables for determining whether the day is a weekday, holiday, preceded,
or followed by a holiday, respectively. In addition, the weekday, as well as month
and day of the month, are provided to the model as input after a sine and cosine
transformation.

Sine and Cosine Transformation of Cyclical Features. Past studies, such as
Semmelmann et al. (2022); Gürses-Tran et al. (2022) have shown that the sine and
cosine transformation of cyclical features, such as the hour or weekday, result in high
feature importance and are therefore essential features for electrical load forecasting.
The advantage of the sine and cosine transformation lies in a better representation
of the cyclical variables, for example, allowing the model to learn that 11 pm is
closer to 2 am than 8 am. Hence, we implement sine and cosine features for hour,
weekday, and month. For the hour, we additionally implement a 2x and 4x sine and
cosine, which repeats two and four times, respectively, per day. We apply the sine
and cosine transformation by calculating the number of past time steps since the
beginning of the respective seasonal period, e.g., a day or month, scaled to a range
between 0 and 2π.

Relative changes of features. For every continuous feature, relative changes
up to the past 24 hours in one-hour increments are calculated and used as additional
input features. This is based on the hypothesis that the rate of change in those
features might affect the resulting load pattern, especially if those changes happen
suddenly. The formula for the calculation of relative change Gτ,T of feature τ and
the time frame tf in every time step t is calculated in Equation 6.1:
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Gτ,tf =
τt − τt−tf

τt−tf

(6.1)

Rolling Averages. Since the selected model predicts the respective timesteps
independently of each other, one potential drawback could be its difficulty in consid-
ering dependencies over multiple timesteps. Furthermore, as described in Mayrink
and Hippert (2016), it is also essential to include lagged temperature features in the
load forecasting model due to the thermal inertia of buildings. Therefore, rolling
averages are calculated for all temperature features over different time frames rang-
ing from one hour to 192 hours. For up to ten hours, this is done for every interval
length. Above, only the rolling average for 12, 15, 18, 24, 36, 48, 96, and 192, respec-
tively, are calculated. The calculation of the rolling average RAτ,tf,t for temperature
feature τ and time frame tf at time step t is described in Equation 6.2.

RAτ,tf,t =
1

tf

tf∑
n=1

τt−n (6.2)

Rolling average features have shown a high feature importance in previous re-
search where ensemble-based prediction models were used on time series data, for
example, in Natras et al. (2022). We, therefore, calculate a "DiffToRollingAverage"
(dRA) data point for every rolling average to detect deviations of the underlying
temperature feature from the rolling average, as described in Formula 6.3:

dRAτ,tf,t = RAτ,tf,t − τt (6.3)

6.3.3 Prediction Models

As mentioned in section 6.3.1, two different XGBoost-based models are trained to
predict the load in every time step of the test set. The first model is a general load
prediction model that forecasts the load of every hour in the respective period. From
the forecasted load patterns of the general model, the peak times are inferred to serve
as a benchmark against which the second model can compete. The second model is
a dedicated peak prediction model, which is based on a novel approach to forecast
peak times by employing a Learning to Rank XGBoost model. First, the XGBoost
algorithm is presented in general since both used models are based thereon. The
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following two sections describe both peak load forecasting models in greater detail.
Extreme Gradient Boosting (XGBoost)

XGBoost was introduced by Chen and Guestrin (2016) and has been proven as a
highly efficient and accurate model for regression and classification tasks. In the load
forecasting context, approaches based on XGBoost have often outperformed other
models, as shown in Liao et al. (2019); Abbasi et al. (2019). The model is based
on an ensemble of classification and regression tree weak learners. Furthermore, the
quadratic objective function is simplified through a second-order Taylor expansion,
which yields enhanced runtimes and limits overfitting.

General XGBoost Load Prediction Model The general load prediction model
consists of an XGBoostRegressor that predicts the load for each timestep of the test
set individually. Then, for every day d in the test set, the timestep t of the highest
load Pmax is taken as peak time prediction td,Pmax , as depicted in Equation 6.4

td,Pmax = max(Pd,t, ..., Pd,T ) (6.4)

Hereafter, this model is referred to as XGBP (XGBoost Pattern). We are also
considering a hyperparameter-optimized version, which is called XGBPH, in the
following. The XGBPH model also served as a model for the peak load and shape
prediction tracks of the BigDEAL challenge.

Learning to Rank XGBoost Peak Time Model The idea of the proposed
Learning to Rank XGBoost peak prediction model is the essential characteristic of a
peak, which is that it is the highest load in the considered timeframe, such as a day.
In other words, if the loads of a day were ranked by descending load, the peak would
always have rank one. Thus, we propose a model that learns to rank the timesteps
of a day. Since the Learning to Rank model works with day-wise ranks as a target
variable instead of loads, it requires less sensitive data than traditional approaches.
The initial idea of the Learning to Rank model was first described by Chapelle and
Chang (2011).

The Learning to Rank model requires a transformation of the target variable from
load to rank. Every load P on a day d can be mapped to a rank r, which ranges
from 1 to 24:
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{(
Pt

d, r
t
d

)}
(6.5)

A rank r of 1 represents the peak load, while rank 24 represents the lowest load
occurring on a certain day d.

In Figure 6.2, the load is transformed into day-wise rankings of the respective
timesteps by descending load for an exemplary time series consisting of two days
with three timesteps per day.

Figure 6.2.: Visualization of the target transformation

The previous target variable, "Load," is discarded and not used by the model. The
peak time model thus learns with a different target variable than the general load
prediction model. The input features remain unchanged. For the prediction of ranks,
for every possible rank R a score is calculated based on comparisons of the timesteps
in each day. For a detailed description of the score calculation methodology, we refer
to Chapelle and Chang (2011). The scores can, in turn, be sorted and turned into
rankings for each day.

The prediction of our proposed models is thus day-wise rankings for all timesteps
in the test set. In the final transformation step, the timestamp associated with rank
one is selected as the peak time for each day. As stated in the overview, we do not
only consider one single Learning to Rank peak time model but different variations
of it. This leads to two dedicated peak time models that are investigated: XGBR
(XGBoost Ranker), a plain XGBoost Ranker without hyperparameter tuning, and
XGBRH (Learning to Rank XGBoost hyperparameter tuned), where hyperparame-
ter tuning using the methodology defined in the next section is applied to improve
the model.
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6.3.4 Bayesian Hyperparameter Tuning

Hyperparameter tuning is a crucial task in machine learning and describes the prac-
tice of optimizing the parameters of the selected model in order to obtain a higher
prediction quality. It has been shown that in several cases, baseline models could bet-
ter be improved by hyperparameter adjustments of existing models than by inventing
new models (Bardenet et al., 2013). There are several approaches to hyperparameter
tuning, including using a Bayesian optimization, as proposed in Snoek et al. (2012),
which belongs to the class of automated hyperparameter tuning. In automated hy-
perparameter tuning, the model is considered to be a black box function that, given
validation data, returns a score, which generally is the chosen error metric to be
optimized. The goal of the optimization is to find hyperparameters that minimize
this error. Contrary to the Bayesian optimization method, traditional optimization
approaches are not suited for this kind of optimization problem. Bayesian optimiza-
tion leverages Bayes theorem for selecting parameters to be evaluated in the true
objective function by using a probability model of the objective function, which is,
in turn, based on sample data from previous iterations. For a more comprehensive
introduction to the general principles of Bayesian optimization for hyperparameter
tuning, we refer to Wu et al. (2019).

Bayesian optimization leads to a significant improvement of hyperparameters with
only a few iterations (Wu et al., 2019), making it both effective and time efficient.
Time efficiency played a particular role in selecting this approach as the time for
obtaining a prediction and, thus, hyperparameter tuning was limited in the com-
petition the approach was developed for. Furthermore, several studies in the load
forecasting field have shown that more accurate predictions can be reached by using
Bayesian optimized model parameters Trierweiler Ribeiro et al. (2020); Jin et al.
(2021); Munem et al. (2020).

Our implementation of the Bayesian optimization hyperparameter selection model
is depicted in Figure 6.3. The approach is based on two major parts: an optimizer
and a hyperparameter evaluation function that is minimized throughout the itera-
tions.

The optimizer describes the Bayesian optimization model with its parameters and
the search space. For the optimization model itself, we use the Bayesian optimization
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Figure 6.3.: Structure of hyperparameter optimization

package PyPi (2022). Table 6.1 depicts the chosen parameters of the optimization
model. The model is initialized with ten random points and runs for 100 iterations.
The parameters alpha, which is used for the internal Gaussian process, and kappa,
which controls the relation between exploitation and exploration, are set as specified
in the table. For reproducibility, a random seed is used.

Parameter Value
init_points 5

niter 100
gp_alpha 10−10

kappa 1.5
seed 112

Table 6.1.: Bayesian optimization parameters

In addition to selecting a model, a search space needs to be set. It defines the
values the parameters selected by the optimization model can take. As all of our
models are XGBoost-based, they have a shared search space. It is presented in
Table 6.2, where for each hyperparameter that is optimized, the upper and lower
boundaries are defined. The parameter max_depth is discreet and thus rounded
before use. We derive the parameters from past XGBoost-based load forecasting
studies (Semmelmann et al., 2022; Wang et al., 2021; Massaoudi et al., 2021).

As depicted in Figure 6.3, in each iteration, the optimizer calls the hyperparam-
eter evaluation function with a set of hyperparameters and validation blocks. The
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Hyperparameter Lower bound Upper bound
max_depth 3 10

learning_rate 0.01 1.0
subsample 0.5 1.0

min_child_weight 0.5 5.0
colsample_bytree 0.5 1.0

Table 6.2.: Hyperparameter search space

hyperparameters are selected by the optimization function and thus differ in each
iteration. The validation blocks constitute the time frames used by the hyperpa-
rameter evaluation function to calculate the model’s evaluation metric. We use the
whole year 2017 as a validation block to get parameters for an overall robust model.

In the second part, the hyperparameter evaluation function is used to determine
the performance of the model for the hyperparameters of the current iteration. For
each validation block, the respective model is trained on all available data with
time stamps preceding the validation block. Subsequently, the model’s performance
is evaluated on the validation block. This is performed for each validation block
individually, leading to three-fold cross-validation. The function returns the average
score over the three blocks. The evaluation metric employed varies depending on
which model type is evaluated. For general prediction models, the mean absolute
percentage error for the true and predicted loads for each time step is used. For the
dedicated peak time prediction models, the score is based on a daily MAE-based
metric, defined in section 6.3.5. In the last step, the hyperparameters are selected
based on the best scores. For every different Local Distribution Company (LDC), a
dedicated hyperparameter tuning run has been conducted.

6.3.5 Metrics

In the following, we present the used metrics for the evaluation of our peak time
forecasting models.

Accuracy. In many studies, e.g., J. Liu and L. E. Brown (2019), peak time
forecasting is considered to be a classification task. The reasoning for this is that a
peak time forecast is only of use if it predicts the exact time of the peak load event.
Thus, accuracy, which is in many cases used to evaluate binary classifications, is a
popular metric to evaluate peak time forecasts. The accuracy metric P is defined as
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in Equation 6.6:

P(Actual = Predicted) =
Tp + Tn

N
(6.6)

with Tp and Tn being the amount of correctly predicted positive and negative
labels, respectively. N constitutes the total amount of predictions. Hence, accuracy
measures the share of correct predictions.

Mean Absolute Error (MAE). As a second error metric, we calculate the Mean
Absolute Error (MAE), which punishes wrong predictions linearly to the distance to
the true prediction of the respective day. It is calculated as the mean of day-wise the
absolute deviations of the predicted from the true peak time, as depicted in Equation
6.7:

MAE =
1

D

D∑
i=1

|td,Pmax,pred − td,Pmax| (6.7)

With D being the considered amount of days and td,Pmax,pred and td,Pmax being,
respectively, the predicted and the actual peak time of day i.

BigDEAL Peaktime Metric (BDPM). We also evaluate a dedicated metric,
which was introduced in the context of the BigDEAL challenge, called BigDEAL
Peaktime Metric (BDPM). The BPDM is a modified version of a cumulative absolute
error that punishes higher deviations more strongly by introducing a punishment
factor. At the same time, it is capped for deviations greater than five hours. In its
original form, the error is cumulated over the whole considered timeframe. To ensure
comparability over test blocks with differing lengths, we decided to norm this error
by the number of days considered. Our normed version of the BDPM is defined in
Equation 6.8 and 6.9:

BDPM =
1

D

D∑
i=1

f(|td,Pmax,pred − td,Pmax|) (6.8)

with:
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f(r) =


r for r ≤ 1

2 ∗ r for 2 ≤ r ≤ 4

10 for r ≥ 5

(6.9)

6.4 Case Study
The previously described methodology was applied on the data set provided by

the initiators of the BigDEAL Challenge 2022. The data set comprises historical
load data of three U.S. neighboring local distribution companies (LDCs), along with
temperature data from six weather stations in the same region. Initially, data from
2015 to 2017 was provided in hourly resolution. Then, during the final round, data
for 2018 was provided in six subsequent iterations, which serve as test blocks for the
model evaluation and as the basis for the hyperparameter optimization.

6.4.1 Exploratory Data Analysis

The given data set is structured as an hourly time series. Each row has a timestamp
containing the year, date and hour. The feature variables include the weather data
columns T1 up to T6 and the timestamps. When analyzing the weather data, it
becomes visible that the pairwise correlation between the columns is extremely high
and in no case smaller than 0.95, which fits the assumption that the weather stations
are located close together.

For the load of the LDCs, three different target variables, LDC1, LDC2 and LDC3,
are given. No unit of measurement is provided for the target variables. The respec-
tive loads of the LDCs are forecasted separately. In Figure 6.4, the distribution of
the values of the target variables is depicted. We can observe that the loads of the
different LDCs vary significantly in magnitude, with LDC3 having by far the largest
loads. Despite these differences in magnitudes, the LDC columns are highly corre-
lated. The lowest pairwise correlation observed is 0.91. As there still are variations
between the different LDC load profiles, predicting and evaluating multiple LDCs
can be considered some form of additional cross-validation of the model.
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Model Feature Engineering Regression-based Rank-based Hyperparameter
Baseline (Day-before peak time) No No No No

XGBP* No Yes No No
XGBP Yes Yes No No

XGBPH Yes Yes No Yes
XGBR Yes No Yes No

XGBRH Yes No Yes Yes

Table 6.3.: Model variations investigated in this study

Apart from the timestamps, weather features are the only feature variables that
are initially provided. Figure 6.5 depicts the relationship between the observed av-
erage LDC loads and the average temperature features. The relationship between
temperature and load appears to be nonlinear, with both high and low tempera-
tures being associated with a high load. This indicates the use of electricity for both
heating when cold temperatures occur and cooling when the temperature is high.
We can also underline that observation from a statistical point of view: the over-
all Pearson correlation between the average temperature measurements and average
LDC load measurements is quite low at 0.063. However, when we only regard all
observations during temperature measurements below 60, the correlation is strongly
negative at -0.87: the lower the temperature, the higher the loads. When we only
regard the remaining observations at temperature measurements above 60, the cor-
relation amounts to 0.87.

On the described data set, feature engineering following the methodology intro-
duced in Section 6.3.2 was performed. This increased the number of input features
to over 350. 16 of those features are related to the timestamp, i.e., cyclical features,
while the remaining features constitute various transformations of the respective
temperature features.

6.4.2 Train-Test Splits

The train-test splits in this work are based on the iterations of the final round of
the BigDEAL Challenge 2022. As training data, all observations preceding the first
date of the respective test set are used. Notably, the time frames of the test sets
vary in length, requiring forecasts ranging up to three months ahead. We consider 6
different test sets, four of which have a length of two months, while the others have
a length of one month and three months, respectively. All test sets are in the year
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Figure 6.4.: Distribution of Local Distribution Company (LDC) loads

2018. The exact time frames are depicted in Table 6.4.
Test set No. Start date Length (Months)

1 2018/01/01 2
2 2018/03/01 3
3 2018/06/01 2
4 2018/08/01 1
5 2018/09/01 2
6 2018/11/01 2

Table 6.4.: Description of test data

6.4.3 Model variations

In the following, we compare different variations of the XGBoost model, as described
in our methodology. We compare our results with a näıve benchmark model that
simply takes the day-before peak time as forecast, as in Bracale et al. (2017). In
Table 6.3, the setup of the different models is shown. First, we introduce a base-
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Figure 6.5.: Relation between average temperature measurements and LDC loads

line, regression-based XGBoost model called XGBP∗, which is only trained with
given data, without any feature engineering or hyperparameter tuning. Second,
we introduce the baseline XGBoost model XGBP , which is trained with enriched
feature-engineered data, but only with standard parameters instead of Bayesian-
optimized parameters per test. Third, we add to the XGBP model the Bayesian-
hyperparameter optimization, which yields model XGBPH. The first three models
all deliver a general load forecast for every time step in the respective test set, from
which the peak time forecast is inferred, as described in the Methodology. The
XGBPH model served as a model for the daily peak load forecast and the over-
all load forecast during the BigDeal Peak Time challenge. For the daily peak load
forecast, the model achieved an overall fourth rank amongst all competitors.

The two last models, XGBR and XGBRH are based on the previously introduced
Learning-to-Rank XGBoost algorithm, which uses as input ranks of loads instead of
absolute loads and which yields a forecast of daily ranks of loads. The XGBRH

utilizes Bayesian-optimized hyperparameters.
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6.4.4 Bayesian-optimized hyperparameters

As described in our methodology, we conduct a Bayesian hyperparameter optimiza-
tion, based on test data of 2017, for every LDC. In Table 6.5, we show the resulting
hyperparameters for the XGBPH and XGBRH models for each LDC. We can ob-
serve that within the respective models, hyperparameters tend to go in the same
direction. However, comparing the general load XGBoost model XGBPH and the
Learning to Rank XGBRH model, we see significant differences. The max depth is
around 5 for every general LDC model, while it is between 8 and 9 for the ranked
models. The learning rate, as well as the subsample, are lower for the ranked models.

Hyperparameter XGBPH XGBRH
max_depth 5/5/5 8/9/8

learning_rate 0.15/0.11/0.07 0.019/0.03/0.046
subsample 0.97/0.96/0.95 0.53/0.63/0.54

min_child_weight 3.58/3.49/3.64 1.63/4.81/4.36
colsample_bytree 0.77/0.72/0.80 0.52/0.82/0.62

Table 6.5.: Hyperparameter overview

Test Set Baseline XGBP* XGBP XGBPH XGBR XGBRH

1 27 / 34 / 36 36 / 42 / 37 36 / 51 / 47 46 / 69 / 68 41 / 59 / 54 58 / 69 / 61
2 31 / 47 / 36 38 / 29 / 35 44 / 53 / 58 52 / 66 / 54 58 / 51 / 55 57 / 54 / 55
3 44 / 45 / 32 41 / 52 / 34 46 / 56 / 34 52 / 67 / 61 59 / 69 / 67 59 / 77 / 69
4 41 / 52 / 32 32 / 32 / 35 39 / 58 / 58 55 / 55 / 71 52 / 63 / 68 48 / 74 / 58
5 44 / 43 / 51 39 / 39 / 48 41 / 54 / 39 49 / 54 / 49 52 / 46 / 52 48 / 46 / 51
6 30 / 31 / 36 30 / 31 / 30 36 / 33 / 49 41 / 48 / 56 38 / 39 / 46 43 / 46 / 53

Average 36 / 42 / 37 36 / 38 / 37 41 / 51 / 48 49 / 60 / 60 50 / 55 / 57 52 / 61 / 58
Std 7.01 / 7.30 / 6.40 3.90 / 7.93 / 5.56 3.34 / 8.27 / 8.92 4.60 / 7.86 / 7.73 7.93 / 10.23 / 6.30 6.09 / 12.48 / 5.96

Table 6.6.: Accuracy in percent
Test Set Baseline XGBP* XGBP XGBPH XGBR XGBRH

1 4.85 / 4.86 / 5.29 2.23 / 1.49 / 1.85 1.88 / 1.46 / 1.31 1.29 / 1.46 / 0.90 1.69 / 0.78 / 1.22 1.14 / 0.75 / 0.93
2 4.32 / 3.54 / 3.64 2.07 / 2.37 / 1.26 1.25 / 1.36 / 0.97 1.26 / 1.02 / 0.72 1.13 / 1.60 / 1.22 1.20 / 1.70 / 0.95
3 1.02 / 0.95 / 1.02 0.79 / 0.74 / 0.87 0.80 / 0.54 / 0.79 0.65 / 0.41 / 0.49 0.54 / 0.46 / 0.41 0.51 / 0.36 / 0.36
4 1.13 / 0.68 / 1.12 1.16 / 0.84 / 1.03 0.84 / 0.45 / 0.55 0.68 / 0.55 / 0.35 0.81 / 0.48 / 0.42 0.74 / 0.35 / 0.65
5 2.02 / 1.98 / 2.14 1.57 / 1.79 / 1.85 1.75 / 0.56 / 1.67 1.21 / 0.67 / 1.59 1.62 / 1.36 / 1.80 1.31 / 1.16 / 1.61
6 5.54 / 4.44 / 5.26 2.18 / 2.22 / 2.16 2.39 / 1.54 / 1.69 2.08 / 1.59 / 1.08 1.86 / 1.86 / 1.39 2.02 / 1.61 / 1.26

Average 3.10 / 2.72 / 3.07 1.67 / 1.52 / 1.50 1.49 / 1.09 / 1.16 1.16 / 0.95 / 0.86 1.27 / 1.09 / 1.08 1.15 / 0.99 / 0.97
Std 1.76 / 1.63 / 1.78 0.54 / 0.71 / 0.47 0.57 / 0.45 / 0.43 0.41 / 0.48 / 0.41 0.48 / 0.55 / 0.51 0.30 / 0.54 / 0.41

Table 6.7.: MAE per test set
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Test Set Baseline XGBP* XGBP XGBPH XGBR XGBRH

1 4.19 / 4.36 / 4.25 2.24 / 1.53 / 1.93 1.86 / 1.46 / 1.47 1.41 / 1.47 / 0.98 1.78 / 0.90 / 1.32 1.17 / 0.81 / 1.00
2 4.11 / 3.33 / 3.52 2.58 / 2.58 / 1.74 1.56 / 1.37 / 1.25 1.43 / 0.97 / 0.88 1.27 / 1.53 / 1.32 1.36 / 1.61 / 1.14
3 1.72 / 1.55 / 1.78 1.13 / 1.16 / 1.18 1.22 / 0.74 / 0.95 0.98 / 0.54 / 0.59 0.82 / 0.64 / 0.54 0.67 / 0.56 / 0.43
4 2.03 / 1.03 / 1.84 1.97 / 1.06 / 1.52 1.26 / 0.52 / 0.74 1.06 / 0.71 / 0.48 0.96 / 0.71 / 0.58 1.16 / 0.52 / 1.00
5 2.74 / 2.18 / 2.26 2.07 / 1.78 / 2.00 1.90 / 0.72 / 1.80 1.52 / 0.92 / 1.64 1.87 / 1.46 / 1.85 1.61 / 1.33 / 1.69
6 4.77 / 4.27 / 4.60 2.48 / 2.69 / 2.38 2.14 / 1.86 / 1.64 2.07 / 1.87 / 1.08 1.80 / 2.11 / 1.56 1.90 / 1.80 / 1.36

Average 3.26 / 2.79 / 2.95 2.07 / 1.80 / 1.79 1.65 / 1.11 / 1.31 1.41 / 1.08 / 0.94 1.42 / 1.22 / 1.20 1.31 / 1.11 / 1.10
Std 1.16 / 1.29 / 0.18 0.47 / 0.64 / 0.37 0.34 / 0.48 / 0.37 0.36 / 0.46 / 0.37 0.52 / 0.38 / 0.48 0.39 / 0.50 / 0.38

Table 6.8.: BDPM per test set

6.5 Results
We evaluate the different model variations, based on the six test blocks, for all

three LDCs. For every scenario, we evaluate the peak time forecasting performance
according to the Accuracy, the Mean Absolute Error (MAE), and BigDeal Peak Time
Metric (BPDM).

In Figure 6.6, the actual load of LDC3 for an exemplary day in the first test set is
depicted alongside the forecasts of the three general load prediction models XGBP∗,
XGBP and XGBPH. We can observe that all three models roughly match the
shape of the daily load curve, with two peaks, one in the morning and one in the
evening. The higher peak lies in the evening at 23:00. The plot shows a tendency that
is later also confirmed in absolute results: XGBP∗, the model without an enriched,
feature-engineered data set, has difficulties in forecasting accurate absolute load
values, whereas the two remaining models match the load pattern better. From each
general load forecast, the highest forecasted load is inferred as peak time forecast.
Here, only the hyperparameter optimized model XGBPH manages to forecast the
actual peak at 23:00 accurately.

In contrast to the general load prediction models, the ranked models do not deliver
hourly load forecasts, from which the point of time of the highest load is inferred
as peak time. Hence, they are first plotted in Figure 6.7, where for every day in
the first test period from January to February 2018, the respective peak times and
peak time forecasts are plotted for LDC3. The plot follows a certain colour scheme:
real peak times are plotted in green, Learning to Rank-based forecasts are plotted
in tones of blue, and general load forecasts are plotted in tones of red and velvet.
The hyperparameter-tuned models XGBPH and XGBRH are plotted with higher
opacity. First, we can observe that, in general, all forecasting models deliver a solid
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Figure 6.6.: Exemplary load forecast

performance, mostly forecasting the peak time at least at hours around the peak, if
not predicting it correctly. We assume that one reason for this is the high aggregation
level of local distribution companies, the high data quality, and the fact that the
training data covers multiple years. We can also observe the tendency of peaks either
occurring in the morning hours around 9:00 or in the evening hours around 21:00.
We note that all XGBoost-based forecasting models manage quite well to forecast
the peak times, even when there is a switch from periods of morning peaks to evening
peaks. If we base our forecast on a recency-based model that always uses the day-
before or week-before peak time, this would lead to significant losses in the MAE
metric and accuracy if the switches switch from morning peaks to evening peaks. We
also note that the Bayesian hyperparameter-optimized models consistently predict
the peak time more accurately than the models with standard parameters. The worst
performing XGBoost-based model is the one without a feature-engineered data set
and hyperparameter tuning, XGBP∗.

In Table 6.6, the accuracies for the different models are depicted, respectively
for each LDC. First, we can observe that all models with the feature-engineered
data outperform the model with the base data set, XGBP∗, by far. Second, both
Bayesian-optimized yield the best accuracies on average.
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Figure 6.7.: Exemplary peak time forecasts

The same picture occurs when analyzing the resulting MAEs in Table 6.7. On
average, the Hyperparameter-optimized models outperform the models without hy-
perparameter optimization. For LDC1, the XGBRH models yield the best MAEs
on average; for LDC2 and LDC3, the XGBPH yields the best results. All MAE
values for the models based on the feature-engineered data set are around 1, which
can be interpreted as a mean deviation of the forecasted peak time from the true
peak time of one hour.

Similarly, for the BDPM in Table 6.8, the Bayesian hyperparameter-tuned models
mostly outperform the standard models, and XGBPH delivers the best results for
LDC2 and LDC3, while the XGBRH model delivers the best BDPM results for
LDC1. The average monthly BDPM values reached through the XGBPH model
are significantly better than the ones reached with the XGBP∗ model (P=0.016 ).
Whereas the average monthly BDPM results reached by the XGBRH model are not
significantly different than the ones achieved through the XGBRH model (P=0.90 ).

This observation underlines two integral findings in our study. First, the peak time
forecasting quality is significantly increased by our feature engineering process and
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the Bayesian hyperparameter optimization. Overall, our XGBPH and XGBRH

models have achieved an exceptional level of peak time forecasting quality. With
a Mean Absolute Error of just 1 hour, our performance is by far superior to the
baseline case, where the day before peak time is used for the forecast, resulting in a
Mean Absolute Error of approximately 3 hours. Second, transforming the actual load
values to ranks of loads and employing a Learning to Rank XGBoost model does not
significantly lower the peak time forecasting quality compared to the well-performing,
regular XGBoost model with feature engineering and hyperparameter optimization,
from which peak times are inferred. Thereby, we show that a more privacy-preserving
peak time forecasting approach does not necessarily negatively influence the overall
forecasting quality. Nonetheless, we note that the information on the ranks of loads
still contains some information about the load data providers and could be used to
identify them. However, industrial customers could be more open to sharing ranks of
loads instead of actual load values with the grid operator since they do not contain
information about machine utilization and company activity.

6.6 Feature Importances
In the previous section, we show that our feature engineering process reaches signif-

icant accuracy improvements. Hence, we are interested in investigating the average
overall feature importances for the XGBPH and XGBRH models through the XG-
Boost feature weights. The XGBoost feature importance weight can be explained
as the number of times that a certain feature is used in the trees of the model. The
weight is then calculated as a share of the sum of all feature weights (Ma et al.,
2020).

In Figure 6.8a, the averaged feature importance weights are depicted for the
XGBPH model. One striking observation is that out of the 15 most important
features, 14 features are rolling averages of temperatures instead of the temperature
measurements themselves. As mentioned before, we assume that the reason for the
high importance of temperature rolling averages is the thermal inertia of buildings.
Moreover, we observe that the most important rolling temperature features are those
which cover time spans of three to five hours. We can also see that some temper-
ature measurements are relatively more important for the models of the respective
LDCs. For instance, T5 temperature measurements seem to be more relevant for
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LDC2, while T1 and T2 measurements are relatively more important for LDC1. This
might be connected to the distance of the temperature measurement stations to the
respective LDCs: the closer the measurement stations are to the LDCs, the more
relevant the measurements are likely to be. We see this point especially relevant
in light of our previous observation of the strong negative correlation of loads and
temperature for lower temperatures and the strong positive correlation for higher
temperatures. In addition, it underlines the relevance of considering appropriate
temperature measurements in peak time and peak load forecasting tasks, in settings
where the temperature is connected to the respective loads. The 15th most impor-
tant feature is the 2x cosine of the hour, which supports the claim of Semmelmann
et al. (2022); Gürses-Tran et al. (2022) that it is reasonable to calculate the sine and
cosine of cyclical features.

For comparison, we depict the feature importance weights of the XGBRH model
in Figure 6.8b. Again, we can see the high feature importance of rolling average-
related features. However, for the Learning to Rank-based models, the important
rolling average features cover longer time spans of up to 15 hours. Furthermore, we
can see the high feature importance of the "Difference of Temperature to Rolling Av-
erage" features, especially for the 24-hour rolling average. High values of this feature
indicate temperature peaks, which could lead to its high importance in the Ranked
XGBoost model. Furthermore, we can observe relatively lower feature importances
per feature, indicating that a wider array of features is used in the Learning to
Ranked XGBoost trees.

6.7 Conclusion
This paper offers a novel privacy-shielding approach to the peak time forecasting

problem for local distribution companies by leveraging the Learning to Rank XG-
Boost algorithm. The Learning to Rank model is based on ranks of loads instead
of absolute magnitudes of loads, requiring less confidential data. To analyze the
accuracy of our approach, we conducted a case study in the context of the BigDEAL
load forecasting challenge, where the peak times of three LDCs had to be forecasted.
Furthermore, we conducted extensive feature engineering and selected model pa-
rameters through a Bayesian hyperparameter optimization. Finally, we analyze the
importance of the respective engineered features.
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(a) XGBPH models (b) XGBRH models

Figure 6.8.: Comparison of averaged XGBoost feature importances for XGBPH and XG-
BRH models

We show that the hyperparameter-tuned Learning to Rank XGBoost model deliv-
ers the highest average accuracy for two LDCs and the highest MAE and Big Deal
Peak Time Metric for one LDC. For the remaining cases, the hyperparameter-tuned
general load prediction model, which serves as a baseline in this work and achieved
the fourth rank for the peak load forecasting track of the BigDEAL challenge, delivers
the best results. Furthermore, we show that all XGBoost-based models significantly
outperform a day-before recency-based benchmark model, thereby highlighting the
value of XGBoost models for peak time forecasting. Also, we show a strong increase
in forecasting accuracy by adding additional features, such as rolling averages of
temperature measurements. Future works in this field should apply the rank-based
forecasting approach to other methods, such as neural networks, and compare the
results with the XGBoost-based Learning to Rank model introduced in this study.
Leveraging neural network models, such as recursive neural networks or convolutional
neural networks, might show superior performance.





CHAPTER 7

GENERATING SYNTHETIC LOAD PROFILES OF
RESIDENTIAL HEAT PUMPS

This chapter addresses the challenge posed by the limited availability of historical
heat pump load data by introducing a novel method based on k-means clustering
to generate synthetic load profiles. By providing households, policymakers, and
aggregators with the ability to create synthetic heat pump load profiles, this approach
facilitates assessments of the feasibility and economic potential of dynamic tariffs.

This chapter comprises the following article: L. Semmelmann, P. Jaquart, and C.
Weinhardt. Generating synthetic load profiles of residential heat pumps: a k-means
clustering approach, Energy Informatics, 2023.

7.1 Introduction
Germany plans to install up to 500,000 heat pumps annually from 2024 onwards.

In doing so, the government aims to transition the heating sector to carbon-free,
electricity-based heating (DeutscheWelle, 2023). While the installation of heat
pumps comes with several benefits, such as the high energy efficiency, the reduced
reliance on gas, and the absence of direct carbon emissions, the adoption of the tech-
nology might also entail certain pitfalls. For instance, Protopapadaki and Saelens
(2017) show that heat pump penetrations of more than 20-30% could cause severe
issues in distribution grids. Hence, it is essential to analyze the impact of increas-
ing heat pump loads on our energy system and to develop heat pump operation
strategies. However, the absence of widely available heat pump load data has led to
limitations in existing heat pump-related studies: often, heat pump load profiles are
derived by simulation models like TRNSYS (Maranghi et al., 2023; Roccatello et al.,
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2023). While this approach is feasible for small-scale, building-level investigations,
it is not viable for large-scale studies with a large number of heat pump loads. In
Gunkel et al. (2023), the authors study the impact of heat pumps on national peak
load hours. The authors use electricity consumption data of 720,000 households to
discover that heat pump installations lead to 14% more peak load hours in Denmark
than electric vehicles. Albeit the study yields relevant insights on the impact of heat
pumps on the national electricity demand and peak loads, the underlying data is
not available as open-source data set and hence cannot be used for further studies.
Schlemminger et al. (2022) have published the first high-quality and high-resolution
data set of heat pump and household loads for 38 households from Hamelin, Ger-
many, which has since served as the data basis for multiple studies in the field. For
instance, Yang et al. present a model to manage and coordinate loads in order to
reduce distribution grid operation costs. They use the data from Schlemminger et
al. to model daily load peaks Yang et al. (2023). Zhu et al. (2023) use the combined
household and heat pump data from the data set to model a household in Ham-
burg and present a carbon reduction- and savings-aware operation mechanism for
a combined PV-BES-EV system (photovoltaics - battery storage - electric vehicle).
Their study highlights the problems of using a limited heat pump load data set, as
the utilization of the Hamelin-based data set to model a Hamburg-based household
increases the degree of simulation inaccuracy.

To overcome spatial and temporal restrictions of open-source data sets, researchers
have worked on methods to generate synthetic load profiles, especially for residential
customers (Pinceti et al., 2019; El Kababji and Srikantha, 2020). Further studies
deal with the synthetic generation of industrial and commercial heat load profiles.
Jesper et al. (2021), for instance, apply a k-means clustering method on 797 annual
gas load profiles to create synthetic industrial and commercial heat load profiles.
However, to the extent of our knowledge, there exist no studies and open-source
tools for the creation of synthetic heat pump load profiles. In this study, we aim
to fill this research gap by introducing a k-means-based clustering model to create
synthetic regional heat load profiles based on regional weather data and the data set
of Schlemminger et al. (2022).

The contributions of this work are summarized in the following. This paper aims
to present the first model for synthetic heat pump load profile generation, applying a
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k-means clustering approach. We validate our model based on metrics from existing
literature (Li et al., 2020a). We also contribute a novel method to determine the
optimal number of clusters, by finding a trade-off between load profile diversity
and accuracy. Furthermore, we publish our model and a web-based heat pump
load profile generator open-source to enable research models in the field of energy
informatics to integrate heat pump energy consumption, thereby helping to overcome
the lack of publicly available heat pump load profiles 4.

The remainder of the paper is structured as follows. First, related work is presented
and the implications for this study are discussed. Second, the methodology of our
approach and the respective evaluation metrics are introduced. Third, we present
the case study on which our methodology is applied. Fourth, we evaluate our results
according to the introduced metrics and discuss the optimal selection of clusters.
Finally, we summarize our work in the conclusion and give an outlook on further
research questions.

7.2 Related Work
Most synthetic load profile generation studies are focused on household load pro-

files. Pillai et al. use artificial neural networks to create normalized residential load
profiles based on weather data (Pillai et al., 2014). The authors show the opportu-
nities of synthetic load profile creation, especially for simulations in regions without
adequate data, which would otherwise have to rely on inaccurate methods, such as
working with a constant load assumption. While Pillai et al. focus on standardized
load profiles for whole regions based on temperature profiles, Fischer et al. (2015)
introduce a stochastic model to create synthetic residential household load profiles
with high resolution, implementing socio-economic features as well as seasonal ef-
fects. In a later work, the model is extended with space heating and hot water load
profiles (Fischer et al., 2016). In their study, the importance of diverse load profiles
is especially addressed. In a further study, Li et al. use an iterative process based
on geographic locations and load compositions to create bus-level load time series
(Li et al., 2020a). The authors also discuss the validation of their results in detail,
which serves as the basis for the evaluation of our case study. In another relevant

4Web-based heat pump load profile generator available at https://heatpump.ninja. Source-code
available at https://github.com/leloq/synthetic-heat-pump-load-profile-generator.

https://heatpump.ninja
https://github.com/leloq/synthetic-heat-pump-load-profile-generator
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study, Jesper et al. use a k-means clustering approach to create synthetic industrial
and commercial heat load profiles based on 797 annual natural gas profiles. In their
study, the correlation between heat loads and ambient temperature is used to create
synthetic heat profiles. Another relevant contribution in the field is made by Ruhnau
et al. (2019b), introducing the "When2Heat" data set, which includes national heat
pump load profiles and coefficients of performance (COP) for 16 cold-temperature
climate countries in the European Union. The authors underline the need for open
energy data for electricity market simulations. However, the data set is targeted at
nationwide studies, thereby being less appropriate for simulations on the household
level and in smaller grid-level aggregations.

While the depicted studies made valuable contributions to the field of synthetic
load profile generation, to the extent of our knowledge, no past works are focused
on the synthetic generation of household-level heat pump load profiles for varying
geographies. Hence, we introduce our k-means-based model in the following section.

7.3 Methodology
In this section, we describe our methodology to create synthetic heat pump load

profiles based on the underlying data set. We employ a k-means clustering approach
based on the overall methodology introduced by Jesper et al. (2021) to create syn-
thetic heat profiles. First, we describe the overall functionality of the k-means algo-
rithm. Then, we depict the necessary steps to use the k-means algorithm to obtain
synthetic load profiles. Finally, we describe suitable synthetic heat profile validation
metrics from the existing literature.

K-means algorithm: The k-means algorithm was introduced by MacQueen
(1967). The clustering algorithm is highly computationally efficient and easily imple-
mentable. Hence, many studies in the field of energy informatics and other domains
rely on the k-means algorithm (Jesper et al., 2021; Panapakidis and Christoforidis,
2017; Azad et al., 2014; Jessen et al., 2022). The algorithm iteratively partitions a
data set into K clusters, with the aim of minimizing the sum of squared Euclidean
distances from every observation to chosen cluster centroids µi. Every cluster cen-
troid has the same dimension as the observations. In this study, we aim to cluster
temperature profiles day-wise with an hourly resolution. Hence, every cluster cen-
troid µi and observation xj is represented as a 24-dimensional vector, each dimension
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representing one hour. After the initiation of cluster centroids and the respective
assignment of observations to a specific cluster by minimization of the Euclidean
distance, each cluster centroid is iteratively redefined as µi∗, by calculating the mean
of all observations MI that are assigned to cluster centroid µi:

µi∗ =
1

MI

M∑
m=1

xm (7.1)

Overall, the k-means algorithm is based on the following steps:

1. Initialization: we randomly choose K cluster centroids.

2. Assignment of observations: every observation xj is assigned to its nearest
cluster centroid µi, based on the Euclidean distance.

3. Update of centroids: new cluster centroids µi∗ are calculated based on Equation
7.1.

4. Termination: the algorithm is terminated when there are no further changes
in partitions. Otherwise, the algorithm is repeated again from step 2 onwards.

Synthetic heat pump profile clustering model: We use the k-means algo-
rithm to cluster daily temperature profiles in K clusters, based on the previously
introduced procedure. Thereby, for every day d and every household h, the respective
heat pump load profile Pd,h belongs to the respective cluster Pd,h → k. Therewith,
every cluster k has per household its own set of associated heat pump load pro-
files: kh : {Pd,h, ...}. As there are multiple possible temperature measurements, we
calculate the correlation between all measurements and the target heat pump load
to select the most representative temperature profile as the basis for the clustering
process.

We can use the fact that every temperature cluster has its own set of associated
daily heat pump load profiles to create synthetic profiles (e.g., for new geographic
locations) with the following steps:

1. K-means initialization: We apply the k-means algorithm on our underlying
data set and create k clusters and the associated set of heat pump load profiles.
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2. Temperature processing: We transform the temperature profile of the desired
geographic location and time horizon into 24-dimensional vectors.

3. Clustering: We map the daily temperature profiles of the target geography to
the previously determined clusters.

4. Heat pump profile creation: For every day, we randomly draw a heat pump
load profile from the set associated with the respective cluster.

Generally, we can apply this procedure for every household h in the set of all
underlying households H, to create a synthetic household load profile. Thereby, we
can implement different usage patterns and sizes of households and heat pumps.
Through the random selection process in step 4, every synthetically generated heat
pump load profile based on the same household is unique. To create a synthetic
heat pump data set of N households, we can randomly draw N households from our
underlying set of households H.

Validation metrics: Our synthetically generated load profiles can be validated
from two perspectives. First, they should follow the distribution of the underlying
data set (Snoke et al., 2018). Second, they should vary over different iterations,
exhibiting a desired degree of diversity. For the first point, we are evaluating key
characteristics of the synthetic data for a given test period and validation metrics
suggested by Li et al. (2020a). In detail, we regard load factors over time, which
depict the ratio of mean loads and peak loads, as well as load distribution curves,
which depicts the percentage of loads in relation to the mean load. For a detailed
introduction of the metrics we refer to Li et al. (2020a). Furthermore, we compare the
deviation between weekly real and synthetic and heat pump electricity consumption
over the regarded test period, and the correlation of synthetic and real profiles, as
in Fischer et al. (2016).

Besides the quality of the synthetically generated load profiles, we want to eval-
uate the diversity of the generated load profiles. Fischer et al. (2016) underline the
importance of diversity in synthetic load profiles to avoid aggregations of peak loads.
To analyze the diversity of our generated profiles, we compare the mean-variance of
L synthetically generated heat pump load profiles. Then, for every time step t in
the test period, the variance over all synthetically generated profiles σ2

L is calculated.
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Finally, we calculate the mean-variance MV over all time steps and synthetic load
profiles:

MV =
1

T

T∑
t=1

σ2
L (7.2)

For robust results, we compare the aggregation of synthetic and real loads for
all underlying households H in the respective test period, Pagg,gen and Pagg,real. To
analyze the diversity of generated load profiles, we create a high number of L and
evaluate the MV of Pagg,gen.

Cluster number selection: Previous studies, such as Jesper et al. (2021), use
the elbow method to find the optimal number of K clusters that yield additional
input and low distortion within clusters. However, the elbow method is solely focused
on the temperature clustering itself. In this study, we adopt a broader view when
selecting the optimal number of clusters: an increase in the number of clusters
reduces the number of associated heat pump profiles per cluster and thereby makes
the clustering model more deterministic and less diverse. When the number of
clusters K equals the number of days in the data set D, every synthetically generated
heat pump load profile for a day d and household h is similar. Hence, we argue that
the accuracy of synthetic profiles should be compared with the diversity reached to
find the optimal cluster number K.

7.4 Case Study
We apply the methodology introduced previously on the data set of Schlemminger

et al. (2022). The data set consists of household and heat pump load measurements
for 38 single-family homes in Hamelin, Germany, for the period between May 2018
and the end of 2020. The households have an average annual household load of 2829
kWh and a heat pump load of 4993 kWh. To the best of our knowledge, the data
set is the first of its kind, providing high-quality and high temporal resolution heat
pump load profiles. The households in the data set are equipped with water-to-
water heat pumps and an additional 6kWh heating rod as backup. Furthermore, the
houses are equipped with a 300-liter storage tank. In addition, the households have
solar thermal systems installed, which mainly take over the production of hot water
during summer. Although this alters the heat pump load profile in summer months
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compared to heat pump households without additional solar thermal systems, we
argue that this constitutes an acceptable pitfall, as most critical load peaks occur
in winter months, when the solar thermal systems remain inactive. We also note
that the main type of installed heat pumps in Germany are air-to-water heat pumps
Bundesverband Wärmepumpe (2023), which can exhibit different load profiles and
react differently to cold temperatures. However, we argue that due to comparable
coefficients of performance over different heat pump types, our results can also in-
dicate various other heat pump types, especially in high-load winter weeks (Çakır
et al., 2013).

We utilize 21 out of the 38 household load profiles that have no missing data in the
period between January 2019 and December 2020 to train our clustering algorithm.
We then use the period from May 2018 to the end of 2018 for model testing by
creating synthetic heat pump loads and comparing them to the aggregated real
loads.

The data set of Schlemminger et al. (2022) includes various temperature features.
To ensure that there is a sufficient connection between temperature and heat pump
loads, we conduct an initial correlation analysis between the aggregated heat pump
load and the temperature features. We observe that the temperature and appar-
ent temperature have the highest correlation with the aggregated heat pump load,
as depicted in Figure 7.1. Hence, we base our clustering model on the apparent
temperature.

Figure 7.1.: Correlation of temperature features with aggregated heat pump load



Evaluation 157

(a) Temperature centroids (b) Mean heat pump load profiles

Figure 7.2.: Clustering results with K = 10

7.5 Evaluation
In this chapter we evaluate our synthetically generated heat pump load profiles.

First, we depict the general outcome of the clustering algorithm. Second, we compare
the aggregated synthetic heat pump profiles for the test period with their actual val-
ues. For this period, we also calculate the previously introduced validation metrics.
Third, we compare the interplay of accuracy and diversity over a range of possible K
clusters to indicate the optimal number of clusters. Finally, we create synthetic data
for exemplary cities in Germany to show the generalizability of our approach. In
showing the internal validity of the synthetically generated load profiles, rather than
benchmarking our model to other possible models, we follow the overall approach of
other notable works in the field of synthetic load profile generation (Li et al., 2020a;
Jesper et al., 2021).

Clustering: Figure 7.2 shows the result of the clustering process, based on K =

10 clusters. We observe ten different centroids of the K-means model based on
varying temperature profiles. Therewith associated, we illustrate the corresponding
mean heat pump load profiles. For instance, centroid 9 exhibits constantly negative
temperatures. The corresponding load profile of the centroid also exhibits the highest
heat pump loads with especially high peaks in the afternoon, which would also
expected rationally. Overall, we observe that most mean heat pump load profiles
have afternoon peaks. Centroid 9, having the highest temperatures, has mean heat
pump loads close to 0W.

Validation: To validate the results of our clustering process, we create synthetic
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heat pump load profiles for all considered households in 2018 and compare them
with the real heat pump load profiles that were unseen in the training process of
the k-means algorithm. Figure 7.4 presents the results of this comparison. The
synthetic heat pump profiles match the real profile, especially showing low loads
during summer time and increasing heat pump loads during colder winter time.
This is confirmed in Figure 7.4, where weekly synthetic versus real weekly heat
pump energy consumption is displayed. After repeating the synthetic creation of all
considered households 50 times and comparing the heat pump energy consumption
over the whole testing period with the actual consumption, we find a relatively low
error of 2.4% We conclude that during the test period and for the Hamelin data set,
the synthetic heat pump load profiles match the shape of the real observed profiles.

Figure 7.3.: Synthetic versus real heat pump load profile for all considered households

We further validate our synthetic heat pump generation process according to two
metrics from Li et al. (2020a), namely load factors and load distribution curves. In
Figure 7.5a, we depict the load factors over time, comparing the real and synthetic
heat pump load profiles. The load factor depicts the ratio of monthly average loads
and peak loads. We can observe that the overall shape of the synthetic data repre-
sents the real load profile well. Higher load factors in winter months are especially
depicted correspondingly. In Figure 7.5, we depict the load distribution curves of the
real and synthetic data, which show the percentage of load being at different values,
relative to its mean values. Both curves follow the same pattern. Setting our results
side by side with the results of Li et al. (2020a), the deviation of load factors and
load distribution curves of synthetic and real profiles is comparable, although the
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Figure 7.4.: Synthetic versus real weekly heat pump energy consumption for all considered
households

overall structure of the metrics varies significantly since Li et al. generate bus-level
electricity load profiles of power grids.

As another validation metric, we regard the Pearson correlation coefficient. For
our test case, the Pearson correlation between real and synthetic profiles lies at 0.88.
For comparison, in Fischer et al. (2016), where synthetic energy demand profiles are
created with a stochastic bottom-up method, the correlation lies only slightly higher
at 0.92.

Overall, comparing the various depicted validation metrics, we conclude that our
synthetically generated heat pump load profiles match the distribution of the un-
derlying data well and can be used for generating synthetic heat pump load time
series.

Accuracy vs diversity: To find the optimal amount of clusters, we focus on a
comparison of accuracy, in terms of the error of the heat pump energy consumption
during our testing period and the diversity of the generated load profiles, represented
by the previously introduced mean-variance (MV ). To reduce the impact of stochas-
tic effects, we calculate the average of both metrics for 50 generated synthetic heat
pump profiles during our testing period for all possible numbers of clusters. Then,
we scale down the metrics to a range from 0 to 1 to ensure comparability. Figure
7.6a, depicts the results of this analysis. We find that a low number of clusters leads
to high annual consumption errors, providing inaccurate load profiles. On the other
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(a) Load factors (b) Load distribution curves

Figure 7.5.: Validation of synthetically generated heat pump load profiles

hand, a small number of clusters comes with a high degree of variance and, therefore,
connected diversity in load profiles. We suggest working with up to 10 clusters for a
balanced trade-off between accuracy and diversity. In comparison, using the elbow
method, we would work with two clusters, which correspond to the recommended
trade-off between distortion and the number of clusters, as depicted in Figure 7.6b.
However, as shown in the previous graph, this would lead to a relatively high annual
error of the associated synthetic heat pump load profile generation process. Hence,
we recommend regarding the trade-off between mean-variance and the error of the
generated profiles instead of the clustering-focused elbow method.

We note that our approach is subject to stochastic effects and the underlying data
set, although we aimed to reduce the stochastic effects by regarding the average
results of multiple runs. We recommend a case-specific selection of the number of
clusters K, while in our case study, using up to 10 clusters yields a good trade-off
between mean-variance and accuracy.

(a) Scaled mean-variance versus heat pump
energy consumption error

(b) Distortion (elbow method)

Figure 7.6.: Cluster amount selection

Transferability: We create synthetic load profiles for two German munici-
palities, Kuehnhaide and Koeln-Stammheim, for the year 2019, according to our
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previously introduced model. Kuehnhaide, with a mean temperature of 7.6°C in
2019, belongs to the coldest German regions, whereas Koeln-Stammheim, with a
mean temperature of 11°C, belongs to the warmest regions in Germany. Figure 7.7
presents the transferability of our model and shows that the synthetic aggregated load
profile in Kuehnhaide exhibits significantly higher peaks than the profile of Koeln-
Stammheim, which would also be expected rationally. Furthermore, the overall base
heat pump load level in Kuehnhaide is constantly higher than in Koeln-Stammheim.
We interpret this observation as indication that we can use our approach for the syn-
thetic generation of representative heat pump load profiles in other locations with
comparable temperature profiles and building structures as in Hamelin, e.g. in Ger-
many, Austria or Switzerland. However, we also observe that days with particular
high heat pump loads in Kuehnhaide follow a more similar load pattern than in
Koeln-Stammheim. This might indicate that load profiles on these days are drawn
from a low temperature cluster with fewer observations. Hence, the publication of
further open-source heat pump load data sets, especially from regions with colder
temperatures, could contribute to the overall quality of synthetic heat pump load
profile generation approaches.

Figure 7.7.: Aggregated synthetic heat pump load profiles in Kuehnhaide and Koeln-
Stammheim
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7.6 Conclusion
This work presents a k-means-based model to generate synthetic heat pump load

profiles. We show that the synthetically generated data follows the structure of the
real data according to load factors, load distribution curves and the Pearson cor-
relation coefficient, which underlines the applicability of the proposed heat pump
load profile generator for power system simulations. We suggest choosing the num-
ber of clusters for the model by comparing the accuracy of generated profiles and
their diversity, expressed by the mean-variance of generated load profiles. Future
research can work on alternative synthetic load profile generation methods, such as
Generative Adversarial Networks and benchmark them with the presented method.
Furthermore, future studies may also apply the presented methodology on data sets
of other heat pump types and use time series transformation techniques to increase
the diversity of the synthetically generated heat pump load profiles.



Part IV.

Behavioral uncertainty





INTRODUCTION TO PART IV

A significant barrier to the adoption of dynamic tariffs is the loss aversion exhibited
by many consumers (Nicolson et al., 2018). Dynamic tariffs inherently carry a degree
of risk: households that consume electricity primarily during periods of high prices
or when wholesale electricity prices unexpectedly spike may incur financial losses.
However, this risk can be mitigated by effectively managing household flexibility
potentials.

In this part, the economic implications of dynamic tariffs for households are ana-
lyzed, and an approach to estimate potential savings based on household character-
istics and preferences is proposed. The economic impact of the price risk associated
with dynamic tariffs being transferred to an aggregator is examined. These contribu-
tions provide a foundation for developing price guarantee mechanisms, which could
reduce household price risks and promote the broader adoption of dynamic tariffs.
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CHAPTER 8

PRICE GUARANTEES FOR HOUSEHOLDS
WITH DEMAND-SIDE FLEXIBILITY

This chapter introduces a novel concept aimed at overcoming households’ loss aver-
sion toward dynamic tariffs: household-specific electricity price guarantees. Under
this approach, aggregators offer households equipped with heat pumps a guaranteed
electricity rate tailored to their specific endowments (e.g., heat pump size, photo-
voltaic systems, battery energy storage systems, thermal storage), building charac-
teristics (e.g., insulation quality, level of modernization), and preferences (e.g., ther-
mostat setpoint flexibility, lower nighttime temperatures). In exchange, aggregators
gain the right to manage the household’s flexibility potential.

The implementation of household-level price guarantees involves several key com-
ponents. First, a sophisticated formulation of home energy management optimiza-
tion systems is developed, accounting for flexibility endowments, building charac-
teristics, thermal inertia, and heating behavior under dynamic tariffs. Second, a
Monte Carlo simulation is performed using representative household samples across
multiple years, incorporating day-ahead electricity prices and weather data from
four German cities. Lastly, household-specific price guarantees are predicted using
a quantile regression approach and evaluated from the perspective of aggregators,
providing insights into this concept’s feasibility and economic implications.

This chapter comprises the unpublished article: L. Semmelmann, S. Kimbrough,
and P. Staudt. Price guarantees for households with demand-side flexibility potential
and thermal building inertia under dynamic electricity tariffs, Working Paper, 2025.
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8.1 Introduction

8.1.1 Background and aim

The sharp increase in intermittent renewable energy generation in the power sys-
tem of many countries requires an expansion of demand-side flexibility potential
(McPherson and Stoll, 2020). Besides the ramp-up of battery storage capacity,
household demand response is an integral tool to increase flexibility (Aghaei and
Alizadeh, 2013).

One widely discussed policy option to encourage demand response is the intro-
duction of dynamic tariffs for electricity consumers to signal temporal scarcity and
provoke a response from flexible loads. While there are various possible implemen-
tations of dynamic tariffs (e.g., time-of-use, critical peak pricing, real-time prices,
etc.), their underlying rationale is the same: Customers pay time-variable prices
for their consumption that are aligned with power system scarcity signals (Freier
and von Loessl, 2022). The operation of home energy management systems in the
context of dynamic electricity tariffs has been widely studied from an operational
research perspective, with a focus on optimization-based approaches to improve en-
ergy scheduling and cost management (Althaher et al., 2015; Hubert and Grijalva,
2012).

Despite their potential benefits, the adoption of dynamic electricity tariffs remains
limited in major power systems. A recent survey in Germany revealed that only 7% of
households have subscribed to such tariffs (Verbraucherzentrale Bundesverband e.V.,
2024). While in theory, dynamic tariffs enable an alignment of consumer demand
and market signals (Guo and Weeks, 2022), consumers are reluctant in their adoption
(Nicolson et al., 2017). A UK study concluded that two-thirds of households would
not switch to a time-of-use dynamic tariff (Nicolson et al., 2017). Loss aversion was
one of the most prominent drivers of this reluctance.

We argue that the limited adoption of dynamic tariffs is fundamentally rooted
in uncertainty. For households, uncertainty about future electricity prices and po-
tential savings contributes to reluctance, driven by behavioral factors such as loss
aversion. This uncertainty could be further exacerbated by the growing adoption of
electricity-based heating systems, such as heat pumps. These systems introduce ad-
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ditional complexities for home energy management, requiring models to account for
temperature-dependent heat pump efficiencies and the thermal inertia of buildings,
which is influenced by insulation properties (Fitzpatrick et al., 2020; Sperber et al.,
2020).

While households may be hesitant to adopt dynamic tariffs due to risk aversion
and uncertainty, aggregators offer a viable mechanism to address these challenges
(Burger et al., 2017). Aggregators are entities that pool and manage decentralized
flexibility resources, acting as intermediaries between end-users and electricity mar-
kets to optimize market participation (Burger et al., 2017). While significant progress
has been made in developing algorithms and operational strategies for aggregators
to manage decentralized fleets of households equipped with battery storage (Angeli
et al., 2023) or heat pumps (Kircher and Zhang, 2021; Zhang et al., 2019b), a uni-
fied and comprehensive formulation of the operational problem for households under
dynamic tariffs remains an open challenge. Existing studies do not fully integrate
the interplay of PV and battery energy storage (BESS) systems (Stute and Klobasa,
2024), heat pumps and insulation-dependent thermal inertia of buildings (Sperber
et al., 2020), and the uncertainties associated with occupant heating behavior and
comfort preferences (Baeten et al., 2017). This gap in the literature creates uncer-
tainty for aggregators, complicating their ability to accurately evaluate and harness
the flexibility potential of residential energy systems.

Our study seeks to address the barriers to dynamic tariff adoption by mitigating
uncertainties for both households and aggregators. For households, we propose the
introduction of price guarantees, which serve as fixed cost per unit of electricity
consumed under dynamic tariffs. In other domains, guarantee schemes have been
established as a proven tool for mitigating risks (So and Song, 1998; Urban, 2009;
Li et al., 2024). The suggested guarantees, offered by aggregators, provide house-
holds with a predictable cost framework while transferring the associated risks of
dynamic tariffs and volatile electricity prices to the aggregator. In exchange, the
aggregator gains operational control over the household’s flexibility potential. To
address the uncertainties faced by aggregators, we develop a comprehensive formu-
lation of household flexibility potential, integrating factors such as energy storage,
thermal inertia, and occupant behavior. This formulation enables a more accurate
estimation of the value derived from managing residential flexibility. The proposed
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system is then utilized to design household-level price guarantees while quantifying
the associated risks and profit potentials for aggregators.

The control of household flexibility potentials through aggregators consistently
reduced electricity costs by an average of 7.36% (2.5 ct/kWh). Notably, 78.4%
of households benefited from guarantees below the competitive retail benchmark
price. Aggregators also experienced improved financial outcomes at the household
level, albeit with a moderately wider confidence interval and associated uncertainty.
Additionally, the study provides insights into the key factors influencing guarantee
levels, emphasizing the critical role of modeling building thermal dynamics based on
insulation levels to enhance household flexibility potential. These findings support
the development of decision support systems which are capable of offering real-time
price guarantees tailored to individual household characteristics.

8.1.2 Proposed approach

Our methodology for formulating individual, household-level price guarantees is
based on a three-stage process. First, given a certain household setup and cor-
responding spot market prices, we formulate a model to calculate the achievable
electricity price guarantees. A household setup consists of endowment (e.g., size
of heat pumps, PV, BESS, etc.), heating requirements, building insulation, house-
hold load profiles, and local weather profiles. Second, we simulate randomly drawn
household setups and corresponding possible guarantee prices. The first two stages
are simulated under perfect foresight, i.e., we know exact household load curves,
price profiles, weather measurements, heating setpoints, and PV generation for the
investigated years. In the third stage, we implement a model to suggest actual price
guarantees. To this end, we train a forecasting model based on input features that
are observable characteristics (e.g., household endowment) and aggregate price infor-
mation (mean annual day-ahead market price, i.e., a yearly power future price). The
model cannot access actual market price curves, weather profiles, PV generation, and
heating setpoints. The decision problem directly models the uncertainty utilities and
aggregators face when offering individual price guarantees in exchange for household
flexibility potential. It captures real-world complexities such as variable consump-
tion patterns, fluctuating market prices, and differing household endowments, align-
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ing closely with the practical challenges of implementing such guarantees. We then
go on to evaluate the associated risks for aggregators and evaluate the features that
influence the level of potential price guarantees.

8.1.3 Related work

The literature has widely discussed operating household flexibility potential with dy-
namic tariffs to achieve cost savings. The same is true for providing guarantees under
uncertainty. This subsection summarizes past studies’ main findings and illustrates
the corresponding research gap.

Operating household electricity consumption under dynamic tariffs: A
high number of studies investigate households subscribing to dynamic tariffs. These
studies can be divided into two main groups. First, various studies focus on the
overall scheduling problem of flexibility potential, such as battery storage, electric
vehicles, and heat pumps (Zhou et al., 2020; Pallante et al., 2020; Pena-Bello et al.,
2017). Second, other studies investigate the policy implications of dynamic tariff
adoption on a system or grid level (Stute and Kühnbach, 2023).

The literature on load scheduling under dynamic tariffs aims at optimizing the
dispatch of flexibility potential for household cost minimization (Zhou et al., 2020;
Pallante et al., 2020; Pena-Bello et al., 2017). For instance, battery storage systems
can be scheduled with genetic algorithms to shift loads to lower price periods (Pena-
Bello et al., 2017), electric vehicle charging events can be scheduled to accommodate
user convenience and dynamic price variations (Zhou et al., 2020) or heat pumps
can be operated to shift the heating demand based on temperature constraints and
day-ahead prices (Pallante et al., 2020; Nolting and Praktiknjo, 2019). Some studies
combine different flexibility potentials, e.g., by developing control algorithms for an
all-electric dwelling with a heat pump, PV, thermal storage, and an electric vehicle
(Pallonetto et al., 2016). While these studies contribute to the overall understand-
ing of the operation of home energy management systems under dynamic pricing,
they are mostly tailored to specific use-case studies, such as an Italian office building
(Pallante et al., 2020) or a residential building in Ireland (Pallonetto et al., 2016).
However, to provide a price guarantee for households with flexibility potential, the
formulation of an optimization model of a home energy management system is re-
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quired, given varying building structures, heating patterns, and installed flexibility
potential. Studies considering multiple sources of flexibility (e.g., electric vehicles,
PV, and BESS installations) frequently apply a simplified heating model that only
considers a singular building type and heating profile (Stute and Klobasa, 2024;
Aniello and Bertsch, 2023).

However, the load-shifting potential of buildings heavily varies across insulation
standards (Sperber et al., 2020). Yet, reduced-order thermal response models (also
called RC models) are described as viable ways to model the electrical heating de-
mand of households given their building structure (Sperber et al., 2020).

One noteworthy study from Winzer et al. (2024) contributes to the field by propos-
ing and evaluating profile contracts as a mechanism to balance flexibility incentives
with price risk hedging for electricity consumers. Profile contracts are real-time tar-
iffs with a hedging component, where customers agree on a fixed price for a predefined
consumption profile. At the same time, deviations are settled at spot market prices,
allowing for both price stability and dynamic flexibility incentives. While this study
acknowledges the need to mitigate price risks and encourages demand-side flexibility,
our work extends this by focusing on the integration of household-specific factors,
such as thermal building inertia and individualized energy management, to design
tailored price guarantees. Unlike profile contracts, which rely on predefined con-
sumption profiles, we propose a framework that dynamically adjusts to individual
household behaviors and external uncertainties, enabling a more granular and oper-
ationally flexible approach to balancing aggregator risks and consumer incentives.

Most of the aforementioned studies assume that households eventually will switch
to dynamic tariffs. However, it is unclear if that is the case, given the reluctance of
customers to expose themselves to price risks (Nicolson et al., 2017). Hence, we ex-
plore in the following section the existing literature on the formulation of guarantees,
which are used in other disciplines to transfer and mitigate risks.

Formulating Guarantees: Guarantees are employed across various industries
through distinct mechanisms, each aimed at addressing specific risks and enhancing
market competitiveness. For example, service time guarantees can provide a compet-
itive advantage by differentiating a firm from its competitors (So and Song, 1998),
credit guarantees enable capital-constrained entities to secure loans by transferring
risk to a guarantor (Li et al., 2023c; Wang et al., 2022a), and performance guaran-
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tees for hybrid power plants facilitate financing by reducing uncertainty about future
power output and revenues (Ackermann et al., 2022). In these contexts, the guaran-
tor enhances the attractiveness or accessibility of its products or services, while the
counterparty benefits from risk mitigation. Typically, the risk is transferred to an
entity that possesses the expertise to manage it. For instance, in China, regulators
require operators of peer-to-peer lending platforms to transfer credit risks to spe-
cialized guarantee providers (Wang et al., 2022a). A similar risk transfer underpins
the approach proposed in our study. While households may lack the expertise or
risk tolerance to handle the volatility of dynamic tariffs, aggregators and utilities
are well-versed in managing and hedging such risks (Bruninx et al., 2019). Although
guarantees benefit all involved parties, the underlying risk remains and must be
carefully modeled and analyzed. For instance, guaranteed service times may still be
exceeded (So and Song, 1998), borrowers may default on loans (Li et al., 2023c; Wang
et al., 2022a), and the guaranteed output of a power plant may fall short of expec-
tations (Ackermann et al., 2022). Therefore, robust risk modeling and analysis are
essential to supporting informed decision-making. While such models have been de-
veloped and discussed in other fields, the specific problem of formulating guaranteed
constant electricity prices in exchange for operating household flexibility potential
has not yet been addressed. This problem is particularly challenging because it com-
bines the complexity of optimization with various interconnected constraints and
behavioral variability, while also incorporating unique operational restrictions like
thermal inertia and the dynamic potential of household flexibility. These elements
require a novel approach to balancing risk and resource allocation in a way that
ensures both system reliability (e.g., thermal comfort of inhabitants) and economic
viability (e.g., limited aggregator risk) under uncertainty. This study seeks to fill
this research gap.

Based on existing guarantee-formulation literature, we devise a sector-agnostic
scheme in Figure 8.1, which is described in the following. It later serves as the
foundation for our guarantee model (So and Song, 1998; Li et al., 2023c; Wang
et al., 2022a; Ackermann et al., 2022).

First, a common denominator of guarantee literature is that case-specific infor-

mation about the counterparty and the desired guarantee is ascertained and shared
with the guarantee-giving entity. This can include system characteristics like the
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Figure 8.1.: Sector-agnostic guarantee-giving scheme

location or desired output of a power plant (Ackermann et al., 2022), fixed values
for costs (Li et al., 2023c; Luo and Wu, 2018), or known probability functions for
uncertain inputs like demand (Li et al., 2023c). Then, a connection between the
case-specific information and the output guarantee is established based on histori-

cal or simulated data. For instance, the underlying data set can be built up by
simulating a high number of scenarios, consisting of possible parameter combina-
tions and uncertain input parameters (Ackermann et al., 2022; Luo and Wu, 2018).
Alternatively, an empirical data set exists upon which the guarantees can be for-
mulated (Consiglio et al., 2008). We note that there are also studies that are not
based on historical or simulated data, which then directly go on with a theoreti-
cal guarantee formulation (Urban, 2009). However, for high-order problems with
time-dependent systems and input parameters (like in our case), this is hardly pos-
sible. The actual relationship between case-specific information, potential historical
or simulated data points, and viable guarantees is established with a guarantee

algorithm. The selected algorithm depends on the context of the guarantee. When
there is an interaction between the guarantee-giving entity and counterparty, the de-
cision process is frequently modelled with a Stackelberg game (Li et al., 2023c; Wang
et al., 2022a). When there is no interaction and the guarantee should be conditioned
upon the previously simulated scenario data, a guarantee curve can be obtained
with a linear optimization (Ackermann et al., 2022). A guarantee curve illustrates
the relationship between a guaranteed outcome given a varying input condition (i.e.,
guaranteed power output of a PV plant given varying irradiance levels). In other
cases, an analytical guarantee formulation can be obtained (Urban, 2009). Then, a
case-specific guarantee is the output of the guarantee algorithm. This can either
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be a fixed-guarantee for given, case-specific input parameters (Urban, 2009), or a
curve that describes varying guarantees conditioned on exogenous input parameters
(Ackermann et al., 2022; Li et al., 2023c). Eventually, the risk and competitiveness
of the formulated guarantees is evaluated in a risk analysis step, which mostly
focuses on describing the distribution of the results of the guarantees. This may
include evaluating the mean of the distribution (Ackermann et al., 2022), confidence
interval width (Van Lint and van Zuylen, 2005), specific percentiles or Value-at-Risk
measures (Vehviläinen and Keppo, 2003; Ackermann et al., 2022), or the variance of
the results (Luo and Wu, 2018).

8.1.4 Contributions

Based on the state-of-the-art research and the resulting research gaps, we make the
following contributions:

• General contribution: We address the gap between the theoretical flexi-
bility potential of residential energy systems and the observed reluctance of
households to adopt dynamic tariffs in practice. Our approach introduces a
comprehensive modeling framework for home energy management systems, ex-
plicitly incorporating building thermal inertia and behavioral constraints. To
mitigate the uncertainty that hinders adoption, we propose a novel mechanism
of household-level electricity price guarantees. These guarantees provide cost
predictability for households while enabling aggregators to harness residential
flexibility potential, effectively lowering barriers to dynamic tariff adoption and
fostering greater alignment between consumer behavior and market signals.

• Specific contribution (1): We formulate a comprehensive cost minimiza-
tion framework for dynamic tariffs, integrating diverse flexibility potentials.
These include PV generation, battery storage, thermal storage, and the often-
overlooked impact of building-level insulation and modernization status on
thermal inertia. Additionally, we account for behavioral constraints such as
occupant-defined setpoint profiles. This holistic approach combines technical
and behavioral dimensions to more accurately capture the real-world flexibility
potential of households, providing a practical basis for effective demand-side
management strategies.
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• Specific contribution (2): We quantify the value generated for aggregators
through the acquisition and management of household flexibility potentials,
providing a detailed assessment of the economic benefits derived from the sug-
gested guarantees.

• Specific contribution (3): We predict and interpret household-level elec-
tricity price guarantees using a quantile regression approach and evaluate their
reliability to ensure effective mitigation of uncertainty for aggregators.

8.1.5 Article organization

This article is structured as follows: Section 8.2 presents the proposed guarantee
prediction methodology, which adapts a sector-agnostic guarantee-giving scheme to
the context of electricity price guarantees. We detail our home energy management
system optimization model, which integrates household flexibility potential and op-
erational constraints into the decision-making process. In addition, we describe the
Monte Carlo simulation process, the utilized quantile regression method, and how
we evaluate the associated risks of given guarantees. Section 8.3 describes our model
validation. In particular, we introduce the building typology that serves as input for
our thermal building models, heat pump and thermal storage sizing decisions, empir-
ical setpoint data, and real-world distributions of PV and BESS installations, as well
as price and weather data. Section 8.4 presents the results of the model validation.
We start with a validation of the modeled behavior of home energy management
systems and benchmark it against actual empirical data of the German building
stock. We then evaluate the calculated price guarantees. Finally, we investigate the
factors that influence the level of price guarantees. In Section 9.7.3, we discuss the
implications of our study and conclude in Section 8.6.

8.2 Guarantee Model
We adapt the previously introduced sector-agnostic framework for guarantee algo-

rithms (Figure 8.1) to the specific context of this study. In particular, we design an
algorithm that proposes household-specific electricity price guarantees in exchange
for granting the operator the right to manage the household’s flexibility potential in
accordance with the household’s stated preferences.
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The steps of the proposed method are illustrated in Figure 8.2. At the core of this
process is the observation of household appliance endowments and prefer-

ences, which ultimately shape the flexibility potential of each household (Stute and
Klobasa, 2024; Sperber et al., 2020). Household endowments encompass the build-
ing type, modernization measures (e.g., improved insulation), PV systems, BESS,
heat pump installations, and thermal storage. Preferences determine whether and
to what extent the household permits the operator to adjust its heating setpoint
profile (e.g., lowering the indoor temperature during high-price periods). The opera-
tion of household flexibility potential is subsequently modeled using a mixed-integer
linear program, which captures the household-level home energy management

optimization process.

Figure 8.2.: Electricity price guarantee methodology

We divide the investigation period into training and testing years. From the
training years, exact setpoint profiles, day-ahead prices (which serve as input for the
utilization of flexibility potential), and weather data (outside temperature and solar
irradiance) are known. Then, yearly household electricity costs under dynamic pric-
ing can be calculated, given any combination of endowment and preferences. The
resulting total household electricity costs can be divided by the total consumption to
calculate a price per unit of consumed electricity, which could have been guaranteed
to a household. To build up a historical dataset that can serve as input for the
guarantee algorithm, a Monte Carlo Simulation of potential endowment, prefer-
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ence, locations (which influence weather and irradiance), and historical price years is
conducted. We resort to a stochastic Monte Carlo approach since calculating all pos-
sible parameter combinations would be computationally infeasible (Ackermann et al.,
2022). In the resulting data set, the actual weather and price time series are reduced
to singular data points (average electricity price, average temperature), based on the
assumption that aggregators can hedge future electricity prices (Bruninx et al., 2019)
and make assumptions about future weather data. The generated data sets depict
the relationship between household characteristics, spot market prices, weather, and
potential price guarantees.

Then, the generated data set is used to suggest price guarantees for the testing
years based on randomly drawn combinations of endowment and preferences and
only the average spot market and weather data points for future years (given the
assumption that the operator can hedge these). The underlying temperature setpoint
profiles used in the test period have not been seen in the training period. A quantile

regression model (Somers and Whittaker, 2007) is employed to predict suitable
price guarantees given the household characteristics. We employ a quantile regression
model due to its ability to extrapolate, the ability to consider varying risk preferences
and the interpretability of input factors (Somers and Whittaker, 2007).

Eventually, the suggested household-specific price guarantees are calculated
for the test period. The price guarantee suggestion can be seen as the real-world
decision process of an aggregator under uncertainty (since exact future day-ahead
prices, weather data, and setpoint profiles cannot be known). We then employ the
home energy management optimization model for these exact years, using perfect
knowledge of prices, weather, and setpoints. This allows us to conduct a risk anal-

ysis of the provided guarantees. We then compare the risk profiles of the outspoken
price guarantees with those of a scenario where households remain subscribed to
constant flat-rate electricity prices, and aggregators have no control over household
flexibility. This comparison highlights the relative trade-offs in financial risk and
operational benefits, providing aggregators with insights into whether transitioning
households to dynamic tariffs with price guarantees is a more viable strategy than
maintaining the status quo. Finally, the impact and hence importance of the input

variables on the proposed guarantee is analysed in order to investigate the main
factors determining household-level electricity price guarantees. This can include
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household characteristics (e.g., building insulation, thermal and electrical storage
capacity), preferences (e.g., allowed setpoint deviations), weather characteristics and
raw market characteristics (e.g., mean annual electricity price).

8.2.1 Home energy management system optimization model

The following section presents the mathematical formulation of the underlying home
energy management system optimization model, building on state-of-the-art research
in cost minimization modeling (Stute and Klobasa, 2024; Semmelmann et al., 2024),
building thermal dynamics (Sperber et al., 2020), heat pump operations (Verhelst
et al., 2012; Emhofer et al., 2022), thermal storage systems (Fischer et al., 2017b),
and BESS integration (Semmelmann et al., 2024). The objective of the energy
management system is to minimize household costs, considering time-varying spot
market prices, household load, PV generation, and flexibility potential. Household
load comprises the common load of appliances and the electricity demand induced
by the heat pump. The flexibility potential is determined by a potential BESS
installation, the operational flexibility of the heat pump and a backup heater (which
is used when the heat pump’s thermal power is not sufficient), building thermal
inertia, and the possible presence of thermal storage, as well as some potentially
granted thermostat setpoint flexibility.

Objective function: The objective function of a given household seeks to min-
imize its yearly electricity costs Ctot. (Equation 8.21). These yearly costs are com-
puted as the sum of the household’s electricity consumption Etot.

t multiplied by the
spot market prices pspott , minus the PV generation fed back to the grid EPV,ext.

t mul-
tiplied by the feed-in tariff pFIT

t at each time step t:

minCTot. =
∑
t

(
ETot.

t · pspott − EPV,Ext.
t · pFIT

t

)
(8.1)

The optimization problem is subject to the following constraints that govern the
physical and comfort constraints of the household:
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Etot.
t = EHH

t + EHP
t + EHR

t +
1

ηBESS
· EBESS,Ch.

t

− ηBESS · EBESS,Dch.
t − EPV,Int.

t , (8.2)

EPV,Tot.
t = EPV,Int.

t + EPV,Ext.
t , (8.3)

Etot.
t · EPV,Ext.

t = 0, (8.4)

EHH
t , EHP

t , EBESS,Ch.
t , EBESS,Dch.

t ,

EPV,Int.
t , EPV,Ext.

t ≥ 0. (8.5)

In Constraint 8.2, the total energy consumption is expressed as the sum of the
household load EHH

t , the heat pump consumption EHP
t , the backup heater consump-

tion EHR
t , and the BESS charging demand EBESS,Ch.

t , minus the PV generation con-
sumed internally (EPV,Int.

t ) and the discharged energy from the BESS (EBESS,Dch.
t ).

The BESS inverter efficiency is represented by ηBESS.
In Constraint 8.3, the total production of the PV installation is divided into con-

sumed generation and the remainder that is fed into the grid, accounting for potential
profits from feed-in tariffs. The mutual exclusivity constraint in Constraint 8.4 en-
sures that PV generation is only fed to the grid once the household’s demand has
been satisfied. Additionally, the non-negativity of all energy components is enforced
in Constraint 8.5.

The optimization problem could be altered to account for alternative regulatory
regimes, for instance, by compensating the PV feed-in with spot market prices or by
allowing BESS to discharge into the grid. However, for the sake of conciseness, we
orient our formulation around the regulatory environment typically used in feed-in
tariff environments (Semmelmann et al., 2024).

Battery operation: The household BESS is operated under the following con-
straints:
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EBESS,Ch.
t , EBESS,Dch.

t ≤ PBESS,Max. · ∆t, (8.6)

EBESS
t+1 = EBESS

t + EBESS,Ch.
t − EBESS,Dch.

t , (8.7)

0 ≤ EBESS
t ≤ EBESS,Max., (8.8)

N cycles ≥ 1

2 · EBESS,Max.

T∑
t=0

(
EBESS,Ch.

t + EBESS,Dch.
t

)
, (8.9)

In Constraint 8.6, the energy charged to and from the BESS EBESS,Ch.
t and

EBESS,Dch.
t is constrained by the maximum BESS power PBESS,Max. multiplied by

the duration of a time step ∆t. In Constraint 8.7, the energy stored in the battery
EBESS

t+1 is updated as a result of charging and discharging operations and the previous
state of charge. The stored energy is further restricted by the BESS energy capacity
EBESS,Max., as described in Constraint 8.8. Notably, in cases where a household does
not possess a BESS, EBESS,Max. = 0, thereby prohibiting any charging or discharging
operations. Finally, in Constraint 8.9, the yearly full equivalent cycles of the BESS
are limited to prevent excessive usage and the resulting degradation (Semmelmann
et al., 2024).

Heat pump operation and thermal constraints: The operation of the house-
hold’s heat pump is designed to maintain the thermal comfort of the inhabitants,
defined by the manually selected thermostat set point T set

t at each time step. We
model the impact of heat pump-generated thermal energy on indoor temperature
while considering outdoor temperatures, irradiance, and the building structure. To
this end, we implement a 1R1C reduced-order thermal model, also referred to as
an RC model (Sperber et al., 2020; Wang et al., 2019c). These RC models simplify
the thermal dynamics of buildings by using analogies of resistors (R) and capacitors
(C) to represent heat transfer and the thermal storage capacity of building materi-
als (Wang et al., 2019c). The specific RC values depend on the building’s thermal
properties, such as insulation, construction materials, window size, and window type.

The equations governing the indoor and outdoor temperatures in relation to ex-
ternal heat inputs and the building’s structure based on the discrete formulation of
the 1R1C differential equation from Zhang et al. (2024) are as follows:
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Tt = Tt−1 +
1

Ria ∗ Ci
(T out

t − Tt) +
Qc

t−1 + Qi
t−1

Ci
(8.10)

In this equation, T in
t represents the indoor air temperature at time t, T out

t is the
outdoor temperature, Qc

t refers to the thermal energy provided by the controllable
equipment (e.g., heat pump, backup heater, thermal storage), Qi

t is the thermal
energy from irradiance, Ria is the thermal resistance between the building interior
and envelope, and Ci represents the thermal capacitance of the indoor air.

The thermal input from irradiance, Qi
t, is defined as:

Qi
t = PsȦi (8.11)

where Ps is the solar irradiation and Ai is the effective window area for absorption
of solar heat gains on internal air (Sperber et al., 2020).

We couple the thermal energy generated by the heat pump and the electrical energy
EHP

t required for that in Equation 8.12, based on the Coefficient of Performance
(COP) of the heat pump:

QHP
t = COPt · EHP

t , EHP
t ≤ EHP,Max. (8.12)

The COP is determined by the outdoor temperature T out
t and is derived from

Verhelst et al. (2012), based on an air-to-water heat pump system connected to a
residential floor heating system:

COP (T out
t ) = c0 + c1T

out
t + c2Tw,s + c3(T

out
t )2 + c4T

2
w,s + c5T

out
t Tw,s (8.13)

The parameters c0, c1, c2, c3, c4 and c5 are based on Verhelst et al. (2012); the
water supply temperature Tw,s is set at 45°C based on field measurements (Emhofer
et al., 2022).

The total heating demand Qc
t can be satisfied by the heat pump thermal load QHP

t ,
the load discharged from the thermal storage QSt.,Dch.

t and the backup heater load
QHR

t . We model optional thermal storage installations (in the form of a buffer tank)
by setting up an energy balance of the storage like in Fischer et al. (2017b), neglect-
ing storage losses to the room and assuming homogeneous temperature distribution
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within the tank:

Qc
t = QHP

t + QHR
t + ηSt. ·QSt.,Dch.

t − 1

ηSt.
·QSt.,Ch.

t (8.14)

In this equation, the thermal demand Qt is met by the heat pump generation QHP
t

and the thermal energy discharged from the storage (QSt.,Dch.
t ), minus the energy

charged into the storage (QSt.,Ch.
t ). The efficiency losses of the storage are represented

by ηSt.. The thermal load of the backup heating element, QHR
t , is equal to EHR

t ,
as resistance heating operates with a COP = 1. We note that we only consider
thermal demand for heating, which represents the largest thermal consumption in
households (Berger and Worlitschek, 2018) and ignore running hot water demand
(as in Le Dréau and Heiselberg (2016); Hedegaard et al. (2017)), which we leave for
future research.

We limit the thermal charging and discharging rate to a maximum rate
QCh./Dch.,Max., to model realistic and feasible operation speeds (Finck et al., 2018):

QSt.,Dch.
t , QSt.,Ch.

t ≤ QCh./Dch.,Max. (8.15)

To model the thermal energy stored in the tank, we track its current charge QSt.
t

over time:

QSt.
t+1 = QSt.

t + QSt.,Dch.
t −QSt.,Ch.

t (8.16)

The maximum energy stored in the thermal storage is limited by the size of the
storage QSt.,Max.:

0 ≤ QSt.
t ≤ QSt.,Max. (8.17)

Analogous to the BESS, QSt.,Max. = 0 implies that no buffer tank is installed.
Both the maximum thermal energy stored in the buffer tank and the maximum
discharging power are derived from an experimental evaluation (Finck et al., 2018).

The indoor temperature T in
t at time step t may deviate from the setpoint temper-

ature T set
t . This deviation is denoted as ∆Tt, which is defined as:

T in
t − T set

t = ∆Tt (8.18)
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Finally, we denote deviations from the actual indoor temperature and the setpoint
temperature as ∆Tt:

∆Tt = |T in
t − T set

t | (8.19)

We use these deviations to calculate discomfort costs, which are then integrated
into the household optimization problem based on Baeten et al. (2017). We imple-
ment discomfort costs in the optimization problem to incentivize an operation ac-
cording to the setpoint profile set by the household. The discomfort cost CDiscomfort

t is
determined by the amount of deviation beyond a permissible flexibility range TFlex.
If the deviation ∆Tt exceeds the allowed flexibility TFlex, a discomfort cost is applied.
Otherwise, the cost is zero:

CDiscomfort
t =

pDiscomfort(∆Tt − TFlex), if ∆Tt > TFlex

0, otherwise
(8.20)

The discomfort costs pDiscomfort are set relatively high (=100EUR
K

to prioritize ther-
mal comfort over cost savings.

The originally introduced objective function is complemented with the discom-
fort costs to achieve cost savings while maintaining thermal comfort for inhabitants
(Baeten et al., 2017):

minCTot. =
∑
t

(
ETot.

t · pspott − EPV,Ext.
t · pFIT

t + CDiscomfort
t

)
(8.21)

8.2.2 Monte Carlo Simulation

We conduct a Monte Carlo simulation to generate possible cost outcomes (and hence
cost guarantees) for a diverse dataset of household, market, and weather parameters,
which we subsequently use to train an algorithm for predicting cost guarantees at the
individual household level. The Monte Carlo method is a widely utilized approach
for estimating result distributions based on random input parameters and uncertain
variables (Hammersley, 2013; da Silva Pereira et al., 2014). We employ a Monte Carlo
simulation because an exhaustive simulation of all potential parameter combinations



Guarantee Model 185

is too computationally expensive5.
We simulate multiple iterations of price guarantee calculations, as described in the

mathematical formulation in Section 8.2.1, using randomly drawn input parameters
detailed in Section 8.3. The generated dataset serves as input for price guaran-
tee forecasting in Section 8.2.3, where the resulting distributions are analyzed to
evaluate risks from the perspective of the aggregator. The sample size and the con-
vergence of the Monte Carlo simulation are evaluated based on the Central Limit
Theorem (Yang, 2011), which ensures the stability and reliability of the Monte Carlo
simulation by approximating the sampling distribution of the mean as normal with
increasing sample size. Convergence is validated by monitoring the width of the 99%
confidence interval for the target variable, which stabilizes when additional iterations
no longer significantly impact the confidence interval.

8.2.3 Quantile regression-based guarantee prediction and benchmark

methods

After having generated the underlying sample of price guarantees given different
household characteristics and price and weather years, we employ a quantile re-
gression to build a price guarantee prediction model (Somers and Whittaker, 2007).
Quantile regression is a statistical method used to estimate specific percentiles (quan-
tiles) of a target variable based on a set of independent variables. Unlike linear regres-
sion, which predicts the average relationship between variables, quantile regression
focuses on different points of the distribution, such as the median or upper/lower
percentiles. This makes it particularly useful for the prediction of the desired price
guarantees, as it allows aggregators to tailor guarantees to different levels of risk
tolerance by focusing on specific segments of the price distribution.

The quantile loss function, ρτ , for a given quantile τ ∈ (0, 1) is defined as follows:

ρτ (y) = y(τ − Iy<0(y)),

5For instance, assuming 12 different building types, 3 modernization options, 100 setpoint profiles,
4 PV sizes, 4 BESS sizes, 4 cities, and 4 price years, the total number of combinations would be
12 · 3 · 100 · 4 · 4 · 4 · 4 = 921, 600. If each simulation iteration required 1 minute of computation
time, the process would take approximately 921,600 minutes, or around 639 days. Thus, a
Monte Carlo-based approach is adopted to ensure computational feasibility.
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where Iy<0 is the indicator function. By minimizing the expected loss Eρτ (Y − a)

with respect to a, the solution corresponds to the τ -th quantile of Y .
The presented quantile regression method can be used to balance the competi-

tiveness of the offered guarantees and the risk appetite of the aggregator. Lower
quantiles (e.g., τ = 0.1) represent guarantees offering lower prices to households,
which are riskier for the aggregator as they increase the potential for financial loss
in unfavorable market conditions. Conversely, higher quantiles (e.g., τ = 0.9) corre-
spond to higher guaranteed prices, which are less risky for the aggregator but may
be less appealing to households.

The resulting regression model enables aggregators to forecast the guaranteed
electricity price pgi for a household i as:

pgi = β0 + β1Xi1 + β2Xi2 + · · · + βpXip + ϵi,

where β0 is the intercept, β1, β2, . . . , βp are the coefficients of the predictors
Xi1, Xi2, . . . , Xip (e.g., size of the BESS, size of the thermal storage, average price of
the investigated year), and ϵi represents the residual error.

We set τ = 0.5 for a balanced aggregator risk profile and conduct an additional
sensitivity analysis for alternative quantiles.

In our approach to calculating price guarantees, we use the quantile regression to
forecast relative changes as percentage deviations from the average electricity price
rather than directly predicting the absolute guarantees. This method has proven
more effective in preliminary experiments, as it focuses on the underlying relation-
ships between the guarantees and the input features, rather than being influenced
by the absolute magnitude of electricity prices. By transforming the predicted per-
centage deviations back into absolute guarantees using the average electricity price,
we ensure that the model remains adaptable to varying market conditions. This
approach reduces the risk of overfitting to specific price levels or anomalies in the
training data, thereby enhancing the robustness of the model, especially in years
characterized by high price volatility. It also improves the model’s generalizability,
as percentage deviations inherently normalize the data.

We evaluate the performance of the quantile regression-based household-level guar-
antees by benchmarking them against a baseline scenario. In this baseline, house-



Guarantee Model 187

holds are offered a uniform retail rate by their utility or aggregator, and operational
control remains with the local home energy management system rather than be-
ing transferred to the aggregator. The uniform retail rate is determined as the
volume-weighted wholesale market price, calculated using representative standard
load profiles for the respective years (Katz et al., 2016; Bundesverband der Energie-
und Wasserwirtschaft e.V., 2024). This baseline provides a realistic reference point,
as uniform retail rates are widely used in existing energy market structures, allowing
for meaningful comparisons with the proposed guarantee model. Moreover, by keep-
ing operational control local, the baseline highlights the added value of transferring
control to the aggregator.

8.2.4 Risk evaluation and feature importance

We can evaluate the quality of the predicted guarantees by comparing them to the
actual achievable profit guarantee (pg∗i ) in the test years. The calculation of actual
achievable guarantees is also subject to information not available to the prediction
algorithm, e.g., the realization of thermostat setpoint profiles, detailed weather pro-
files, and actual day-ahead price curves.

When assuming that a household i has been granted guarantee pgi , we compare
the realized total household costs CTot. with the guaranteed costs considering the
guaranteed rate. The resulting difference is denoted as "household result" in the
remainder of the study. The following metrics are applied to analyze the risk of the
given price guarantees based on the distribution of household results:

• Realized average electricity cost per unit: This metric evaluates the
yearly electricity costs per unit of consumed electricity for households under
different flexibility management scenarios. It captures the economic impact of
aggregator-controlled flexibility, where aggregators optimize household energy
use to respond to dynamic electricity prices, compared to household-controlled
flexibility, which typically focuses on maximizing PV self-consumption. The
metric highlights the cost savings achieved through optimized energy manage-
ment and market price responsiveness.

• Mean household result: The mean household result is calculated for each
test year by comparing the pre-determined guarantees granted to households
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with the actual costs that accrued during the year. Based on (Ackermann
et al., 2022), we interpret a mean result of 0 as ideal, as it reflects a perfect
balance where the guarantee-giving entity neither incurs excessive losses nor
gains disproportionate profits. This ensures that the guarantees align closely
with the actual household costs, maintaining fairness and financial sustainabil-
ity while reinforcing the reliability of the prediction algorithm. We note that
a household result of zero does not necessarily mean that there are no profits
for the aggregator, since he could add a profit margin on this value.

• Width of Distribution: We evaluate the accuracy of the household result
distributions by calculating the width of the 5%-95% confidence interval. The
width of a distribution is a key metric for evaluating variability and reliability
(Van Lint and van Zuylen, 2005). In our case, narrower distributions of house-
hold results, reflected by a smaller width of the confidence interval, would be a
sign of improved predictability and consistency in the outcomes of the guaran-
tee framework. This makes width a particularly suitable metric, as it directly
captures the variability in household results. By minimizing the width, the
aggregator can ensure a more uniform and predictable financial exposure.

We evaluate the factors influencing potential price guarantees by examining the
effect size, direction, and significance of the coefficients in an ordinary least squares
linear regression, using the relative difference between the guarantees and the average
electricity price for the respective years as the target variable.

8.3 Model validation
In this section, we describe the parameters and distributions we use in the Monte

Carlo simulation. We base our simulations on empirical price, weather and building
data from Germany.

8.3.1 Building models

We model the building thermodynamics of the investigated households using
reduced-order 1R1C thermal response models, which consolidate the thermal prop-
erties of buildings into a single thermal resistance (R) and capacitance (C) network.
This approach provides a computationally efficient and accurate representation of



Model validation 189

thermal dynamics (Sperber et al., 2020). The input for these models is derived
from representative German building typologies, encompassing various construction
periods and insulation states. These typologies were developed as part of a large-
scale statistical analysis of the European (and specifically German) building stock
(Ballarini et al., 2014).

The dataset includes 12 distinct building types (as shown in Table 8.1) and three
modernization variants: original condition, conventional renovation with moderate
insulation, and deep renovation with high insulation. We utilize the 1R1C values
computed in Sperber et al. (2020), along with the distribution of building sizes and
living areas, which are subsequently used to determine appropriate heat pump sizes
as follows.
Code of building type Construction period Heated living area in m2 Building stock (in thousands) Ai Ci Ria

SFH A < 1859 199 330 1.45 3.17 4.76
SFH B 1860 - 1918 129 966 1.12 2.74 6.08
SFH C 1919 - 1948 275 1,131 2.89 3.82 3.35
SFH D 1949 - 1957 101 859 0.92 2.10 7.51
SFH E 1958 - 1968 110 1,509 1.36 2.72 5.57
SFH F 1969 - 1978 158 1,507 1.71 3.33 5.27
SFH G 1979 - 1983 169 704 1.35 2.67 6.22
SFH H 1984 - 1994 137 1,160 1.75 2.88 6.19
SFH I 1995 - 2001 111 1,035 2.00 2.09 7.31
SFH J 2002 - 2009 133 907 5.11 8.00 7.35
SFH K 2010 - 2015 160 494 5.61 8.00 6.59
SFH L > 2016 160 258 5.72 8.00 6.71

Table 8.1.: Summary of single-family house (SFH) typologies for the building stock at the
end of 2018

8.3.2 Heat pumps and thermal storage

We derive the size of the heat pump from the living area of the investigated building
types presented in Table 8.1. We follow an established sizing rule (Fraga et al., 2018),
which recommends a nominal heat pump power of 69.8 W/m2 for non-retrofitted
buildings, across all building types, including retrofitted ones. This conservative
approach ensures sufficient capacity for peak heating demands and simplifies the
simulation process. Additionally, we assume that every household is equipped with
a 6kW backup heater (Schlemminger et al., 2022). The heat pump COP is calculated
based on field measurements from an air-to-water heat pump with a water supply
temperature of 45°C, fitted to a polynomial function of the outside temperature
(Emhofer et al., 2022). Detailed parameters for this calculation are provided in the
Supplementary Material (see Table A.1).
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We also model the potential inclusion of a thermal storage installation. We as-
sume that a 0.5m3 (500l) thermal storage water tank provides 17.8kWh of thermal
flexibility potential, which can be fully discharged in one hour (Finck et al., 2018).
Currently, there is no empirical data on the prevalence and distribution of thermal
storage in heat pump-equipped households. Therefore, we assume that 50% of such
households are equipped with additional heat storage, with half of these having a
small 500-liter tank and the other half a large 1,000-liter tank. This assumption
aligns with product variants offered by major heat pump and water storage manu-
facturers (Vaillant Group, 2024).

8.3.3 Thermostat setpoints

The thermostat settings of the investigated households represent a source of flexibility
but also uncertainty for aggregators. To address this, we utilize 1,000 empirical yearly
setpoint profiles from Luo, Na and Hong, Tianzhen (2022), measured in 2017. We use
80% of these profiles during the Monte Carlo simulation, reserving the remaining 20%
for the test period. This approach ensures that the setpoint profiles of the households
in the test period are unseen during training, thereby reflecting the decision-making
challenges and uncertainties that aggregators would encounter in practice. It should
be noted that the setpoint dataset from Luo, Na and Hong, Tianzhen (2022) is based
on a US sample, which may exhibit heating patterns differing from those typical in
other countries. However, there is no comparable dataset available.

Additionally, we model the option for households to adopt a nighttime setback
feature, in which the thermostat temperature is reduced to 15.6°C between 10 PM
and 6 AM, as described in Moon and Han (2011). This feature is incorporated to
evaluate whether offering such a contract option affects the possible price guaran-
tees. We assume that 75% of households opt for unobstructed thermostat operation,
corresponding to a “heating-as-desired" scenario. This reflects findings from studies
such as Sachs et al. (2012), which indicate that a significant majority of users priori-
tize maintaining thermal comfort over energy-saving behaviors, with many overriding
energy-saving thermostat settings or avoiding setback options entirely. Furthermore,
we assume that all households may offer 0°C, 1°C, or 2°C setpoint flexibility as a
contract detail (i.e., allowing the operator to deviate from the desired setpoint),
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with these values being equally probable for the Monte Carlo simulation. This con-
tracted flexibility introduces the potential for gaming (e.g., offering a 2°C flexibility
potential and subsequently increasing the daily setpoint profile by 2°C). Designing
corresponding incentive systems to ensure the revelation of correct underlying pref-
erences remains a subject of future research.

8.3.4 PV and BESS

We derive the distribution of PV installations and BESS sizes from empirical data
of a German governmental registry of energy-related installations (Marktstamm-
datenregister, 2024), which we parsed and processed using the open-mastr package
(Kotthoff et al., 2024). In our analysis, we focus on PV systems with a nominal
power of 10kW or below and BESS systems with a capacity of 10kWh or less, which
we consider representative of typical household sizes (Hartner et al., 2017). This
excludes large-scale and industrial storage installations, which are beyond the scope
of this study. As of December 12th, 2024, there were 1,672,942 BESS installations
and 3,210,749 PV systems recorded within the set range.

We assume all simulated households to be equipped with a PV system, as we con-
sider this a viable future scenario for those households that might provide demand-
side flexibility given the rapidly increasing number of PV installations (Destatis,
2024a). Since larger PV systems are typically associated with larger batter stor-
age capacities, we do not assume independent distributions for PV sizes and BESS
capacities in our Monte Carlo simulation. Instead, we define four PV size buckets
(0.1–2.5kW, 2.5–5kW, 5–7.5kW, 7.5–10kW) and five BESS capacity buckets (0kWh
[no storage], 0.1–2.5kWh, 2.5–5kWh, 5–7.5kWh, 7.5–10kWh). The resulting distri-
butions are shown in Figure A.1 in the Supplementary Material.

An analysis of this data shows that larger PV installations tend to correlate with
larger storage systems, while smaller PV systems are predominantly paired with
smaller or no BESS. In our Monte Carlo simulation, the PV size for each household
is first drawn from the defined PV size buckets based on their assigned probabilities.
Subsequently, the BESS size is drawn from the corresponding BESS capacity bucket
associated with the selected PV size bucket. This conditional sampling approach
reflects the observed real-world relationship between PV and BESS sizes, providing
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Figure 8.3.: Mean daily day-ahead spot market prices for the DE/LU market zone

a more realistic representation of household configurations in the simulation.
Based on the drawn PV sizes, hourly PV generation time series are created follow-

ing the widely-proliferated method from Pfenninger and Staffell (2016), incorporating
variations in cloudiness, irradiance, and other weather factors, while assuming a 10%
system loss, 35° tilt, and 180° azimuth, though real-world panels vary in azimuth,
tilt, and efficiency. However, for the sake of conciseness, we consider one uniform
system. The allowed BESS Equivalent Full Cycles are (N cycles) set at 365, which
represents one cycle per day. The maximum discharge power PBESS,Max is calculated
by multiplying the sampled BESS size by 0.41, based on German field measurements
(Semmelmann et al., 2024).

8.3.5 Day-ahead prices and grid fees

The dynamic tariffs in our study are based on the day-ahead market price of the
German market zone in the European electricity market, obtained from Bundesnet-
zagentur (2024c). We chose the German-Luxembourg market zone as it is the largest
and most liquid market zone within the European market. We depict the observed
prices in Figure 8.3, showing high price fluctuations from 2021 onwards. The years
2021, 2022, and 2023 are then used as test periods to evaluate the model’s perfor-
mance even under challenging market conditions characterized by high price volatil-
ity. esting the model in such an environment is important to assess its robustness and
adaptability, ensuring that it can effectively handle extreme fluctuations and provide
reliable outcomes even under highly dynamic and uncertain market scenarios.

In addition, we consider grid charges, as well as taxes and levies from Bundesver-
band der Energie- und Wasserwirtschaft (BDEW) (2024) in our study, to model
household electricity costs realistically. We use yearly average electricity prices as
input for the quantile regression, as described in Section 8.2.3. The resulting grid
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charges, taxes, levies, average market prices and volume-weighted average prices are
shown in Table Table A.2 in the Supplementary Material.

8.3.6 Weather data

The underlying thermal building model is influenced by two weather variables: the
solar irradiance and outside temperature (Sperber et al., 2020). We obtain weather
data for four German cities, Munich, Cologne, Berlin, and Potsdam (Yang et al.,
2021; Visual Crossing, 2024), to model the impact of different weather patterns and
associated temperature differences.

Figure 8.4.: Mean weekly temperatures and solar irradiation (GHI) in the four investigated
cities

Figure 8.4 shows the temperature and Global Horizontal Irradiance (GHI) over the
target cities and investigated years. We observe the same pattern over all cities (lower
temperatures and irradiance in winter, higher values in the summer), with some
regional differences. For instance, Munich consistently exhibits lower irradiance,
while temperatures tend to be higher in Cologne.

The RC values in Sperber et al. (2020) are fitted based on Southern Vertical
Irradiance instead of the more common Global Horizontal Irradiance. Hence, we
transform the GHI values in an additional step to Southern Vertical Irradiance with
the Python package pvlib (Holmgren et al., 2018). We depict the resulting change of
the irradiance curve in the Supplementary Material in Figure A.2.

8.4 Results
The results are divided into three parts: First, we validate the outcomes of our

home energy management optimization and thermal models by comparing the simu-
lated household electricity and thermal energy demand to official German statistics.
Second, we analyze the economic value of aggregators taking over the flexibility po-
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tential of households. Third, we examine the resulting price guarantees and the
associated risk for aggregators. And fourth, we investigate the most important fac-
tors that influence the guaranteed prices.

8.4.1 Home energy management system validation

We optimize the household operation based on the model from Section 8.2. While
with fixed guaranteed prices, households would not have the incentive to shift de-
mand, the aggregator would be exposed to dynamic price risk. To manage the risk,
the aggregator actively utilizes household flexibility, which may involve optimizing
battery and thermal storage operations or adjusting building (pre-)heating sched-
ules. These actions are performed within the boundaries of user-defined comfort
constraints.

In Figures 8.5, 8.6 and 8.7, we compare the way the home energy management
system operates based on different flexibility provision on the same day for the same
household (a single family home (SFH) A building that has been deeply renovated,
an 8.75kW PV installation, 8.75Wh BESS, 1,000-liter thermal storage buffer tank,
1°C of granted setpoint flexibility, in Berlin on the 20th January, 2022).

Figure 8.5a illustrates the electrical energy balance of the household, compar-
ing demand components (heat pump, backup heater, household consumption, BESS
charging) and supply components (PV production, BESS discharging) alongside the
day-ahead market prices for the given day. The resulting power drawn from the
grid is depicted as a solid black line. In the case of the home energy management
system controlling its flexibility potential on its own, the household primarily fo-
cuses on maximizing self-consumption during the PV generation peak around noon.
However, during the evening price peak, the household remains unaffected by price
fluctuations, leading to most of the power being drawn from the grid. Conversely,
in the aggregator flexibility scenario, the flexibility potential is utilized to minimize
power draw from the grid during the evening price peak (Figure 8.5b). In this case,
heat pump loads are shifted forward temporally, and the BESS is discharged during
peak price times, having been charged during the low-price period at night.

We present the outcomes of the thermal building model in Figure 8.6b, which
shows the desired setpoint temperature (dotted grey line), the actual indoor tem-
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(a) Household controls flexibility (b) Aggregator controls flexibility

Figure 8.5.: Electrical energy balance.

(a) Household controls flexibility (b) Aggregator controls flexibility

Figure 8.6.: Thermal model

(a) Household controls flexibility (b) Aggregator controls flexibility

Figure 8.7.: Thermal storage operation
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(a) Household electricity consumption

(b) Thermal energy Demand

Figure 8.8.: Histogram of yearly household electricity consumption and thermal demand of
the whole sample

perature (green line), the ambient temperature (solid grey line), and the thermal
energy provided by the heat pump and the discharge of the thermal storage. In both
scenarios, we observe that the heat pump operates in the morning to accommodate
a setpoint temperature increase. Later in the day, the heat pump activates earlier
than in the case where the aggregator has no control over the household flexibility,
and the thermal storage is discharged to mitigate the evening price peak (Figure
8.6b). The granted 1°C setpoint flexibility is employed to pre-heat the building dur-
ing low-price periods, allowing the indoor temperature to decline during peak-price
hours, effectively using the building as thermal storage.

Figure 8.7b also displays the operation of the thermal storage. We can observe
that in the dynamic case, the thermal storage is charged during the night with lower
prices.

We proceed to evaluate the household electricity and thermal energy demand
across the sample obtained after 9,404 iterations of the Monte Carlo simulation as
depicted in Figure 8.8. We have analyzed the convergence of the Monte Carlo simu-
lation according to the Central Limit Theorem, as described in Section 8.2.2. After
2,805 runs, convergence based on a 99% confidence interval has been reached, as
depicted in Figure A.3 in the Supplementary Material. These results are compared
with German average values. We assume a benchmark average household electricity
consumption of 3,383 kWh, based on official German statistics from Destatis (2024c)
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Figure 8.9.: Costs of households per unit of consumed electricity

and an average annual heat pump electrical consumption of 34.5 kWh/m2, based
on manufacturer estimates (Bosch Home Comfort, 2024). For thermal energy de-
mand, we assume an average of 130 W/m2, as reported in Destatis (2024b), which
is then multiplied by the average area of the investigated households (153 m2). The
average household electricity consumption in the sample is close to the calculated
German average value. Also the average thermal energy demand aligns closely with
the German average. For both household electricity consumption and thermal en-
ergy demand, we observe long-tailed distributions with significant outliers. These
outliers are predominantly associated with poorly insulated buildings, leading to dis-
proportionately high heat demand, consistent with findings from existing research
(Alabid et al., 2022).

The analysis conducted in this section evaluates the accuracy of the simulation
framework and modelling of the home energy management system by comparing the
resulting electricity demand to national statistics, ensuring the model’s reliability,
which is required for the design of robust price guarantees.
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(a) a) 2021 (b) b) 2022 (c) c) 2023

Fixed average electricity price, no control

(d) d) 2021 (e) e) 2022 (f) f) 2023

Individual guarantees, with control

Figure 8.11.: Distributions of household results from the aggregator’s perspective

8.4.2 Value of aggregator control over household flexibility

(a) 2021 (b) 2022 (c) 2023

Figure 8.10.: Comparison of guaranteed and realized prices per household

In this section, we evaluate the benefits of the aggregator managing household flexi-
bility by comparing the average electricity prices achieved under two scenarios: one
where the home energy management system operates based on constant electricity
prices, and another where the aggregator controls flexibility using dynamic market
prices. We note that the "aggregator controls flexibility" scenario is equivalent to
one where the household opts for a dynamic tariff-oriented control on its own. How-
ever, considering the aversion of households towards dynamic tariffs, we denote this
case in the following consistently as "aggregator controls flexibility" case.

In Figure 8.9 (and in Table A.5 in the Supplementary Material), the distribution
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of realized yearly electricity prices over all households in the sample is depicted,
demonstrating the clear economic benefits of the aggregator managing household
flexibility. Across all years, the aggregator’s control consistently leads to lower mean
average electricity prices compared to a scenario where the home energy management
system relies on constant prices and is optimized to increase self-generated PV power
consumption. The most significant relative reduction occurs in 2022, with an 8.48%
(3.4ct) lower mean electricity price, reflecting the value of adapting to dynamic
market prices during a volatile period.

While the absolute reductions in prices vary by year, they consistently translate
into meaningful percentage decreases, emphasizing the aggregator’s ability to lever-
age flexibility to optimize costs. On average, over all years analyzed, the aggregator
reduces electricity prices by 7.36% (2.5ct), underlining the consistent value of dy-
namic control across varying market conditions.

In addition, we observe that under aggregator control, the majority of households
achieved electricity prices below the volume-weighted average electricity price, which
can be interpreted as a competitive retail rate. Specifically, 78.40% of households
realized a lower price per unit of electricity consumed through dynamic control,
compared to only 32.67% in the baseline scenario.

While we show the economic benefit of dynamic tariff-oriented operation of house-
hold flexibility potentials, the observation has been made ex-post. However, since we
want to reduce the price risk for households while controlling the risk for aggregators,
we aim to suggest household-specific cost guarantees even before we know the exact
realizations of prices, weather and behaviour, which we proceed within the following
section.

8.4.3 Price guarantee risk evaluation

To overcome the loss aversion of households, we suggest that aggregators offer guar-
antees. This section is dedicated to evaluating the associated risks of these guarantees
for aggregators.

We use the previously described Monte Carlo sample to train our quantile
regression-based guarantee prediction model, which is then used to forecast guar-
antees on a household basis for the previously unseen years 2021, 2022 and 2023.
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We calculate household results based on the approach described in Section 8.2.4. We
assume that a certain electricity price has been granted to the household (either as a
usual flat household tariff or in the context of a guaranteed lower price in exchange
for the right to control the household’s flexibility potential). Then, we calculate
costs (or profits) that occur on a household basis for the aggregator. We analyze the
distributions of household results (the difference between costs that were guaranteed
and the ones that actually accrued) to evaluate the associated risks.

Figure 8.10 illustrates the household-level guarantees for each year of the study.
In an ideal scenario with perfect predictions, these guarantees would align precisely
with the actual achievable electricity prices, as represented by the blue angle bisec-
tor. However, due to the inherent uncertainties in thermostat setpoints, weather,
irradiance, PV output, and realized electricity prices, deviations between the pre-
dicted guarantees and the actual prices are evident. This discrepancy is especially
noticeable in 2022, where the forecasted guarantees consistently exceeded the actual
household electricity costs. The primary reason for this is the price dynamics shown
in Figure 8.3. During 2022, there were significant price spikes in the summer months.
However, the guarantee prediction algorithm is based on the average annual electric-
ity price. Since the simulated households had PV production during the summer,
the effect of these price spikes was alleviated, leading to an overestimation of the
guarantees for that year.

Overall, the quantile regression demonstrates an ability to capture the direc-
tional relationship between individual household-level guarantees and realized costs.
Households with lower guarantees generally exhibit lower realized prices, while those
with higher guarantees tend to align with higher realized costs. This finding is
significant, as it indicates that even under the inherent uncertainty of weather pat-
terns, price dynamics, and individual heating behavior, it is possible to formulate
meaningful guarantees using only household characteristics and aggregated price and
weather statistics. Furthermore, as already highlighted in Figure 8.9, most house-
holds achieve actual electricity costs below the volume-weighted average electricity
price, commonly viewed as a competitive retail rate. This reinforces the earlier ob-
servation that these households would have realized financial benefits by adopting a
dynamic tariff or guarantee structure.

However, while the majority of households benefit from guarantees and the dy-
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namic control of their flexibility potential, some households experience guarantees
and realized prices that exceed the competitive retail rate. This can occur, for ex-
ample, when a household’s heating demand often aligns with price peaks or when
the building’s limited thermal inertia restricts its thermal flexibility. The way the
operator manages these households impacts the financial outcome of the portfolio.
For example, offering these households a rate lower than the retail price could result
in financial losses, while rejecting them (or offering them rates higher than the retail
price) could improve the performance.

In Figure 8.11 and Table 8.2, the resulting distributions of profit (or loss) per
household from the aggregator’s perspective are depicted for the benchmark- and
guarantee-case. A desirable distribution of household results is characterized by a
mean close to zero, indicating that the aggregator has accurately predicted guarantee
values and has a balanced portfolio (Ackermann et al., 2022). A mean household
result close to zero ensures that aggregators neither incur excessive losses nor achieve
disproportionate gains. A mean close to zero also suggests that the guarantees align
well with actual household costs, reflecting the algorithm’s capacity to account for
diverse variables such as weather fluctuations, household consumption patterns, and
market price dynamics. Additionally, we assess the width of the distribution.

In two of the three years analyzed, the mean household results are significantly
closer to zero when the aggregator provides individual guarantees and manages the
flexibility potential. This demonstrates that offering guarantees leads to a more ac-
curate alignment with actual household costs while maintaining a balanced portfolio,
where losses from some households are offset by profits from others. However, 2022
stands out as an outlier again due to summer price spikes and overly conservative
price predictions, resulting in strongly positive household results for the aggregator
in that year.

In all three years, household-level guarantees resulted in higher mean outcomes
for the aggregator compared to scenarios without control over flexibility potential.
This suggests that guarantee contracts can provide mutual benefits: households gain
access to lower prices than the retail rate without compromising comfort, while aggre-
gators enhance their financial performance. However, this improvement comes with
a trade-off in the form of a wider confidence interval, reflecting greater variability in
household results. For example, in 2022, the baseline case showed a 90% confidence
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interval ranging from -23.64€ to 418.71€, whereas for the individual guarantees, the
interval extended from 95.49€ to 894.66€.

Case Target Year Mean Interval Width
Fixed average electricity price, no control 2021 -112.49 229.46
Individual guarantees, with control 2021 -4.29 226.37
Fixed average electricity price, no control 2022 146.52 442.36
Individual guarantees, with control 2022 459.03 799.16
Fixed average electricity price, no control 2023 -101.17 221.13
Individual guarantees, with control 2023 3.06 348.33

Table 8.2.: Results per case and target year

8.4.4 Feature importance of input factors

While the economic value of aggregators managing household flexibility and its fi-
nancial impact on the aggregator’s portfolio has been previously discussed, we now
focus on the input factors influencing guarantee levels. This is done through a lin-
ear regression analysis that links household characteristics and endowments to the
difference between the guarantees and the average electricity price for the respec-
tive years6. Interpreting the regression results provides valuable insights into the
key drivers of guarantee levels and associated savings. From an operational stand-
point, these insights could inform the development of a decision support system for
aggregators, enabling real-time guarantee suggestions tailored to customers.

The R-squared value of 0.484 indicates that the model explains 48.4% of the
variance in the relative difference between the guarantees and the average electricity
price, suggesting moderate predictive power. While the model captures key drivers,
half of the variance remains unexplained. This intuitively makes sense, given that
the model has no information about actual household behavior, and exact weather
and price curves in the respective years.

We note that all variables but the option to opt for a nighttime setback are signifi-
cant on a 0.1% level, indicating that each contributes meaningfully to explaining the
variance, and their inclusion strengthens the reliability of the model. This finding

6As detailed in Section 8.2.3, the model targets the relative differences between guarantees and
the yearly average electricity price to avoid overfitting to the price variable, thereby improving
its generalizability.
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Dep. Variable: Relative Difference Guaranteed to Avg. Price [%] R-squared: 0.484
Model: OLS Adj. R-squared: 0.483
F-statistic: 551.0 Prob (F-statistic): 0.00
BIC: 2.917e+04 AIC: 2.911e+04

coef std err t P> |t| [0.025 0.975]

const 30.9576 1.014 30.532 0.000*** 28.970 32.945
building_type -0.1691 0.022 -7.537 0.000*** -0.213 -0.125
Modernization Status -1.0983 0.094 -11.716 0.000*** -1.282 -0.915
E_s_max -0.1721 0.005 -32.879 0.000*** -0.182 -0.162
E_bess_max -1.1545 0.025 -46.742 0.000*** -1.203 -1.106
sampled_pv_size 0.1585 0.028 5.723 0.000*** 0.104 0.213
weather_avg -2.5502 0.088 -29.011 0.000*** -2.722 -2.378
flexibility -0.6179 0.094 -6.556 0.000*** -0.803 -0.433
setpoint_option_nighttime_setback 0.3495 0.178 1.958 0.050* -0.000 0.699

Table 8.3.: Summary of the OLS regression results

has operational implications for the aggregator, as it guides the selection of relevant
customer information to request before offering household-level guarantees, ensuring
a more focused and effective decision-making process.

The coefficients of the independent variables in the regression illustrate how a
one-unit increase in a given characteristic translates into a percentage point change
in the relative difference between the guaranteed price and the average electricity
price. For example, an increase in modernization status or newer building types is
associated with lower guarantee values (a greater negative relative difference to the
average price)7. This underscores the significant role of thermal building dynamics
in determining savings potential. Modernized buildings, with improved insulation
and thermal properties, function as more effective thermal mass storage, enabling
greater savings and lower guarantee levels.

The coefficient for PV size demonstrates a counterintuitive effect. This arises
from the focus on modeling the relative difference in guarantees rather than absolute
costs. While PV installations reduce overall energy consumption and household
electricity costs, they do not enhance flexibility potential. Instead, they primarily
reduce grid electricity usage during high feed-in periods, which often align with low

7We have opted to include modernization status as a continuous variable in the regression model to
simplify the analysis and allow for an approximate interpretation of its influence on the relative
difference between the guaranteed and average price. However, this approach assumes a linear
relationship between modernization status and the target variable, which may not fully capture
the distinct effects of each discrete category (1, 2, 3).
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spot market prices. A similar rationale applies to the effect of the nighttime setpoint
setback option (which is only significant on a 5% level). Although this option can
lower heating demand and reduce electricity bills, it does not add to the household’s
flexibility potential and thus has limited impact on the guarantees.

8.5 Discussion
We see uncertainty as a major obstacle to the widespread adoption of dynamic tar-

iffs: households may be discouraged by the risk of unpredictable price fluctuations,
while aggregators may avoid offering guarantees due to the difficulty of accurately
modeling household flexibility across electrical, thermal, and behavioral dimensions.
Our study addresses these challenges by demonstrating that the market-oriented
management of household flexibility, such as through an aggregator, can generate
substantial savings for households. At the same time, aggregators gain from im-
proved financial performance, reflected in favorable mean household results and a
manageable, quantifiable distribution of outcomes.

Our findings align with previous studies that highlight the economic value of house-
hold flexibility potential, but we take a different approach regarding how this flexibil-
ity should be utilized in the market. While earlier research often assumes households
will eventually adopt dynamic tariffs independently, we advocate for transferring the
management of this flexibility to aggregators in exchange for fixed price guarantees.
In this context, household flexibility potential can be viewed as a tradeable good.
Our study provides valuable insights into how this tradeable good can be priced
under uncertainty.

We observed that the mean household result for the aggregator was consistently
higher than the baseline status quo and close to zero in two of the three years an-
alyzed. The first observation emphasizes the financial incentives for aggregators to
offer guarantees, while the second highlights the portfolio-balancing effects of ag-
gregator control: losses incurred from some households are offset by profits from
others. On an individual household level, however, such losses could discourage cus-
tomers from adopting dynamic tariffs. From a market perspective, both households
adopting dynamic tariffs and those opting for guarantees contribute positively by
responding to market scarcity signals. For example, they help balance supply and
demand by shifting energy usage away from peak demand periods to times of high
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renewable energy generation and lower day-ahead prices.
While our study focuses on the operation and pricing of household flexibility

potentials, further research into their integration with operational constraints and
decision-making under uncertainty faced by aggregators represents a valuable av-
enue for future investigation. For example, one promising area is the development
of pricing strategies for guarantees that account for an aggregator’s existing renew-
able energy portfolio. This would involve understanding how the variability and
predictability of renewable generation influence the pricing and risk associated with
household-level guarantees. Another relevant area is the selection and optimization
of long-term electricity procurement strategies, such as future contracts, in the con-
text of a managed (already existing) portfolio. Aggregators must balance the cost
and availability of these contracts against the variability of household flexibility and
market conditions.

Our study aims to realistically model a distribution of households, for instance, by
considering real-world distributions of buildings, PV and BESS sizes, price data, and
weather data. However, we note that the generalizability of the achieved guarantees
is limited. Only four cities were considered, and a uniform heat pump type and COP
were assumed. Further, the PV systems are modeled with the same tilt, azimuth, and
system efficiency. Nonetheless, we see the selected input parameters as a valid overall
representation of households with different heating profiles, building types, and flex-
ibility endowment. Future research could enhance the granularity of the model by
incorporating additional flexibility sources, such as electric vehicles, employing more
advanced thermal models (e.g., 2R2C models), and accounting for variations in PV
system configurations. These extensions would provide an even more comprehensive
representation of household flexibility potential and their impact on price guarantee
schemes.

The methodology can be easily applied to alternative markets and regulatory
scenarios. For instance, the feed-in tariffs considered in the home energy optimization
problem could be replaced with the net metering scheme from the US (Schelly et al.,
2017), and the distributions for the Monte Carlo simulation can be replaced with
local values, weather, and price curves. Additionally, a comparative analysis of price
guarantees across different international markets could provide valuable insights for
future research. Such a study would explore the applicability and effectiveness of
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guarantees within diverse international power systems, shedding light on how market-
specific factors influence their design and implementation.

We note that for the Monte Carlo simulation, the home energy management model
is optimized under perfect foresight, which we see as a fair assumption, given the
theoretical character of our study. However, the practical implementation for aggre-
gators would require an operation under the uncertainty of future setpoint profiles
and household behavior. Previous literature has shown that this can be achieved well
with Model Predictive Control algorithms, which can yield 63-98% of profits realized
under perfect foresight (Junker et al., 2020). However, we see an investigation of the
implementation of price guarantees in the field as an important area for further re-
search. We also acknowledge that our study does not explore consumer attitudes
toward these novel price guarantees. A behavioral investigation into household per-
ceptions and acceptance of such guarantees in future research would significantly
enhance the understanding and practical applicability of this concept.

8.6 Conclusion
Our study proposes a framework for enabling the adoption of dynamic electricity

tariffs among households by introducing price guarantees tailored to their flexibil-
ity potential, including electrical storage systems, thermal storage systems and the
thermal mass of buildings. Our methodology is designed to transfer price risks from
households to aggregators, thereby addressing consumer reluctance to engage with
dynamic pricing schemes due to perceived financial uncertainty.

We perform a three-stage process that formulates household-specific price guar-
antees based on a combination of deterministic and stochastic simulations. These
guarantees account for household characteristics such as building insulation, energy
storage capacities, and thermal flexibility. Through quantile regression, we demon-
strated how aggregators can predict price guarantees while managing uncertainties
in market prices, weather conditions, and household behavior.

Our results indicate that the proposed price guarantees can reduce households’
risk while enabling aggregators to optimize the use of household flexibility potential,
such as batteries and thermal storage. By leveraging this potential, aggregators
can reduce exposure to peak electricity prices and operate more efficiently within
the constraints of volatile energy markets. Furthermore, we identified key factors
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influencing price guarantees, including building type, modernization status, and the
availability of thermal and electrical storage systems.

This work contributes to the broader discussion on demand response by providing
a practical solution to bridge the gap between household reluctance and the system-
level benefits of dynamic pricing. The methodology can be adapted to any region by
adapting the formulation of the regulation (i.e., grid charges or feed-in tariffs) and the
underlying distributions within the Monte Carlo simulation. Future research could
explore the behavioral response of households to price guarantees and the real-world
implementation challenges faced by aggregators.





Part V.

Technological uncertainty





INTRODUCTION TO PART V

When an increasing number of households adopt dynamic pricing, this ultimately
alters load patterns. As illustrated in Part I, this can have a beneficial impact on the
power system as a whole by shifting loads aligned to the system’s signals. However,
this can also have counterintuitive effects on a local, technical level: when a high
number of flexible devices react on the same price signal, this might lead to issues
on the grid level.

In this part of my thesis, a multi-step simulation study alleviates the uncertainty
about the technical distribution grid-level impact of a high number of households
subscribed to dynamic tariffs.
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CHAPTER 9

THE IMPACT OF DYNAMIC TARIFF ADOP-
TION ON DISTRIBUTION GRIDS

In this chapter, I analyze the impact of increasing shares of dynamic tariff adop-
tion on distribution grid reinforcement costs. This chapter tackles the uncertainty
around the technical implications of dynamic tariffs on physical power flows in the
distribution grid, potentially leading to transformer or line overloading. Based on
empirical data sources for household and heat pump loads, electric vehicle charging
events and PV and BESS sizes, the operation of an increasing share of households
subscribed to dynamic tariffs is modelled. Then, the resulting loads are applied to
different German distribution grid topologies, in which power flow simulations are
then conducted. Based on resulting power flows, necessary reinforcement measures
can be identified. This simulation serves as the basis for the analysis of potential
alternative grid charge and feed-in remuneration policies.

This chapter comprises the article: L. Semmelmann, K. Kaiser, A. Heider, K.
Kircher, G. Hug, C. Weinhardt. Analyzing the Impact of Dynamic Tariff Adop-
tion and Regulatory Options on Distribution Grids with an Open-Source Framework,
forthcoming in Proceedings of the Sixteenth ACM International Conference on Fu-
ture Energy Systems, 2025.

9.1 Introduction
The introduction of dynamic electricity tariffs is an essential step to reduce peak

demand in modern power systems and, thereby, the need to run costly peak power
plants (Faruqui et al., 2010). Various types of dynamic tariffs are discussed in the lit-
erature, ranging from time-of-use pricing to critical peak pricing, real-time pricing,

213
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and other variants. Real-time pricing is considered to be the most direct imple-
mentation of dynamic tariffs since it offers customers prices directly linked to the
wholesale electricity market (Faruqui et al., 2010). Dynamic tariffs are also increas-
ingly promoted by regulators internationally. In a 2019 directive, the European
Union required its member states to enable customers to adapt their consumption
to market signals (European Parliament and the Council of the European Union,
2019). As a translation into national law, Germany requires utilities with more than
100,000 customers to offer dynamic tariffs from 2025 onwards (Bundesministerium
für Wirtschaft und Klimaschutz, 2023). Dynamic tariffs offered by German utilities
today are mostly based on the wholesale day-ahead market price (Tibber, 2023).

Although the roll-out of dynamic tariffs, such as real-time pricing, is already un-
derway, its effects on the power system are still not entirely clear (Dallinger and
Wietschel, 2012; Kühnbach et al., 2021). Studies have shown that when multiple de-
vices are controlled by an automated optimization algorithm that reacts to a given
price signal, it might cause new, unprecedented demand peaks. This phenomenon,
the avalanche effect, has been discussed for electric vehicles (EVs) (Dallinger and Wi-
etschel, 2012; Kühnbach et al., 2021) and heat pumps (HPs) (Patteeuw et al., 2016).
However, previous studies on avalanche effects have neglected three important as-
pects. First, the impact on the distribution grid is mostly modeled by analyzing ag-
gregated loads, thereby neglecting potential issues arising at specific locations within
the distribution grid, which could lead to costly reinforcement measures. Second,
previous research often considers only standard load profiles, ignoring the interplay
of HPs, battery energy storage systems (BESSs), and solar photovoltaic (PV) in-
stallations. Third, although studies discuss potential regulatory options to reduce
avalanche effects, a thorough comparison is still missing.

This paper addresses these research gaps by analyzing the impact of increasing
real-time tariff adoption under different regulatory options. We do this in the scope
of a potential 100% electrified future with EVs, HPs, PV, and BESSs installed in
every household. We leverage empirical data on HP and household load, battery
size, and EV usage to create realistic household profiles. Then, we formulate an
optimization problem for the operation of the flexible devices at the household level,
exploring different policy options concerning grid charges and PV feed-in compensa-
tion. Finally, we connect the individual household loads within various distribution
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grid topologies to calculate the necessary grid reinforcement costs. We conduct our
analysis for different types of days, such as days with the highest household or HP
load, or the highest PV feed-in.

In summary, our study has three main contributions. First, the impact of in-
creasing adoption of real-time pricing for residential households on distribution grid
reinforcement costs, given different day types and grid topologies, is investigated.
Second, the effectiveness of regulatory options for grid charges and PV feed-in remu-
neration are investigated in light of an increasing share of dynamic tariff adoption.
Third, we provide the underlying models and empirical data open-source to enable
other researchers to integrate new data sources or test other regulatory options 8.

The remainder of this work is structured as follows. In Section 9.2, we give an
overview of existing studies in the field of dynamic tariff adoption and its impact on
distribution grids and highlight the resulting research gaps. In Section 9.3, we de-
scribe our overall methodology and simulation framework. Section 9.4 presents the
mathematical formulation of our underlying optimization problem on a household
level. Section 9.5 introduces various policy options for grid charges and PV remu-
neration. In Section 9.6, we give an overview of the empirical data used to carry out
the evaluations presented in Section 9.7. We conclude in Section 9.8.

9.2 Background
The introduction of dynamic pricing is a promising demand-side management mea-

sure that has the potential to flatten load curves, reduce electricity bills, and lower
CO2 emissions (Dutta and Mitra, 2017). Various forms of dynamic pricing have been
suggested. In time-of-use pricing, the electricity price varies between on-peak and
off-peak hours and is predetermined for a given period, e.g., per season. In critical
peak pricing, a particularly high price is charged when the system-wide load reaches
its peak, resulting in a stronger price signal during these times than time-of-use tar-
iffs. The most direct form of dynamic pricing, however, is real-time pricing, where
prices change regularly, reflecting wholesale market prices. Although considered the
most effective dynamic pricing scheme, real-time pricing requires advanced technol-
ogy for scheduling distributed devices and communication of price signals, as well as

8Our open-source framework and underlying data is published open-source on Github, see: https:
//github.com/leloq/dynamic-tariffs-in-distribution-grids.

https://github.com/leloq/dynamic-tariffs-in-distribution-grids
https://github.com/leloq/dynamic-tariffs-in-distribution-grids
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advanced metering infrastructure (Dutta and Mitra, 2017; Faruqui et al., 2010).
However, it has been shown in literature that the required technology to adapt

the operation of devices to real-time tariffs with the objective to realize energy cost
savings is already available, e.g. for HPs (Schibuola et al., 2015; Finck et al., 2020;
Fischer et al., 2017a), EVs (Aljohani et al., 2021; Erdinc et al., 2014) and batteries
installed in combination with a PV system (Yang and Fang, 2017; Bedi et al., 2018).
Furthermore, smart metering equipment can provide high-resolution electricity con-
sumption measurements (Faruqui et al., 2010). Proposed operation methods range
from online stochastic optimization methods (Bedi et al., 2018) to model predictive
control (Fischer et al., 2017a) and deep reinforcement learning (Zhang et al., 2019a).

Studies have investigated how an increased share of households operated under
dynamic tariffs influences the overall power system (Roozbehani et al., 2012; Stute
and Klobasa, 2024). It was concluded that an increasing share of load subjected to
real-time pricing increases consumers’ price elasticity, potentially leading to increased
volatility in the overall system. The authors call for assessing the trade-off between
economic efficiency and stability of the system. Several studies have investigated this
trade-off for specific cases. In Faria and Vale (2011), optimal real-time pricing curves
from a utility perspective have been determined for a 33-bus distribution network
with the goal of achieving peak demand reductions. In Savolainen and Svento (2012),
the potential of real-time tariffs to reduce the required peak generation capacities
in the Norwegian power system was demonstrated. In Arlt et al. (2024), potential
cost savings for households with automated heating, ventilation, and air conditioning
systems in Texas have been quantified. Switching to real-time pricing led to 30%
reductions in peak system load and reduced grid investments. Although these studies
underline the relevance and potential benefits of real-time pricing tariffs, they focus
on limited grid topologies and certain controllable assets, neglecting the possible
effects of their interplay.

A potential issue of high shares of households subscribed to real-time pricing
schemes is the aforementioned avalanche effect, which can lead to new peak loads and
additional stress on the grid (Dallinger and Wietschel, 2012). In Müller et al. (2022),
a study that simulates the impact of different EV charging strategies in German dis-
tribution grids shows that 71% of investigated grids would have to be reinforced to
handle new load peaks caused by simultaneous charging of EVs if their charging is
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optimized for real-time tariffs. While the authors emphasize that signals sent from
the wholesale market do not necessarily reflect the local grid situation and acknowl-
edge potential needs for grid reinforcement, they do not discuss potential options to
mitigate these effects. Important regulatory options influencing household flexibility
utilization are grid charges (Hanny et al., 2022) and feed-in remuneration (Ossen-
brink, 2017). A first discussion on policy design in light of the increasing adoption
of dynamic tariffs was presented by Stute and Klobasa (2024). However, the work
is focused on a few low-voltage grid topologies and lacks a detailed discussion of
potential grid charges.

We close this research gap by analyzing a future 100% electrified grid scenario in
light of potential avalanche effects connected to increasing real-time pricing adoption
rates of households. Based on that, we analyze and discuss the effects of regulatory
options on grid reinforcement costs on the low- and medium-voltage grid level. We
publish our work open-source with an easy-to-use workflow, enabling an analysis of
alternative regulation and flexibility patterns in future studies.

9.3 Methodology
This section describes our overall methodology, which consists of four steps: house-

hold preprocessing, household optimization, grid power flow, and reinforcement sim-
ulation, as depicted in Figure 9.1. Given different regulatory contexts, we aim to
simulate the impact of increasing shares of households with dynamic tariffs on grid
reinforcement costs. We conduct our study in a future scenario with 100% electri-
fied heating, EVs, distributed PV generation, and home batteries. This scenario
resembles the case investigated by Müller et al. (2022). Given the current political
development that many European countries, for instance, Germany (Bundesverband
Wärmepumpe, 2023), incentivize the installation of large numbers of HPs over the
coming years and the fact that already a large fleet of PV and battery storage sys-
tems are installed in households (Peper et al., 2022), we consider this as a realistic
scenario. However, our flexible open-source model allows the analysis of different
scenarios, for instance, with lower shares of EVs, PV, or battery systems, thereby
reflecting alternative scenarios in future studies.
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Figure 9.1.: Overview of simulation steps and overall methodology

9.3.1 Household preprocessing

In this step, we generate N residential profiles consisting of regular household loads,
HP loads, PV generation, and EV profiles. Furthermore, sizing decisions for the
BESS are made. The regular household and HP load profiles are based on a Ger-
man dataset (Schlemminger et al., 2022), extended using the methodology described
in Semmelmann et al. (2023a). For the EV load, we use empirically observed EV
usage data from Norway (Sørensen et al., 2021a,b), considering charging events and
plug-in and plug-out times. The household BESS are sized according to an empirical
sample from 947 German households (Semmelmann et al., 2024). We match house-
holds with larger HP and household consumption with larger batteries to make the
scenario more realistic. We generate the PV output power profiles based on the
widely proliferated approach introduced by Pfenninger and Staffell (2016). Overall,
our household preprocessing is designed to constitute a realistic sample of households
based on empirical data while still exhibiting variance between households through
randomly drawing HP, household, and EV profiles as well as sizes of PV and BESS
installations. Section 9.6 describes our data source in further detail.
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9.3.2 Household optimization

We study two different cases with regard to the operation of flexible devices in house-
holds. The first case assumes that EV and HP consumption are equal to the empirical
profiles, neglecting their flexibility potential. Only the BESS is operated to increase
the self-consumption of the households, thereby leading to reduced electricity drawn
from the grid, as illustrated in Müller et al. (2022). Since a constant electricity tariff
is present in this case, charging and discharging decisions solely depend on whether
there is surplus PV generation.

In the second case, by contrast, the operation of EVs and HPs is flexible, i.e.,
consumption can be shifted to reduce costs further and exploit cost benefits when
subscribing to pricing schemes other than a constant volumetric charge (Fischer
et al., 2017a; Ortega-Vazquez, 2014). We model the HP flexibility potential based
on two real-world projects (Lechwerke AG, 2021; Kaiser et al., 2023). We ensure that
the daily HP consumption from the empirical observations is satisfied. However, we
assume that based on Lechwerke AG (2021), the HP can be blocked during high
price periods three times per day and at most for two consecutive hours without
losses of comfort for inhabitants. After being unblocked, the HP has to be operated
for at least two hours to maintain thermal comfort. Regarding EV charging, the
energy demand, arrival time, and departure time are given for each charging session.
Charging can be shifted within the specified time window of the parking event,
considering also the power constraints of the underlying technical equipment. The
exact mathematical formulation of the optimization model on a household level is
described in Section 9.4.

Given the large share of additional demand constituted by HPs and EVs, we
restrict the household flexibility potential to these loads, assuming the remaining
household load to be inflexible in all scenarios (Haakana et al., 2018). We note
that in future studies, also the flexibility of additional loads from appliances like
dishwashers could be considered (Ampimah et al., 2018).

We assume that each household has a home energy management system, which
schedules the flexible loads based on an optimization problem. We analyze the im-
pact of an increasing share of households subscribing to dynamic tariffs by gradually
increasing the number of households that use a dynamic price signal as input to
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the optimization. This dynamic household tariff is based on the day-ahead price
(Golmohamadi et al., 2021) as this pricing scheme is already implemented in prac-
tice (Tibber, 2023). Furthermore, the optimization is subject to varying regulatory
scenarios, i.e., different combinations of PV feed-in remuneration (e.g., flat feed-in
tariff, market-price oriented) and grid charge designs (e.g., volumetric, peak demand,
etc.) (Aniello and Bertsch, 2023), as described in Section 9.5. The resulting load
profiles are then used as input to the power flow computations.

9.3.3 Grid power flow and reinforcement simulation

Every investigated low-voltage grid topology has M nodes where households are
connected. Due to the computational complexity of the previously introduced
household-level optimization problem, only N households are simulated. To scale
to a number of M households in every investigated grid topology, M households are
randomly sampled with replacement from the set of N simulated households. For
comparability purposes, we keep the same households connected to the same nodes
for each investigated regulatory framework and dynamic tariff penetration rate.

For each scenario and investigated grid topology, the AC power flow computation
is carried out in PyPSA (Brown et al., 2017; Heider et al., 2023; Semmelmann et al.,
2023c). PyPSA is an open-source tool that uses power supply and demand time series
to calculate voltages and power flows on lines and transformers. PyPSA uses the
Newton-Raphson algorithm to numerically solve the nonlinear algebraic equations
that govern AC power flow.

In a consecutive step, required grid reinforcement measures and their costs are
calculated through the open-source framework eDisGo (Heider et al., 2023). The
resulting branch currents and bus voltages from the PyPSA simulation are compared
to predefined limits, i.e. 100% for component loading and ±10%9 deviation from
the nominal voltage. If any of these bounds are violated, eDisGo iteratively installs
new components or splits feeders until all grid issues are resolved. As a last step, the
total cost of grid reinforcement is calculated using standard costs for the installed
components. We run five simulations per grid topology to account for statistical
deviations in the placement of different household loads.

9There are additional voltage-level-specific bounds for the voltage drops and rises. These are
further detailed in Reiner Lemoine Institut gGmbH (2021).
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9.3.4 Assumptions

The modeling framework described above entails five key assumptions, which we
explain below.

Modeling households as price takers: We assume the households to be price
takers, i.e., their consumption does not impact wholesale market electricity prices.
This is a strong assumption, especially in the case that 100% of households are
subscribed to a real-time price. However, given that households do not directly
participate in wholesale electricity markets, this is a reasonable assumption if the
real-time prices incorporate the potential shift of the loads or if the inflexible load
is still the dominant part of the load. Furthermore, our flexible open-source model
could be integrated with a power system model that evaluates the impact of house-
hold decisions on wholesale price curves.

Same operation strategies for every household: Although we model a wide
variety of households following distinct empirical electricity consumption patterns,
the optimization strategy that schedules flexible load is the same for each household.
We note that in practice, there might be a variety of home energy management sys-
tems following different strategies, which would ultimately lead to different household
load profiles. However, we argue that our proposed optimization algorithm yields
a good approximation for the best possible scheduling of flexible devices, following
the formulations in Müller et al. (2022); Mulleriyawage and Shen (2020); Aniello and
Bertsch (2023), and hence delivers a realistic approximation of household behavior
under real-time pricing.

Focus on a 100% electrified household scenario: While we analyze the im-
pact of varying HP, EV, PV, and BESS adoption rates on peak loads in a sensitivity
analysis, our primary focus is on a fully electrified scenario where 100% of house-
holds are equipped with HPs, EVs, PV, and BESS installations. Given the rapidly
increasing installation numbers of these technologies (International Energy Agency
(IEA), 2024a; Kühnbach et al., 2021; Semmelmann et al., 2024), we see this as a
potential future scenario. In addition, several related studies investigate a compara-
ble scenario with full or high electrification of heating and transportation (Rinaldi
et al., 2021; Müller et al., 2022; Ruhnau et al., 2019a). Moreover, we focus on
residential households, neglecting potential dynamic tariffs and regulatory perspec-
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tives for industrial and commercial customers. We model industrial and commercial
customers in the distribution grids with constant consumption not influenced by
dynamic tariffs. Our framework theoretically could also implement these customer
types’ dynamic behavior and scheduling. However, this would go beyond the scope
of this study.

Perfect foresight: We assume perfect foresight of prices and energy demand in
the household optimization model. Given our grid and policy analysis focus, we argue
that this is a fair assumption, which is also common in related studies (Kühnbach
et al., 2021; Aniello and Bertsch, 2023). In reality, the scheduling of devices and the
utilization of flexibility potentials would need to be implemented through dedicated
control algorithms, which do not have the luxury of perfect foresight (Fischer et al.,
2017a; Hubert and Grijalva, 2012).

Time-series-based grid reinforcement analysis: We use time-series-based
simulations to estimate the grid reinforcement costs. Traditionally, estimating grid
reinforcement needs follows a more conservative approach, namely calculating only
worst-case snapshots (see e.g. Gupta et al. (2021)). For these, values for the si-
multaneity of different load and feed-in technologies are assumed, and calculations
are run for worst-case situations with high load and high feed-in. Compared to a
time-series-based analysis, the worst-case simulations result in higher costs and more
robust grids since they indirectly assume that all peaks occur simultaneously even
though, in reality, the peaks likely occur at different times and, therefore, may re-
quire less reinforcement. In our investigations, we only assess strictly necessary grid
reinforcement and investigate the influence of dynamic tariffs on these requirements.
Furthermore, we assume that with increasing observability in the grids, time-series-
based reinforcement calculations will become more realistic, and future grid planning
will move more in this direction. Moreover, policymakers have begun advocating for
time-series-based grid reinforcement analysis (Energy Systems Integration Group,
2024). Therefore, time-series-based grid reinforcement is used in the following in-
vestigations. Although conducting a worst-case snapshot reinforcement analysis lies
beyond the scope of this study, we consider it a valuable avenue for future research.
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9.4 Mathematical formulation
This section presents the mathematical formulation of the optimization problem

for scheduling HPs, EV charging, and battery storage systems in the investigated
households. This optimization problem is separately applied to every household
within the set of all simulated N households. We base our optimization model and
the necessary constraints on several studies covering operation strategies in house-
holds with batteries, PV installations, EVs, and HPs, namely Mulleriyawage and
Shen (2020); Aniello and Bertsch (2023); Fischer et al. (2017b). From a house-
hold perspective, the energy costs Ct minus the feed-in revenues Πfeed-in

t are to be
minimized over the simulation period with T time steps, resulting in the following
objective function:

min
T∑
t=1

(
Ct − Πfeed-in

t

)
(9.1)

The components in this expression can be computed by

Ct = Etotal
t · ptariff

t , ∀t (9.2)

Πfeed-in
t = EPV,feed-in

t · pfeed-in
t , ∀t (9.3)

EPV
t = EPV,feed-in

t + EPV,Internal
t , ∀t (9.4)

Etotal
t = EHH

t + EEV
t + EHP

t + EBESS,Charge
t

− EBESS,Discharge
t − EPV,Internal

t , ∀t (9.5)

Etotal
t · EPV,feed-in

t = 0, ∀t (9.6)

Etotal
t , EPV,feed-in

t , EPV,Internal
t , EEV

t , EHP
t ,

EBESS,Charge
t , EBESS,Discharge

t ≥ 0, ∀t (9.7)

where the costs Ct are calculated by multiplying the respective net household con-
sumption Etotal

t with the electricity tariff ptariff
t at time t, while the feed-in revenues

Πfeed-in
t are the product of the feed-in energy EPV,feed-in

t and the feed-in remuneration
pfeed-in
t at time t. The values for ptariff

t and pfeed-in
t are time-variable or constant, de-

pending on the respective policies in place. In (9.4), the PV production EPV
t is split

up into two components, namely EPV,Internal
t directly consumed by the household and
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EPV,feed-in
t fed into the grid. Constraint (9.5) defines the overall net energy demand

of the household Etotal
t as the sum of the non-flexible component EHH

t , the consump-
tion for EV charging EEV

t , the HP consumption EHP
t , and the energy charged to the

BESS EBESS,Charge
t , minus the energy discharged from the BESS EBESS,Discharge

t and
the internally used PV production EPV,Internal

t . Constraint (9.6) prevents simulta-
neous PV feed-in and power draw from the grid, and (9.7) enforces positive energy
values.

BESS: The necessary constraints for the BESS are given as follows:

EBESS,Charge
t ≤ PBESS,Max · ∆t, ∀t (9.8)

EBESS,Discharge
t ≤ PBESS,Max · ∆t, ∀t (9.9)

EBESS,Charge
t ≤ EPV,Internal

t , ∀t (9.10)

EBESS,Charge
t · EBESS,Discharge

t = 0, ∀t (9.11)

EBESS,SOE
t = EBESS,SOE

t−1 + η · EBESS,Charge
t

− 1

η
· EBESS,Discharge

t , ∀t (9.12)

EBESS,SOE
0 = EBESS,min (9.13)

EBESS,min ≤ EBESS,SOE
t ≤ EBESS,max, ∀t (9.14)

The maximum charging/discharging rate PBESS,Max limits the energy that can be
charged and discharged during one time step with duration ∆t, as captured in (9.8)
and (9.9). We note that in practice, the rated power could vary for the charging
and discharging case. However, we choose the same value for simplicity. Further-
more, the battery charge EBESS,Charge

t is bounded by the internally used PV produc-
tion EPV,Internal

t , as defined in (9.10). Thereby, charging the BESS from the grid is
prohibited, as is the case in Germany (Bundesministerium der Justiz und für Ver-
braucherschutz, 2023), as well as indicated in related literature analyzing dynamic
tariff impacts (Parra and Patel, 2016). In (9.11), we enforce mutual exclusivity of
charging and discharging operations. The state of energy of the battery EBESS,SOE

t

is tracked in (9.12) by integrating the charging/discharging decisions and account-
ing for the BESS efficiency η. Constraint (9.13) specifies that the initial state of
energy of the battery EBESS,SOE

0 at t = 0 is set to the minimum allowed charge level
EBESS,min. Finally, (9.14) keeps the BESS state of energy within the capacity limits
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EBESS,min and EBESS,max.
Heat pump: We model the flexibility potential of the HP by assuming that it can

be blocked for some hours of the day with a negligible loss of comfort for the occu-
pants (Lechwerke AG, 2021; Kaiser et al., 2023; Fischer et al., 2017b; Semmelmann
et al., 2023c). Hence, the optimized HP consumption time series per household cor-
responds to the empirical observations with parts of it shifted within the day. This
results in reduced computational complexity compared to detailed thermal HP mod-
els such as implemented in Crawley et al. (2001); Pergantis et al. (2024) with a loss
of accuracy acceptable for the purpose of our studies. The constraints regarding the
blocking decisions are defined as follows:

EHP
t ≥

(
1 − χHP,Block

t

)
· EHP,Empirical

t , ∀t (9.15)

EHP
t ≤

(
1 − χHP,Block

t

)
· PHP,Max · ∆t, ∀t (9.16)

χHP,Switch
t ≥ χHP,Block

t−1 − χHP,Block
t , t ∈ {2, . . . , T} (9.17)

t+23∑
i=t

χHP,Switch
i ≤ 3, t ∈ {1, . . . , T − 23} (9.18)

χHP,Block
t + χHP,Block

t+1 ≤ 2 ·
(

1 − χHP,Switch
t

)
,

t ∈ {1, . . . , T − 1} (9.19)

χHP,Block
t + χHP,Block

t+1 + χHP,Block
t+2 ≤ 2, t ∈ {1, . . . , T − 2} (9.20)

where χHP,Block
t is a binary variable representing the blocking decision in each time

step t. When χHP,Block
t equals 1, the HP is blocked and the HP energy consumption

EHP
t is zero, as captured in (9.15) and (9.16). When χHP,Block

t equals 0, the HP may
operate, and the consumption is restricted to lie between the empirically observed
consumption EHP,Empirical

t and the maximum consumption, which results from the
maximum power PHP,Max. Constraints (9.17) and (9.18) limit the number of blocking
events per 24-hour window to three, where the binary variable χHP,Switch

t denotes the
end of a blocking event. Finally, based on the real-world implementations Lechwerke
AG (2021) and Kaiser et al. (2023), (9.19) ensures that the HP remains unblocked
for at least two hours after a blocking event, and (9.20) ensures that the duration of
a blocking event does not exceed two hours.

Additionally, we enforce that the total HP energy consumption within each six-
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hour interval remains the same as in the empirical observations:

d·24+κ+5∑
t= d·24+κ

EHP
t ≥

d·24+κ+5∑
t= d·24+κ

EHP,Empirical
t , ∀d,∀κ (9.21)

where d ∈ {0, . . . , T
24

− 1} denotes the day and κ ∈ {0, 6, 12, 18} the hour of the day
at which the considered six-hour interval starts. Thereby, we ensure that the heating
demand is covered in a similar time frame as in the empirical observations so that
there is no significant loss in occupants’ comfort.

Electric vehicle: For each charging session c in the empirical data, the arrival
time, departure time, and the charged energy EEV,Empirical

t are known. Based on this
information, tEV,a

c is defined as the time step in which the EV arrives, and tEV,d
c

denotes the time step in which the EV departs. EV charging can be shifted within
the given time window but must meet the empirical demand:

tEV,d
c∑

t=tEV,a
c

EEV
t =

tEV,d
c∑

t=tEV,a
c

EEV,Empirical
t , ∀c (9.22)

Additionally, charging is constrained by the maximum charging power PEV,Max
t :

EEV
t ≤ PEV,Max · ρEV

t · ∆t, ∀t (9.23)

where ρEV
t denotes the share of time for which the EV is plugged in during time

step t. Bidirectional charging, e.g., to feed electricity back to the grid or to cover the
demand of other devices, is currently not considered but may be a valuable extension
in future work.

9.5 Regulatory options
Previous studies have identified grid tariffs and feed-in remuneration rates as key

policy items that shape consumption patterns and scheduling decisions of flexibility
potentials (Aniello and Bertsch, 2023; Kaschub et al., 2016; Fett et al., 2019).
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9.5.1 Grid tariffs

Volumetric charges (status quo): Volumetric grid charges, where consumers pay
a fixed charge per unit of energy consumed, are the most proliferated form of grid
tariffs (Hoarau and Perez, 2019; Hanny et al., 2022). To include these charges in
our model, we compute the electricity tariff ptariff

t in (9.2) as the sum of a wholesale
electricity price pwholesale

t (which can be either constant or time-varying) and a fixed
grid charge pgrid per unit of energy consumed:

ptariff
t = pwholesale

t + pgrid (9.24)

While constant volumetric charges are applied in many countries (e.g., Germany,
Great Britain, or Australia), it has been shown that they can lead to an unfair
allocation of costs, especially when there is a high share of PV-BESS installations in
the system (Dehler et al., 2017; Schittekatte et al., 2018). Furthermore, volumetric
charges tend to limit the potential of flexible devices as they do not reflect the current
state of the electricity system (Bergaentzlé et al., 2019).

Peak demand charges: In this setting, consumers are charged based on their
highest consumption within the billing period (Stokke et al., 2010). Thereby, house-
holds are incentivized to flatten their load curve and avoid high peak loads. From a
modeling perspective, this can be implemented by setting pgrid in (9.24) to zero and
adding the following term to the objective function (9.1):

max
t

(
Etotal

t

)
· pgrid,demand (9.25)

where the highest occurring energy consumption Etotal
t is multiplied by a given de-

mand charge pgrid,demand. Demand charges potentially yield a better alignment of
price signals and system costs and could improve fairness (Hledik, 2014).

Segmented tariff: Another approach to incentivize households to flatten their
load profile is a segmented tariff (Li et al., 2023b), also referred to as increasing block
rate tariff (Bloch et al., 2019). In the scope of this grid tariff design, consumers pay
a different volumetric charge depending on the consumption level in the given time
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step. The costs Ct in the objective function (9.1) are computed as:

Ct = Etotal
t · pwholesale

t +
S∑

s=1

Es
t · pgrid,s, ∀t (9.26)

where S is the number of different tariff segments, and Es
t and pgrid,s denote the

energy and volumetric charge corresponding to segment s. The energy assigned to
each segment cannot exceed the predetermined value Es,Max, i.e.,

0 ≤ Es
t ≤ Es,Max, ∀s,∀t (9.27)

and the sum over all segments must be equal to the household’s net consumption:

S∑
s=1

Es
t = Etotal

t , ∀t (9.28)

Tariff values are increasing with increasing consumption, i.e.,
pgrid,1 ≤ pgrid,2 ≤ · · · ≤ pgrid,s, and consumers can reduce their costs by flatten-
ing their load profile. A potential benefit compared to peak demand charges is that
there is always an incentive to keep consumption below the defined thresholds, while
for demand charges, the level to which consumption is reduced may be determined
by a few time steps with unavoidable high consumption.

Rotating tariffs: Finally, we introduce a novel “rotating tariff”, which aims to
reduce the unintended avalanche effects by assigning different time-variable volumet-
ric grid charges to different households. In this system, some households face higher
grid charges when wholesale electricity prices are low, potentially discouraging them
from shifting their load to those hours. For the implementation of rotating grid
tariffs, households are assigned to V different tariff groups, meaning each household
n is assigned to a tariff group vn ∈ {1, . . . , V }. The grid charge pgrid,rotating,n

t for
household n at time step t is determined by a time-dependent binary parameter ζvt

that indicates whether a higher grid charge applies to tariff group v:

pgrid,rotating,n
t =

V · pgrid if ζvnt = 1

pgrid

V
if ζvnt = 0

(9.29)
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Thus, when ζv
n

t is 1, the grid charge is V times higher than the baseline volumetric
charge pgrid. For the remaining time steps, the grid charge pgrid is divided by V .

The point of time of high grid charges varies depending on which tariff group the
respective household is mapped to. We analyze a simple rotating grid charge with two
tariff groups (V = 2) that have alternating high grid charges. The advantage of this
approach lies in its relatively simple setup. However, the optimal implementation
of such a tariff design, its impact on fairness, and its cost-reflectivity have to be
discussed in future studies.

9.5.2 Feed-in remuneration

In addition to the different grid charges, we investigate two different regulatory op-
tions for the remuneration of PV production fed into the grid. Feed-in remuneration
design is seen as a major driver of investments in renewable energy infrastructure
and the way the flexibility potentials of households are used (Couture and Gagnon,
2010; Ossenbrink, 2017).

Constant feed-in tariffs (status-quo): Many countries (e.g., Germany, Japan,
UK) have introduced feed-in tariffs that compensate every unit of PV production
fed into the grid with a constant rate pfeed-in (Fett et al., 2019; Aniello and Bertsch,
2023; Dijkgraaf et al., 2018). While constant feed-in tariffs have been identified as
an effective policy tool to increase PV penetration, they also proved to be expensive
and not cost-effective (Poponi et al., 2021). Furthermore, it has been shown that
constant feed-in tariffs lead to a feed-in profile that is not necessarily aligned with
the power system’s needs (Klein et al., 2019).

Dynamic feed-in tariffs: A potential alternative and widely discussed measure
to align PV feed-in with market signals is the implementation of a dynamic feed-
in remuneration. In this case, the compensation of excess feed-in is based on the
wholesale market price (Aniello and Bertsch, 2023; Klein et al., 2019). An exemplary
implementation of dynamic feed-in tariffs can be found in the state of Victoria,
Australia, where retailers can offer their customers a time-varying remuneration for
electricity exported to the grid Essential Services Commission (2024). We model this
approach in our study by setting the feed-in compensation to the respective market
price pfeed-in

t = pwholesale
t for each t, based on Aniello and Bertsch (2023).
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The scenarios derived from the potential policy compositions consisting of the
described grid charges and feed-in remuneration are summarized in Table A.2 in
the Appendix. We investigate the interplay of these scenarios and varying dynamic
pricing adoption rates.

9.6 Data
This section describes the empirical data sources used in our study. By leveraging

empirical data instead of purely simulated profiles, we aim to create a realistic repre-
sentation of residential loads in distribution grids (Aniello and Bertsch, 2023; Müller
et al., 2022). We put together a dataset of 500 single-family households in Hamelin,
Germany, for the year 2019. The dataset includes time series for the inflexible load,
HP consumption, EV charging, and PV generation of every household in hourly res-
olution. Furthermore, the dataset includes a specific BESS capacity and power for
every household. The various data sources are introduced in the following.

Heat pump and inflexible household load: Our study is based on household
and HP load profiles from Schlemminger et al. (2022). The dataset consists of 38
single-family households in Hamelin, Germany, and includes hourly energy consump-
tion data from mid-2018 to the end of 2020. The buildings from the dataset have
water-water HPs with 7.4-11.3 kW thermal power and a 6kW backup heating rod.
We follow the approach from Semmelmann et al. (2023a) to increase the HP load
profile variance, leveraging a k-means clustering and random sampling method. The
method clusters temperature measurements of the empirical dataset from Schlem-
minger et al. (2022) and maps the observed HP load profiles on these days to the clus-
ters. Then, based on the temperature measurements observed in Hamelin in 2019,
daily HP and household load profiles are randomly drawn from the clusters. For a
more detailed description of the method, we refer to Semmelmann et al. (2023a).

Electric vehicles: The EV charging time series are based on the empirical dataset
in Sørensen et al. (2021b). The data was collected from a housing cooperative in
Norway between December 2018 and January 2020 and includes the plug-in time,
plug-out time, and the charged energy for a total of 6878 charging sessions of 97
EV users. We only consider the charging sessions of users with a private charging
point, as this reflects the setting of single-family homes as investigated in our study,
and there are significant differences between the charging habits of EV users with a
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private charging point and EV users with shared charging points (Sørensen et al.,
2021a). As not all users in the dataset are registered from the start of the specified
time period, we only consider users for which the first charging session is no later
than March 2019. With all of these exclusions, 13 EV charging time series with
2359 charging sessions remain. For each of the 500 households, one of these 13 EV
charging time series is randomly assigned, and the time series is randomly shifted
by k ∈ [-4, 4] weeks to increase variance between households while keeping the usage
patterns on different day types intact.

Figure A.1 in the Appendix depicts the households’ resulting weekly aggregated
energy consumption. It shows that the inflexible household load and EV load are
rather constant throughout the year, while there are HP-induced peak loads during
the winter months.

BESS sizing: For the sizing of household battery storage systems, we draw from
an empirical sample of systems installed in Germany, adhering to the size distribu-
tion. Within the representative sample, the systems either have a capacity of 2.5kWh
(6.7%), 5kWh (37.2%), 7.5kWh (31.5%), or 10kWh (24.6%). The average power-to-
energy ratio, which sets the BESS power rating in relation to energy capacity, is
0.41. We assign larger batteries to households with a larger yearly household and
HP energy consumption.

PV generation: We create an hourly PV generation profile for a 1kW installation
in Hamelin in 2019, based on the open-source tool renewables.ninja (Pfenninger and
Staffell, 2016). We use the default settings of renewables.ninja, assuming a 35° tilt of
the panels, a south orientation (180° azimuth), and a 10% system loss. Furthermore,
we assume that households with larger PV installations tend to have larger battery
storage systems. Therefore, we assume that the individual household’s PV peak
power takes the same value as the previously assigned BESS capacity, i.e., for a
household with a 10kWh BESS, the PV peak power is assumed to be 10kW. The PV
profile of each household results from scaling the PV profile obtained from Pfenninger
and Staffell (2016) with the household’s PV peak power. We note that in reality,
installed PV panels would likely exhibit more diverse tilt and orientation angles,
leading to slightly different generation profiles.

Wholesale market prices: Our study compares two different retail pricing
schemes for household electricity consumption: a flat and a dynamic tariff. Both



232 The impact of dynamic tariff adoption on distribution grids

are based on the hourly day-ahead price in Germany for 2019 (Bundesnetzagentur
for Electricity, Gas, Telecommunications, Post and Railway, 2024), but shifted to the
positive range. We set the flat tariff to the mean of the observed, shifted series. For
the dynamic tariff and feed-in remuneration, we directly use the shifted series. We
note that this is a rather simplistic implementation of dynamic prices. However, we
argue that our approach reflects the structure of more sophisticated dynamic tariffs
and is easy to comprehend. Furthermore, our open-source model enables a simple
adaption of tariffs and market prices in future studies.

Grid charges and feed-in tariffs: The constant volumetric grid charges are
set to 0.0722 EUR per kWh, based on actual values of the local distribution grid
operator in Hamelin (Avacon Netz GmbH, 2019; Bundesnetzagentur, 2019). The
demand charge is set at 67.94 EUR per kW per year, derived from the demand charge
of the grid reserve capacity for the same year (Avacon Netz GmbH, 2019). Weekly
or monthly peak demand charges could also be considered in further studies. For the
segmented tariff, we consider three segments. The price values are defined as 0.0361,
0.0722, and 0.1444 EUR per kWh, which corresponds to the constant volumetric
charge scaled by a factor of 0.5, 1, and 2, respectively. Similar to Bloch et al. (2019),
the corresponding consumption limits are set to E1,Max = E2,Max = 2 kWh, while
there is no upper limit on E3

t . We set the fixed PV feed-in remuneration to 0.1187
EUR, as was the case in Germany for PV installations below 10kWp installed in
January 2019 (Bundesnetzagentur, 2024b).

Grid topologies: We use representative German distribution grid topologies
based on geo-referenced load and generation data (Amme et al., 2018). The data
comprises medium voltage (MV) grids with underlying low voltage (LV) grids for
the whole of Germany. These German grids were then clustered with a k-medoids
approach into ten representative grids based on their installed capacities of PV,
wind, HPs, and electromobility (Reiner Lemoine Institut, 2024). In total, we select
ten representative grids based on the clustering process. These grids vary in their
urban settings (urban, suburban, or rural). Figure A.5 in the Appendix depicts an
overview of the ten analyzed grid topologies. We note that the grids vary in installed
PV and wind generation, as well as residential demand. The grid topologies include
highly spatially resolved data on lines, transformers, and connected load, generation,
and storage units. One exemplary grid is displayed in Figure A.4 of the Appendix.
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9.7 Results and discussion
In this section, we present the results of the household-level optimization for the

different regulatory settings. In the second step, we randomly assign the 500 house-
hold profiles to the investigated grid topologies. Finally, we evaluate the associated
reinforcement costs per scenario and discuss the implications of our results.

9.7.1 Household-level optimization

When a household switches to a dynamic retail tariff, the individual flexibility de-
cisions and resulting load profiles change: the EV is charged during the night with
low prices, HP operation during high-price hours is avoided, and battery charging
decisions are altered.

Figure 9.2 displays the resulting net load profiles for all scenarios, aggregated over
all 500 households. We differentiate between 100% of households with constant retail
tariffs and 100% of households with dynamic retail tariffs and show the results on dif-
ferent specific days. These days correspond to the days with the highest aggregated
inflexible household load (3rd March), EV load (18th November), HP load (1st De-
cember), and PV feed-in (13th May), respectively. While we run the household-level
optimization for the whole year, we focus on investigating the reinforcement costs
on these particular days to reduce the computational complexity of the simulation.
Figure A.6 and Table A.3 in the Appendix depict the loads on these days without
any load shifting or BESS usage.

Figure 9.2 shows that, especially on the days with the highest inflexible load,
EV demand, and HP consumption, the switch from constant tariffs (top row of
plots) to dynamic tariffs (middle row) significantly alters the aggregated consumption
profile. In the dynamic tariff scenario, households react to the price signals from the
wholesale market, for instance, by shifting EV charging to low-price morning hours.
The scenarios with the volumetric grid charges consistently lead to the highest peak
loads, while the alternative grid charges reduce them. This preliminary result is in
line with previous studies that mention avalanche effects as a result of a high degree
of dynamic tariff adoption (Dallinger and Wietschel, 2012; Kühnbach et al., 2021).
We note that even on the peak inflexible load day, the aggregated consumption
profile is shifted according to the price signals since a considerable HP demand is
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Figure 9.2.: Aggregated household load for the simulated households

present (as depicted in Figure A.6 in the Appendix)10.
The load profiles on the peak feed-in day are largely unaffected by the level of

dynamic tariff adoption but vary significantly across regulatory scenarios. Notably,
scenarios with dynamic feed-in tariffs cause the peak feed-in to shift to earlier hours,
coinciding with periods of higher spot market prices. This effect is particularly
pronounced under dynamic feed-in tariffs with peak grid charges.

While our study focuses on a potential future scenario with 100% PV, BESS, EV,
and HP adoption, we conduct a peak load sensitivity analysis for varying adoption
rates in the Appendix (Figures A.2 and A.3). We note that also for lower adoption
rates (e.g., only 25% of households are equipped with PV, BESS, EV, and HP instal-
lations), the conclusions remain the same: when the households switch to dynamic
tariffs under the current regulatory scenario with volumetric grid charges, peak loads
substantially increase. On the other hand, an exemplary alternative regulatory sce-
nario with segmented grid charges leads to reduced dynamic tariff-induced peak load
increases. We note that, in general, peak loads increase with higher PV, BESS, EV,

10On the HP type of day, the scenario with peak demand charges and dynamic feed-in remuneration
led to a noticeable load valley at 12:00. The reason for this lies in the peak wholesale price,
which then leads to an HP blocking decision over all households, enabling well-remunerated
feed-in of excess PV production.
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and HP adoption independent from the regulatory scenario, which is in line with the
results of previous research (Muratori, 2018; Say and John, 2021; Love et al., 2017).

9.7.2 Impact on grid reinforcement costs

After the initial evaluation of aggregated load profiles, we now randomly assign the
individual household profiles to the distribution grid nodes. Thereby, we simulate
the impact of an increasing share of households subscribing to dynamic tariffs on grid
reinforcement costs and evaluate alternative regulatory settings. Figure 9.3 shows
the reinforcement costs that result from the computations for the investigated types
of days and a combination of all days11.

Status-quo regulation (volumetric charges and constant feed-in tariffs)

The results of our grid reinforcement cost analysis confirm the ones from previous
studies Müller et al. (2022); Stute and Klobasa (2024): under the currently widely
proliferated constant volumetric grid charges, high additional grid reinforcement
costs can be expected when a large share of households switch to dynamic tariffs.
These reinforcement needs are triggered by transformer and line overloading and
voltage issues. Some of the investigated topologies already require reinforcement
measures starting at a 25% dynamic tariff adoption rate onwards. At the same time,
at 100% adoption, all grids except one have to be substantially reinforced to endure
simultaneous household reactions on common price signals. An additional analysis in
the Appendix (Figure A.8) shows that the previously calculated peak loads correlate
with the resulting grid reinforcement costs.

Our analysis of different types of days enables a more granular analysis of the
causes of the high reinforcement costs under constant volumetric grid charges, fixed
feed-in tariffs, and high dynamic tariff penetration. On the day with the highest
aggregated household load, even in a 100% dynamic tariff scenario, only minor re-
inforcement costs occur, while most grids do not even have to be reinforced. We
note that the EV and HP consumption and PV feed-in on this particular day are
lower compared to the other days. On the other hand, on the day with the highest

11In the Appendix, the detailed reinforcement costs per type day and regulatory setting are depicted
in Tables A.6 to A.10, as well as an overview of occurring grid issues (i.e., voltage violations and
overloading events) in Figure A.7. In addition, for the Volumetric FIT scenario, also a detailed
breakdown of reinforcement costs per grid and penetration rate is provided in Table A.5.
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Figure 9.3.: Grid reinforcement costs across all investigated grid topologies and policy op-
tions

aggregated EV or HP consumption, the higher the share of households with dy-
namic tariffs, the higher the reinforcement costs and the number of grid topologies
that must be reinforced. These results suggest that automated load-shifting from
EVs, and to a lesser extent HPs, are the primary drivers of avalanche effects under
dynamic tariffs. Most of these reinforcement needs occur in the medium-voltage
grid.

On the day of the feed-in peak, there are consistent reinforcement needs indepen-
dent of the dynamic tariff adoption rate. This is caused by simultaneous feed-in,
which also cannot be alleviated by demand shifting from HPs or EVs. As a re-
sult, overvoltage issues in the investigated distribution grids arise (which Figure A.7
illustrates in further detail in the Appendix).

Susceptibility of grid topologies

When analyzing grid reinforcement costs under the scenario with volumetric grid
charges and constant feed-in tariffs (the current regulation in Germany), we find that
the impact of rising dynamic tariff adoption rates varies significantly between grids
(see Table A.5 in the Appendix). For instance, the "rural-wind-1" or "suburban-
balanced" grids show no increase in reinforcement costs due to dynamic tariffs. In
contrast, the "rural-pv" grid experiences a substantial increase, with costs rising
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from €1.3 million at 0% adoption to €10.4 million at 100% adoption—an overall
increase of €9.1 million. Both grids that do not require reinforcement are relatively
small, featuring short medium-voltage (MV) lines and a low number of transformers
(see grid characteristics in Table A.4 in the Appendix). In contrast, the "rural-pv"
grid has a relatively high number of transformers and the second-highest line length
on the MV level. In addition, the grid has the lowest mean nominal transformer
capacity.

A similar trend is observed when examining the correlation between reinforcement
costs and grid characteristics across all topologies (see Fig. A.9 in the Appendix).
The length of medium-voltage (MV) lines show the highest positive correlation,
while the mean nominal power of transformers exhibits a negative correlation. It is
important to note that these findings represent statistical associations rather than
causal relationships. Additionally, the analysis is based on a limited sample of grids,
which may affect the generalizability of the results.

Impact of alternative regulatory options

In addition to the prevalent regulatory framework featuring volumetric grid
charges and constant feed-in tariffs, we have analyzed the impact of alternative tariff
schemes on grid reinforcement costs. As previously discussed and shown in Figure
9.2, alternative grid charges, such as peak charges, rotating tariffs, and segmented
tariffs, effectively reduced peak loads on the inflexible load, EV and HP peak days.
Similarly, Figure 9.3 demonstrates that these alternative grid charge designs can
mitigate the adverse effects of a high share of households adopting dynamic tariffs
on grid reinforcement costs. For example, in the combined analysis, aggregated re-
inforcement costs across all grids in the Volumetric FIT scenario rise significantly,
from €22.2 million12 to €54.8 million—an increase of €32.6 million. In contrast,
under the Segmented FIT regulation, the costs increase only marginally, from €21.4
million to €21.8 million, representing a modest rise of €0.4 million (see Table A.6
in the Appendix). The alternative grid charge designs create a monetary incentive
to flatten the demand curve and distribute it over the day, reducing the number
of undervoltage and overloading issues significantly, thereby reducing the associated

12We note that also initial grid reinforcement costs can vary across the different scenarios investi-
gated, as regulatory options influence how household flexibility potentials are utilized, even in
the absence of households subscribing to dynamic tariffs.
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grid reinforcement costs.
Although alternative grid charge designs mitigate the adverse effects of increasing

dynamic tariff adoption rates on grid reinforcement costs, a similar impact cannot
be observed for the introduction of dynamic feed-in remuneration rates, despite their
prominence in policy discussions (Aniello and Bertsch, 2023; Klein et al., 2019). On
the contrary, the introduction of dynamic feed-in remuneration rates is associated
with slightly higher reinforcement costs across all levels of dynamic tariff adoption.
The underlying reason is illustrated in Figure 9.2: under dynamic feed-in remunera-
tion, households collectively shift their feed-in to hours with higher prices, ultimately
leading to increased grid reinforcement costs. However, this effect on reinforcement
costs is relatively minor compared to the steep cost increases observed under volu-
metric grid charges. This is primarily because, for the households studied, excess PV
production on sunny days significantly surpasses their flexibility potential, given the
limitations of small battery capacities and low heating demand during the summer
months. Apart from the volumetric case, the reinforcement requirements for the
feed-in day exceed the measures on the other types of days in most cases. Or, in
other words: when we consider alternative grid charge designs, the grid reinforcement
measures required to accommodate 100% of households having PV installations are
mostly sufficient to also deal with dynamic tariff-induced grid stress.

9.7.3 Discussion

Our work underlines an important result from past studies (Dallinger and Wietschel,
2012; Kühnbach et al., 2021; Stute and Klobasa, 2024): developments that are ben-
eficial on a transmission system level, e.g., the widespread adoption of dynamic
electricity tariffs, can lead to issues on the distribution grid level. Simultaneous re-
actions to the considered wholesale market prices trigger these issues. Our findings
indicate that replacing volumetric grid charges with alternative designs that mitigate
the simultaneous operation of flexible devices, such as HPs and EVs, prevents spot
market-induced price signals from generating new peak loads and associated issues
at the distribution grid level.

The investigated alternative grid charge designs include peak demand charges,
segmented tariffs, and rotating tariffs. All three options demonstrate reduced grid
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reinforcement costs with increased dynamic tariff adoption rates, compared to the
volumetric grid charge design. However, their practical applicability requires critical
examination. Peak demand charges, while effective in the idealized conditions of our
simulation, may face challenges in real-world implementation due to the need for
accurate predictions of future household demand. Reliable scheduling of flexibility
potentials to reduce peak loads is essential for these charges to have a tangible im-
pact. Without robust home energy management systems capable of reliably shifting
flexibility to reduce peak loads, the effectiveness of this policy would remain un-
certain in practice. Segmented tariffs achieved the lowest grid reinforcement costs
at 100% dynamic tariff adoption (see Table A.6). Unlike peak demand charges,
segmented tariffs do not target individual peak demands but incentivize a general
flattening of the household load curve. However, the design of segmented tariffs by
grid operators must carefully balance grid reinforcement cost reductions with net-
work fee revenues. Striking this balance to achieve a Pareto improvement for grid
operators presents a valuable area for further research. Rotating grid charges also
succeeded in avoiding sharp increases in reinforcement costs at higher dynamic tariff
adoption rates. Similar to segmented tariffs, rotating tariffs are not aimed specif-
ically at peak load reduction but employ time-variable charges that rotate among
households. While these tariffs could discourage some households from shifting load
to low-price periods, they may conflict with the "non-discriminatory tariff" require-
ment imposed on distribution system operators (DSOs) in many countries (Stute
and Klobasa, 2024). However, in certain jurisdictions, such as Finland, DSOs have
greater flexibility in tariff design, potentially enabling the inclusion of rotating tariffs
(Wang et al., 2023). The detailed design of rotating tariffs—such as the number of
tariff groups and the differentiation between high and low tariff levels—remains an
open question for future research. Furthermore, to enable dynamic tariff adoption
and the suggested alternative grid charges, a high penetration rate of smart meters
would be necessary, which is not yet the case in many European countries Zhou and
Brown (2017).

Our study also examined an alternative policy design for feed-in tariffs, specifically
dynamic, market-oriented remuneration. However, due to the significant excess feed-
in from the investigated households and the misalignment between wholesale market
price valleys (where feed-in is discouraged) and local peak PV production, no positive
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effects on grid reinforcement costs were observed. On the contrary, dynamic feed-in
tariffs resulted in higher grid reinforcement costs across all scenarios.

The chosen time-series-based approach likely underestimates the necessary rein-
forcement costs compared to the currently used worst-case estimations. However,
it is necessary to analyze detailed time series data to accurately capture changes
in simultaneity and peak loads between the different policy options. Furthermore,
when more households are equipped with smart meters, the grid operators can likely
access data and measurements across the grids. Grid planning might move from the
worst-case approach towards using real-world data on grid utilization in this case,
which aligns more with our chosen approach.

We also note that our study is focused on a perfect foresight scenario, where
household loads are determined by an optimization problem. Translated into a real-
world setting, a household energy management system would have to make real-time
decisions under uncertainty. However, we argue that also in a real-world scenario,
the results should go in the same direction since previous studies have shown that
through economic model predictive controllers, 63-98% of the perfect foresight sav-
ings can be reached (Junker et al., 2020). Different providers may use different load
and price forecasts, particularly in a system with a high share of volatile renewable
generation. This can lead to more diverse decisions and load profiles and potentially
lower load peaks. In addition, we note that the results are purely simulation-based
and may neglect individual behavior and preferences. However, a German empiri-
cal study on the interaction of households with their PV/BESS energy management
system showed that the observed behavior in the field resembles the outcomes of
simulation-based studies (Semmelmann et al., 2024). To better understand the im-
pact of household behavior and preferences on the resulting decisions of dynamic
tariff-operated home energy management systems, future studies should also empir-
ically investigate this.

Our study is constrained to a limited number of empirical load profiles and only
considers one year of day-ahead market prices. Furthermore, we acknowledge that
due to limited data availability, our analysis relied on datasets from two different
geographies (Germany and Norway), which may introduce minor modeling inaccu-
racies. For instance, the colder climate in Norway could influence factors such as
personal mobility patterns and EV battery efficiency. However, our open-source
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framework facilitates the analysis of alternative datasets and more price years in
future research.

Furthermore, our study focuses on energy systems with a regulatory framework
that promotes the self-consumption of households’ PV generation. In this regulatory
setting, PV production fed to the grid is remunerated with a fixed feed-in tariff.
Through the consumption of energy stored in the battery, volumetric grid charges
can be avoided (Fett et al., 2019). In contrast, several states like the United States
(Gregoire-Zawilski and Siddiki, 2023), Spain or Ecuador (Ordóñez et al., 2022) have
net metering or net billing policies in place, where feed-in is compensated by credits,
which reduce the electricity bills. While we have not investigated the interplay of an
increasing dynamic tariff adoption, policy options, and net metering policies for the
sake of conciseness, we see it as a worthwhile avenue for further research.

9.8 Conclusion
Our study investigates the impact of an increasing share of households with dy-

namic tariffs on grid reinforcement costs on the low- and medium-voltage levels. We
provide a four-step open-source simulation framework that includes data preprocess-
ing of empirically observed individual household loads, household-level optimization
of shiftable loads like HPs and EVs, as well as the operation of battery storage,
a PyPSA-based power flow analysis and a subsequent eDisGO-based calculation of
grid reinforcement costs. We compare the status-quo policy design with volumetric
grid charges and fixed feed-in tariffs with alternative policy designs. We find that the
currently widely proliferated volumetric grid charges lead to simultaneous reactions
of households to wholesale market price signals, leading to avalanche effects, which in
turn lead to substantial reinforcement costs. We show that alternative grid charges,
such as segmented or rotating ones, potentially alleviate the negative effects of high
penetration of dynamic tariffs. We publish our code, data, and model as an open-
source framework. Thereby, we enable researchers, policymakers, and practitioners
to evaluate the impact of novel policies and technologies - in combination with an
increasing share of dynamic tariffs - on the distribution grid.

Future valuable research avenues include investigating varying household settings
(e.g., varying shares of PV, EV, and HP adoption), fairness issues (e.g., energy equity
of grid charge options), novel technological options (e.g., vehicle-to-grid), and alter-
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native regulatory options. In addition, future studies could elaborate on particular
modeling aspects of the study at hand, for instance, by implementing sophisticated
thermal building models or by incorporating operation under uncertainty on a house-
hold level (e.g., through a model predictive control approach).



Part VI.

Finale





CHAPTER 10

CONTRIBUTIONS AND IMPLICATIONS

Dynamic tariffs are a potential key tool for policymakers to ensure a cheaper, greener,
and more efficient electricity supply by aligning market signals with customer elec-
tricity demand. This chapter evaluates the answers to the overarching research
questions posed in Chapter 1 and distills the contributions of this dissertation.

The first research question ("What are the empirically observed effects of self-
consumption-promoting regulation on the operation of battery energy storage systems
and their economic impact on the power system?") examines the system benefits
of household battery storage systems in practice. The observed German systems,
operated under a self-consumption optimization goal with static electricity tariffs,
were evaluated based on the market outcomes of their charging and discharging
operations. The findings reveal that average market profits were minimal (5€ per
household per year), with some households even incurring losses, which must then
be socialized among consumers.

In contrast, the findings of Research Question 2 ("How do dynamic regulatory ap-
proaches and alternative influencing factors enhance the value of BESS for both the
energy system and their owners?") demonstrate that alternative regulatory frame-
works, such as enabling households to adjust their charging and discharging opera-
tions based on day-ahead prices or to operate fully aligned with them, significantly
improve theoretical profits from the battery operating on the day-ahead market (up
to 225€ per household per year).

The empirical findings for Research Question 1 highlight the significant impact
of policies on the practical utilization of flexibility potentials in the market. Al-
though households could have adjusted their consumption profiles and home energy
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management systems to prioritize increased feed-in of their PV production during
periods of high system demand, the actual operation of their systems aligns with the
economic incentives established by self-consumption-oriented policies, regardless of
market signals. Although also some previous studies have questioned the benefits of
self-consumption-promoting policies (Green and Staffell, 2017; Aniello and Bertsch,
2023), the empirical analysis based on a field study with 947 households makes a
significant contribution by providing the first empirical evidence of this policy’s po-
tential negative system effects.

The findings in the scope of the first two research questions underscore the critical
role of home energy management systems in leveraging flexibility potentials and dy-
namic tariffs. As a result, Part II focused on mitigating the operational uncertainty
of home energy management systems, particularly with the integration of emerging
technologies such as heat pumps, while addressing data retrieval challenges for oper-
ators. The findings of Research Question 3 ("To what extent do the same forecasting
methods used for day-ahead predictions of traditional household loads also perform
effectively for heat pump loads?") highlight the need for methodological advance-
ments. In response to this question, the forecasting accuracy of advanced methods
such as LSTM, XGBoost, and Transformer models are benchmarked using metrics
like MAE, MAPE, and RMSE, both before and after heat pump installation in an en-
ergy community. For traditional household loads, computationally efficient methods
like XGBoost provide reasonable accuracy; however, achieving high-quality forecasts
requires more computationally expensive Transformer models after heat pumps are
installed. In the day-ahead energy community load forecast - after heat pump in-
stallations - Transformer models achieve a MAPE of 13.43% with an R2 of 0.9. In
comparison, random forest and XGBoost models perform worse, with MAPEs of
16.79% and 16.48%, respectively, and an R of 0.87 for both. While several existing
studies already evaluate day-ahead load forecasting methods for energy communities
(e.g., Coignard et al. (2021)), the findings within the scope of Research Question 3
contribute a specific analysis of the impact of heat pumps and incorporate the novel
consideration of Transformer models.

In Research Question 4, titled "How can smart meter data and hybrid LSTM-
XGBoost models improve day-ahead aggregated load forecasts for energy communi-
ties, particularly in addressing insufficient peak load predictions?", the focus lies on
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evaluating the impact of separate access to household smart meter data and the
application of a novel hybrid LSTM-XGBoost algorithm on the quality of day-ahead
load forecasting for aggregators. Through a case study involving German households,
it is found that access to historical disaggregated smart meter load measurements
significantly enhances forecast accuracy, as assessed by MAPE and RMSE. More-
over, the proposed hybrid model, which incorporates a separate XGBoost forecast
for peak load amounts, improves the overall forecast results and the MAPE of the
forecasted peak loads. Compared to a standard LSTM model using aggregated
load data, the LSTM-XGBoost model incorporating additional smart meter data
improves load forecast accuracy, reducing the MAPE from 21.64% to 16.81% and
the RMSE from 2.91 to 2.49. Research Question 5 ("How can smart meter data
and hybrid LSTM-XGBoost models improve day-ahead aggregated load forecasts for
energy communities, particularly in addressing insufficient peak load predictions?"),
addresses the question of what data is necessary for accurate peak time forecasts.
In a case study of US local distribution companies, the Learning-to-Rank method is
applied, which generates peak time forecasts based on the rank of historical loads
rather than absolute values. When measured in terms of Accuracy and MAE, the
Learning-to-Rank algorithm performs comparably to peak time predictions derived
from regular forecasts without significant differences in performance. While Research
Questions 3–5 are not explicitly focused on dynamic tariffs or the operations of ag-
gregators and utilities offering them, they provide valuable insights into practical
data retrieval considerations. These questions lie at the intersection of technology
and behavior. Aggregators that require less data for reliable operation may be more
attractive to households, potentially encouraging the adoption of dynamic tariffs.
Additionally, operating with less granular data—such as not having access to sep-
arate heat pump load measurements -as highlighted in Research Question 3- may
offer advantages from a privacy perspective. Also, in Research Question 5 ("How
can synthetic heat pump load profiles be generated using a k-means clustering- based
approach?"), a method for generating synthetic heat pump load data without rely-
ing on historical customer measurements is presented. This approach helps address
the uncertainty surrounding novel heat pump loads, which is further exacerbated
by the limited availability of open-source historical load profiles. While the under-
lying k-means clustering algorithm has already been used to generate synthetic gas
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load profiles in other studies (Jesper et al., 2021), the proposed model within the
scope of Research Question 5 is the first to apply it to the creation of synthetic heat
pump load profiles. The synthetically generated profiles show a relatively low overall
error of 2.4% compared to actual measurements over the test period, highlighting
the model’s validity. Further evaluation based on load factors and load distribution
curves confirms the method’s quality and practical applicability.

Part III explores the limited adoption of dynamic tariffs, where loss aversion and
uncertainty about price risks act as key barriers. The economic implications of dy-
namic tariffs for households are addressed in Research Question 7, titled "How can
the operation of household home energy management systems under dynamic tariffs
be modeled by incorporating flexibility potentials like battery storage, heat storage,
heat pumps, and building thermal inertia, alongside behavioral constraints such as
thermostat setpoint profiles?". In response, a linear programming model that sim-
ulates the operation of heat pump-equipped households under dynamic tariffs is
developed, incorporating the thermal inertia of buildings and other flexibility po-
tentials. The thermal mass of buildings—considering different building types and
modernization measures—is identified as a significant yet often overlooked flexibility
potential in the existing literature.

Building on this formulation, the concept of household-specific electricity price
guarantees is introduced. These guarantees are offered by aggregators to house-
holds in exchange for the right to operate their flexibility potentials, provided these
operations remain within the household’s comfort boundaries. Following this, in
Research Question 8 ("What is the economic value of managing household flexibil-
ity potentials for aggregators, and how can it be quantified under the proposed price
guarantee mechanism?"), the economic value of aggregator control over household
flexibility potentials is investigated. The findings from a German case study reveal
that aggregator-managed household flexibility consistently reduced electricity costs
by an average of 7.36% (2.5 ct/kWh) over the test years 2021–2023. Furthermore,
78.4% of households would benefit from price guarantees lower than the competitive
retail price. Finally, in Research Question 9 ("How accurate are quantile regression-
based predictions of household-level electricity price guarantees?"), the proposed de-
cision support system for aggregators, which recommends household-specific elec-
tricity price guarantees, is evaluated. These guarantees are determined based on
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household characteristics and preferences while accounting for uncertainty in future
prices and weather conditions. The proposed guarantee prediction model achieves
an R-squared value of 0.484, indicating that it explains 48.4% of the variance in the
difference between the guaranteed and actual household electricity costs, demon-
strating moderate predictive power. Across the three test years, the findings show
that the aggregator achieves improved financial portfolio results when implement-
ing the suggested price guarantee mechanism. However, this improvement comes at
the cost of a wider confidence interval for household costs, which introduces higher
uncertainty for the aggregator.

Although the first aggregators on the market are beginning to offer electricity price
guarantees for their dynamic tariffs (e.g., 1KOMMA5° (2025)), these guarantees
are typically uniform and do not account for household endowment or preferences.
Therefore, the contributions within Part IV can support more refined pricing and
tariff design decisions for aggregators and utilities. The suggested price guarantees
aim to address the behavioral uncertainty associated with the dynamic, price-based
operation of household flexibility potentials by transferring the associated risks to
aggregators. Aggregators, being experienced in managing portfolio risks, have the
capacity to balance these risks across their portfolios. Additionally, a decision sup-
port system is proposed to assist aggregators in quantifying the economic value of
a household’s flexibility potential. This system helps mitigate the uncertainty that
arises for aggregators when implementing such a product.

Finally, Part V explores the uncertainty surrounding the technical implications of
dynamic tariff adoption in distribution grids, particularly the stress on transform-
ers and lines, as well as the associated reinforcement costs. In addressing Research
Question 10 ("How does increasing adoption of dynamic tariffs by residential house-
holds impact distribution grid reinforcement costs across different grid topologies?"),
a case study involving various German distribution grid topologies and households
equipped with heat pumps, electric vehicles, PV systems, and BESS shows that grid
reinforcement costs increase significantly when a large share of households simulta-
neously respond to price signals, also denoted as avalanche effects.

However, in addressing Research Question 11 ("How effective are alternative regu-
latory options for grid charges and PV feed-in remuneration in alleviating grid rein-
forcement costs given increasing dynamic tariff adoption?"), it is demonstrated that
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alternative grid charge policies—such as segmented tariffs—can effectively mitigate
the increased grid reinforcement costs induced by dynamic tariff adoption. These
regulatory options present a viable solution to alleviate the stress on distribution
grids as dynamic tariffs gain traction.

While previous studies, such as Stute and Klobasa (2024), have already high-
lighted the potential threat of avalanche effects from increasing household adoption
of dynamic tariffs, this study makes a significant contribution within the scope of
Research Questions 10 and 11. It introduces an open-source framework that allows
policymakers to assess the impact of policy options as dynamic tariff adoption grows.
Additionally, a detailed analysis of different grid topologies, for instance, with a high
penetration of PV or wind generation capacities, offers more profound insights into
avalanche effects and their impact on grid reinforcement costs. Another key contri-
bution is the examination of segmented grid charges and the introduction of rotating
grid charges. These grid charge options provide a potential tool to mitigate rising
grid stress caused by dynamic tariff adoption.

Many studies within this dissertation are supported by the open-source publication
of code and data, thereby enabling greater transparency, reproducibility, and collab-
oration. The forecasting methods and underlying data presented in Chapter 4 are
published in an open-source repository13, fostering advancements in forecasting day-
ahead heat pump loads for aggregators and improving operational decision-making
in the context of dynamic tariffs. The synthetic heat pump profile generation ap-
proach introduced in Chapter 7 is also published as open-source code14 and includes
an easy-to-use web application15 for generating heat pump load data. Additionally,
the simulation framework designed to assess the impact of policy decisions on grid
reinforcement costs under increasing adoption of dynamic tariffs from Chapter 9 is
published alongside the utilized data16.

In conclusion, this thesis addresses key barriers to the adoption of dynamic tariffs,
focusing on three major areas: policy, technology, and behavior. Regarding
policy, a significant contribution is the empirical evidence demonstrating that self-
consumption-promoting regulation for household battery energy storage systems is

13https://github.com/leloq/load-forecasting-with-heatpumps
14https://github.com/leloq/synthetic-heat-pump-load-profile-generator
15https://heatpump.ninja
16https://github.com/leloq/dynamic-tariffs-in-distribution-grids

https://github.com/leloq/load-forecasting-with-heatpumps
https://github.com/leloq/synthetic-heat-pump-load-profile-generator
https://heatpump.ninja
https://github.com/leloq/dynamic-tariffs-in-distribution-grids
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less beneficial for the energy system than dynamic tariffs. Building on this, the
operational aspects of dynamic tariff adoption are supported through advancements
in load forecasting and synthetic data generation, with a particular emphasis on the
emerging flexibility potential of heat pumps and the thermal inertia of buildings.
Additionally, the impact of dynamic tariff-induced changes in load patterns on grid
infrastructure and associated costs is thoroughly analyzed. Finally, the behavioral
barriers to dynamic tariff adoption, such as households’ loss aversion, are addressed
through an innovative proposal: household-individual electricity price guarantees
offered by aggregators in exchange for the right-to-operate households’ flexibility
potential.

To make electricity markets more efficient and increase the adoption rates of dy-
namic tariffs, a coordinated interplay of novel policies, innovative technologies, and
tailored solutions that align with household preferences and behaviors is essential.
While this thesis tackles critical issues within this scope, it serves as a foundation
for future research in these important areas, which is illustrated in the following and
final chapter.





CHAPTER 11

OUTLOOK

Based on this thesis, several valuable avenues for further research emerge, which are
outlined below.

First, a significant contribution of this dissertation is the introduction and analysis
of household-individual electricity price guarantees, focusing on flexibility potentials,
preferences, and behavior. However, a limitation lies in the fact that the results
are purely simulation-based. To advance this concept, it is essential to transition
from theoretical exploration to practical implementation. This would involve de-
veloping real-world applications that manage household flexibility potentials under
uncertainty from the perspective of aggregators. A potential pathway is the use of
Model Predictive Control algorithms, which are advanced optimization techniques
that predict future system behavior and adjust control actions accordingly in real
time, with a focus on assessing how effectively guaranteed prices and discounts can
be delivered. The transition from theoretical advances to practical implementation
also presents promising opportunities for further research on the load forecasting
methods proposed in Part III. While these models reliably predict general house-
hold and heat pump day-ahead load curves, forecasting household responses to price
signals remains an important area for future exploration.

Second, the findings of this thesis are based on analyses conducted at a low ag-
gregation level, involving at most a few hundred households. While this granularity
is important for dynamic tariff research, future studies should also adopt a broader
energy system model perspective to account for endogenous effects. For instance,
examining whether the counterproductive avalanche effects observed at the distribu-
tion grid level persist when widespread dynamic tariff adoption leads to altered price
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curves would be valuable. Additionally, understanding how large-scale aggregator
fleets influence market dynamics would provide integral insights for policymakers
and practitioners. These research directions could be explored using agent-based
energy market models to capture feedback loops and systemic effects.

Third, household behavior is a key determinant of dynamic tariff adoption. Al-
though this thesis addresses important behavioral issues and proposes potential solu-
tions, these aspects have not been explored from a dedicated behavioral research per-
spective. For example, understanding households’ perceptions of and preferences for
the proposed electricity price guarantees is essential for fostering widespread adop-
tion. Behavioral research could provide further insights into how these guarantees
are perceived and how they can be effectively communicated to increase household
participation.

Fourth, this thesis proposes alternative grid charge designs, such as segmented or
rotating tariffs, to mitigate the negative distribution grid impacts of increasing dy-
namic tariff options. While these approaches can potentially limit rising distribution
grid reinforcement costs, further research is required to assess their cost reflectivity
and determine how they should be implemented to ensure fair cost allocation. Ad-
ditionally, the fairness of these measures across different socio-demographic groups
must be examined. Overall, the impact of dynamic tariffs and their adoption on
energy equity remains an essential area for future research, aiming to maximize the
system-wide benefits of dynamic pricing without disadvantaging households that
cannot afford PV panels or flexibility options such as BESS or thermal storage.

Finally, although this dissertation focuses exclusively on the adoption of dynamic
tariffs by households, similar challenges are present for industrial and commercial
customers. Addressing these requires separate studies, as the regulatory framework,
customer preferences, and load profiles differ. Given that electricity prices for the
industry are vital to maintaining the competitiveness and stability of the economy,
future research should also explore and promote dynamic tariff adoption in the in-
dustrial sector.

These avenues highlight the need for interdisciplinary research to build upon the
contributions of this dissertation and address the complex challenges associated with
dynamic tariff adoption.
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APPENDIX A

FIELD EVALUATION OF BESS REGULATION

Figure A.1.: Diurnal price curves over the year 2021

Figure A.2.: Correlation of German power market metrics with day-ahead market prices
for the year 2021

257



258 Field evaluation of BESS regulation

(a) Battery SOC profiles for the empirical case

(b) Battery SOC profiles for Case 1

(c) Battery SOC profiles for Case 2Y

Figure A.3.: Battery SOC profiles over all cases and households
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(d) Battery SOC profiles for Case 2M

(e) Battery SOC profiles for Case 2W

(f) Battery SOC profiles for Case 3

Figure A.3.: Battery SOC profiles over all cases and households (continued)
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(g) Battery SOC profiles for Case 3NE

Figure A.3.: Battery SOC profiles over all cases and households (continued)



APPENDIX B

HEAT PUMP LOAD FORECASTING

mean std min max

LSTM HH 1452.56 6.33 1447.21 1461.48
LSTM HP 2989.20 90.29 2908.37 3083.38
LSTM Comb 3096.27 58.89 3014.16 3152.67
XGB HH 1362.03 0.00 1362.03 1362.03
XGB HP 2817.45 0.00 2817.45 2817.45
XGB Comb 3256.33 0.00 3256.33 3256.33
Random Forest HH 1368.29 6.93 1362.01 1374.83
Random Forest HP 2761.41 4.09 2756.48 2765.77
Random Forest Comb 3256.02 10.81 3242.94 3269.30
Transformer HH 1324.57 13.72 1310.44 1340.74
Transformer HP 2319.38 27.72 2277.90 2335.79
Transformer Comb 2727.31 41.40 2688.11 2764.41

Table A.1.: Descriptive statistics of five runs per method
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PRICE GUARANTEES

C.1 COP parameters
In Table A.1, the temperature-dependent parameters for the polynomial fitting of

the heat pump COP curve are depicted, based on Verhelst et al. (2012).
Coefficient Value

c0 8.24
c1 0.158
c2 -0.195
c3 0.00101
c4 0.00148
c5 -0.00233
Tws 50

Table A.1.: Coefficients used in the COP calculation

C.2 PV and conditional BESS size distributions
In Figure A.1, the empirically observed size of BESS is displayed, depending on

connected PV sizes.
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Figure A.1.: Distributions of PV size buckets and BESS capacity buckets

C.3 Price components
In Table A.2, the fees and taxes that are added on the day-ahead spot market

prices are depicted, based on Bundesnetzagentur (2024c) and Bundesverband der
Energie- und Wasserwirtschaft (BDEW) (2024). The volume weighted prices are
calculated by weighting the day-ahead price curves with standard load profiles from
(Bundesverband der Energie- und Wasserwirtschaft e.V., 2024).
Year 2018 2019 2020 2021 2022 2023

Mean yearly market price [€/kWh] 0.044469 0.037667 0.030471 0.096850 0.235446 0.095175
Grid Charges 0.072900 0.073900 0.077500 0.078000 0.080800 0.095200
EEG Umlage 0.067900 0.064100 0.067600 0.065000 0.018600 0.000000
Taxes 0.044100 0.044100 0.044100 0.044100 0.044100 0.044100
Volume Weighted Average Price [€/kWh] 0.231075 0.221882 0.221459 0.289756 0.379456 0.238699
Volume Weighted Average Price [€/kWh] with VAT 0.274979 0.264040 0.263536 0.344810 0.451553 0.284052

Table A.2.: Fees and taxes in €/kWh
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C.4 Transformation of Global Horizontal Irradiance
In Figure A.2, an exemplary transformation of Global Horizontal Irradiance to

Southern Vertical Irradiance is depicted.

Figure A.2.: Transformation from Global Horizontal Irradiance to Southern Vertical Irra-
diance

C.5 Monte Carlo simulation convergence analysis

based on Central Limit Theorem
In Figure A.3, the convergence of the Monte Carlo simulation is depicted according

to the Central Limit Theorem, following the method of Yang (2011).

Figure A.3.: Confidence interval analysis based on the Central Limit Theorem
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C.6 Quantile regression sensitivity analysis
In Figures A.4 and A.5, the quantile regression results for the 0.1 and 0.9 quantiles

are visualized, comparing guaranteed and realized prices for households across 2021,
2022, and 2023. Tables A.3 and A.4 present the mean and confidence interval widths
for different quantiles, respectively, highlighting the impact of different quantile levels
as a tool to balance competitiveness and risk of guarantees. For instance, a 0.1
quantile leads to lower guarantees, which are often lower than the actual prices,
leading to losses for the aggregator on the household level. Such a quantile level
might be a reasonable choice for an aggregator that aims at winning new customers.
Whereas, a 0.9 level leads to higher guarantees, which are less competitive, but also
reduce the associated risk.

Table A.5 summarizes the comparison of electricity costs under aggregator-
controlled and household-controlled flexibility scenarios.

(a) 2021 (b) 2022 (c) 2023

Figure A.4.: Quantile regression for 0.1 quantile: Comparison of guaranteed and realized
prices per household
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Target Year 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2021 -4.288654 -65.755298 -27.226418 -15.846370 -4.288654 6.833473 21.598347 33.719610 61.848928
2022 459.028291 342.463387 378.127472 414.917185 459.028291 489.397181 509.442118 527.441974 567.534031
2023 3.061538 -150.497560 -65.444641 -26.195397 3.061538 31.770486 62.237874 93.061368 129.655953

Table A.3.: (a) Mean over different quantiles

Target Year 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2021 226.374622 268.246951 223.793984 235.008560 226.374622 200.421076 181.842471 182.793065 180.343278
2022 799.164416 691.732064 722.483228 775.815889 799.164416 815.233101 843.722611 873.416549 857.152743
2023 348.326632 496.142462 397.065325 349.168304 348.326632 318.929070 313.156979 257.537927 247.326130

Table A.4.: (b) Interval Width over different quantiles

(a) 2021 (b) 2022 (c) 2023

Figure A.5.: Quantile regression for 0.9 quantile: Comparison of guaranteed and realized
prices per household

Year Aggregator Controls Flexibility Household Controls Flexibility Absolute Change [€/kWh] Percent Change [%]

2021 0.339 0.358 0.019 5.652
2022 0.403 0.437 0.034 8.484
2023 0.274 0.295 0.021 7.705
All years 0.340 0.365 0.025 7.359

Table A.5.: Results per scenario and year





APPENDIX D

DYNAMIC TARIFF IMPACT ON DISTRIBUTION GRIDS

Regulatory scenarios

In Table A.2, a detailed overview of the investigated regulatory scenarios is depicted.
The ramp-up from 0% to 100% households with dynamic tariffs constitutes replacing
Constant with Dynamic profiles at the nodes of the distribution grid, in the scope
of the respective regulatory scenario.

Peak loads of aggregated household profiles

In Table A.3, the aggregated peak loads of all 500 households within the given
regulatory scenarios are depicted.

Table A.1.: Investigated policy options and resulting scenarios.
Scenario Feed-in Tariff pfeed-in

t Grid Charges Retail Tariff pwholesale
t Operation

Constant Volumetric_FIT without flexibility constant volumetric constant constant
Constant Volumetric_FIT constant volumetric constant dynamic
Dynamic Volumetric_FIT constant volumetric dynamic dynamic
Constant Volumetric_DynFeed dynamic volumetric constant dynamic
Dynamic Volumetric_DynFeed dynamic volumetric dynamic dynamic
Constant Peak_FIT constant peak constant dynamic
Dynamic Peak_FIT constant peak dynamic dynamic
Constant Peak_DynFeed dynamic peak constant dynamic
Dynamic Peak_DynFeed dynamic peak dynamic dynamic
Constant Rotating_FIT constant rotating constant dynamic
Dynamic Rotating_FIT constant rotating dynamic dynamic
Constant Rotating_DynFeed dynamic rotating constant dynamic
Dynamic Rotating_DynFeed dynamic rotating dynamic dynamic
Constant Segmented_FIT constant segmented constant dynamic
Dynamic Segmented_FIT constant segmented dynamic dynamic
Constant Segmented_DynFeed dynamic segmented constant dynamic
Dynamic Segmented_DynFeed dynamic segmented dynamic dynamic

Table A.2.: Scenarios with varying tariffs, grid charges, and operational strategies.

269



270 Dynamic tariff impact on distribution grids

Table A.3.: Aggregated peak loads [kW] per scenario on the day with the peak empirical
HP load (2019-12-01), PV feed-in (2019-05-13), EV demand (2019-11-18) and
the highest yearly peak load per scenario.

Name Heat Pump Peak [kW] Feed-in Peak [kW] EV Peak [kW] Yearly Peak [kW]

Constant Volumetric_FIT without flexibility 1189.9 1969.3 1183.9 2272.3
Constant Volumetric_FIT 1179.7 1865.7 1095.6 2270.2
Dynamic Volumetric_FIT 2258.9 1891.8 2352.3 2788.4
Constant Volumetric_DynFeed 1202.1 2189.0 1122.4 2496.5
Dynamic Volumetric_DynFeed 2257.1 2159.0 2351.2 2787.8
Constant Peak_FIT 996.4 1892.5 989.0 2267.1
Dynamic Peak_FIT 1693.6 1944.1 1670.4 2560.1
Constant Peak_DynFeed 1204.5 2597.8 1277.7 2652.3
Dynamic Peak_DynFeed 1699.6 2512.5 1668.6 2650.3
Constant Rotating_FIT 1227.6 1876.1 1096.4 2246.8
Dynamic Rotating_FIT 1437.6 1890.0 1449.2 2290.5
Constant Rotating_DynFeed 1229.4 2192.9 1093.1 2496.6
Dynamic Rotating_DynFeed 1442.2 2134.6 1448.5 2492.4
Constant Segmented_FIT 959.8 1827.3 937.5 2296.3
Dynamic Segmented_FIT 1264.0 1863.2 1184.8 2263.1
Constant Segmented_DynFeed 990.5 2178.3 924.0 2496.8
Dynamic Segmented_DynFeed 1248.4 2192.1 1185.0 2495.6

Peak loads with varying PV/BESS/HP/EV adoption rates

In Figure A.1, the weekly aggregated energy consumption of all 500 modelled
households is depicted. Figure A.2 shows a sensitivity analysis for varying
PV/BESS/HP/EV adoption rates under the status-quo V olumetric_FIT regula-
tory scenario.

Figure A.3 depicts the impact of varying adoption rates under the alternative
Segmented_FIT regulatory scenario, showing remarkably lower peak loads and
lower peak load increases through the introduction of dynamic tariffs.

Grid topologies

Table A.4 describes the properties of the investigated grid topologies in terms of
nominal transformer capacity (in MW), installed renewables capacity (in MW), line
length (in km) and transformer numbers. Figure A.4 depicts an exemplary grid
topology consisting of transformers, lines, and connected generators and loads. In
Figure A.5, an overview of the simulated grids and the types of installed loads and
generation capacities is depicted.
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Figure A.1.: Weekly aggregated energy consumption of all households

Empirical consumption on type days

Figure A.6 shows the aggregated empirical loads on the investigated days, exhibiting
particularly high peak loads on the HP and EV day.

Grid reinforcement results

In Table A.5, the grid reinforcement costs per penetration rate are split up into the
analyzed grids and then aggregated for one exemplary regulatory scenario (Volumet-
ric FIT ). In the following experimental results per type day (Table A.6, A.7, A.8,
A.9 and A.10), only the aggregated costs are considered per regulatory scenario. In
Figure A.7, an overview of the grid issues that led to the necessary reinforcement
measures is provided.

In Figure A.8, we show that the peak loads observed in Table A.3 are correlated
with the resulting grid reinforcement costs. The Pearson correlation factor between
the yearly peak loads and resulting grid reinforcement costs lies at 0.68, indicating
a strong relationship between the two variables. This demonstrates that the peak
loads observed in Figure A.3 can serve as a reliable initial indicator for determining
whether grid reinforcement measures may be necessary. However, the coefficient of
determination (R2) of 0.47 reveals that annual peak loads alone cannot fully explain
the variability in grid reinforcement costs. Consequently, this underscores the impor-
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Figure A.2.: Peak loads on specific days in the scope of varying PV/BESS/HP/EV adoption
rates under the V olumetric_FIT regulatory scenario

tance of conducting a more granular, scenario-specific analysis of grid reinforcement
costs, as detailed in Section 9.7.2.

In Figure A.9, the correlation between the increase of grid reinforcement costs
(from 0% to 100% dynamic tariff adoption under the V olumetricFIT scenario) and
characteristics of the 10 investigated grid topologies is investigated. Among the
grid characteristics, the length of medium-voltage (MV) lines exhibits the strongest
positive correlation with reinforcement costs, whereas the mean nominal power of
transformers demonstrates a negative correlation.

Table A.4.: Grid characteristics
Grid name transformers_snom_mean installed_wind_capacity length_lines_median nr_lines nr_buses length_lines_lv installed_pv_capacity nr_transformers length_lines_total length_lines_max length_lines_mean length_lines_mv

urban-load-2 0.60 0.00 0.02 5776 5830 173.20 1.46 83 247.53 6.86 0.04 74.33
suburban-load-2 0.59 0.01 0.02 11224 11312 319.60 5.59 143 438.87 8.03 0.04 119.27
rural-balanced 0.52 0.00 0.02 5142 5188 149.51 11.25 79 281.10 15.65 0.05 131.58
urban-load-1 0.53 0.00 0.02 10222 10331 312.06 12.51 165 408.32 6.71 0.04 96.27
rural-wind-1 0.28 15.25 0.03 516 530 17.94 0.96 16 49.00 9.11 0.09 31.06
rural-pv-wind 0.24 45.30 0.03 13439 13730 540.74 23.39 319 1035.10 15.79 0.08 494.36
suburban-load-1 0.41 1.50 0.02 8396 8485 251.35 5.30 131 408.13 18.86 0.05 156.78
rural-pv 0.14 0.00 0.03 3668 3855 160.57 17.64 207 611.96 14.23 0.17 451.39
rural-wind-2 0.22 23.20 0.03 8728 8910 381.40 5.82 201 723.43 18.21 0.08 342.03
suburban-balanced 0.58 0.00 0.02 5197 5259 178.25 11.37 103 269.54 6.25 0.05 91.30

Table A.5.: Volumetric FIT detailed reinforcement costs [M€] per grid in the combined
analysis

Dynamic Tariff Penetration [%] urban-load-2 suburban-load-2 rural-balanced urban-load-1 rural-wind-1 rural-pv-wind suburban-load-1 rural-pv rural-wind-2 suburban-balanced Aggregated

0 0.6 2.2 1.1 1.9 0.2 8.3 0.9 1.3 4.5 1.2 22.2
25 0.6 3.6 3.3 1.9 0.2 9.5 1.0 2.3 6.4 1.2 30.0
50 0.6 5.0 5.0 2.0 0.2 9.5 1.3 2.3 6.5 1.3 33.7
75 1.2 6.1 5.0 2.3 0.2 9.9 2.0 5.6 8.0 1.2 41.3

100 1.5 8.2 4.9 2.5 0.2 10.4 3.6 10.4 11.9 1.2 54.8
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Figure A.3.: Peak loads on specific days in the scope of varying PV/BESS/HP/EV adoption
rates under the Segmented_FIT regulatory scenario

Table A.6.: Combined analysis reinforcement costs [M€] per regulatory setting
Dynamic Tariff Penetration [%] Volumetric_FIT Volumetric_DynFeed Segmented_FIT Segmented_DynFeed Rotating_FIT Rotating_DynFeed Peak_FIT Peak_DynFeed

0 22.2 25.7 21.4 25.7 22.4 25.6 22.4 32.9
25 30.0 32.9 21.2 25.4 22.2 25.5 22.2 32.5
50 33.7 36.8 21.5 25.7 22.6 25.8 23.1 32.2
75 41.3 43.4 21.9 25.1 22.5 25.2 23.0 32.0

100 54.8 57.5 21.8 25.3 22.7 25.7 24.2 32.4

Dispatchable generator
VRES generator

HV/MV-transformer

Load

MV/LV-transformer

Other
Branch tee

Figure A.4.: Topology of exemplary grid.
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Figure A.5.: Overview of simulated grids with total peak load and installed feed-in capaci-
ties

Figure A.6.: Hourly empirical aggregated energy consumption on type days
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Figure A.7.: Grid issues occurring for the different policy scenarios and penetrations for
one representative run

Figure A.8.: Relationship between yearly peak loads of the 500 investigated households (see
Table A.3) and the "combined analysis" grid reinforcement costs (see Table
A.6), for all policy scenarios, grid topologies and adoption rates.
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Table A.7.: Electric vehicle type-day reinforcement costs [M€] per regulatory setting
Dynamic Tariff Penetration [%] Volumetric_FIT Volumetric_DynFeed Segmented_FIT Segmented_DynFeed Rotating_FIT Rotating_DynFeed Peak_FIT Peak_DynFeed

0 0.5 0.5 0.2 0.2 0.8 0.8 0.2 0.4
25 11.5 11.3 0.2 0.2 1.3 1.3 0.6 0.8
50 17.0 17.4 0.2 0.2 1.6 1.7 1.0 1.2
75 27.8 27.3 0.2 0.2 1.9 1.8 1.1 1.2

100 44.7 45.1 0.2 0.2 3.0 3.0 2.8 3.4

Table A.8.: Feed-in type-day reinforcement costs [M€] per regulatory setting
Dynamic Tariff Penetration [%] Volumetric_FIT Volumetric_DynFeed Segmented_FIT Segmented_DynFeed Rotating_FIT Rotating_DynFeed Peak_FIT Peak_DynFeed

0 21.9 25.5 21.2 25.6 22.1 25.3 22.2 32.8
25 21.7 25.2 21.1 25.2 21.8 25.1 22.1 32.4
50 22.4 25.5 21.4 25.5 22.3 25.5 23.0 32.1
75 21.3 25.0 21.7 25.0 22.1 24.9 22.9 31.8

100 21.9 25.1 21.6 25.2 22.2 25.2 23.4 31.4

Table A.9.: Heat pump type-day reinforcement costs [M€] per regulatory setting
Dynamic Tariff Penetration [%] Volumetric_FIT Volumetric_DynFeed Segmented_FIT Segmented_DynFeed Rotating_FIT Rotating_DynFeed Peak_FIT Peak_DynFeed

0 0.5 0.5 0.2 0.2 1.1 1.2 0.2 0.3
25 5.2 5.7 0.2 0.2 1.6 1.7 0.5 0.7
50 9.0 9.7 0.2 0.2 2.1 2.1 0.8 0.9
75 17.2 18.3 0.2 0.2 2.4 2.2 1.0 1.1

100 29.3 30.5 0.3 0.2 2.9 3.1 3.5 3.6

Table A.10.: Inflexible load type-day reinforcement costs [M€] per regulatory setting
Dynamic Tariff Penetration [%] Volumetric_FIT Volumetric_DynFeed Segmented_FIT Segmented_DynFeed Rotating_FIT Rotating_DynFeed Peak_FIT Peak_DynFeed

0 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1
25 0.6 0.5 0.1 0.1 0.3 0.3 0.2 0.2
50 0.8 0.8 0.1 0.1 0.3 0.3 0.2 0.2
75 1.2 1.1 0.1 0.1 0.4 0.3 0.2 0.2

100 1.8 1.7 0.1 0.1 0.5 0.5 0.4 0.3

Figure A.9.: Correlation between increase in reinforcement costs and grid characteristics in
the Volumetric FIT scenario
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