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Abstract: Cutting out an infinite tube around r = 0 formally removes the Schwarzschild
singularity, but without a physical mechanism, this procedure seems ad hoc and artificial.
In this paper, we provide justification for such a mechanism by means of non-locality.
Motivated by the Gauss law, we define a suitable radius variable as the inverse of a regular
non-local potential, and use this variable to model a non-singular black hole. The resulting
geometry has a deSitter core, and for generic values of the regulator, there is no inner
horizon , saving this model from potential issues via mass inflation. An outer horizon
only exists for masses above a critical threshold, thereby reproducing the conjectured
“mass gap” for black holes in non-local theories. The geometry’s density and pressure
terms decrease exponentially, thereby rendering it an almost-exact vacuum solution of
the Einstein equations outside of astrophysical black holes. Its thermodynamic properties
resemble those of the Hayward black hole, with the notable exception that for critical mass,
the horizon radius is zero.

Keywords: non-singular black hole models; spacetime singularities; non-locality

1. Introduction

The presence of singularities inside black holes is a robust prediction of general
relativity. However, it is commonly believed that a suitable UV completion of gravity
ameliorates this behavior and renders all physical quantities finite in proximity to the
center of the black hole. While there are indications that putative theories of quantum
gravity feature regular black holes in their semiclassical limits, an explicit derivation of
such objects proves cumbersome.

For this reason, Bardeen [1] considered a simple modification of the Schwarzschild
metric that is manifestly finite at r = 0 but reproduces the large-distance behavior known
from general relativity. Others have followed similar approaches and have developed a
rich family of non-singular black hole geometries [2-12] (and references therein). In this
paper, we focus on static regular black holes and postpone a discussion of time-dependent
formation (and evaporation) to later studies. Static non-singular black hole geometries
typically have several properties:

1. They do not solve the vacuum Einstein equations exactly, but their Einstein tensor
decreases polynomially with distance away from the center at ¥ = 0. Alternatively,
this can be viewed as the presence of an effective energy-momentum tensor, and the
properties of this matter source can be analyzed with respect to energy conditions.
In accordance with Penrose’s singularity theorem, an energy condition is violated if
the inner black hole singularity is avoided.

2. In addition to the outer event horizon at r ~ 2GM, there exists an inner horizon at
r ~ £ as well, where / is the regularization scale.
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3. Close to r = 0, the geometry approaches a de Sitter form.

4. The curvature upper bound is given by 1/¢2 and is independent of the black hole
mass, which is also called the “limiting curvature condition” [6,13-15].

5. Atlarge distances r < ¢, the regulator terms decrease rapidly and the metric increas-
ingly approximates the Schwarzschild metric of general relativity.

Moreover, in the spherically symmetric and static case, the regularity is achieved by
replacing the mass parameter M by a mass function M(r) that scales in a suitable fashion
to remove the singularity at r = 0. A well-known model is that of Hayward [4],

_ e
r3 4+ 2M2’

dr?
fu(r)

where ¢ > 0 is the regularization length scale and we employ units, wherein G = 1.

ds? = — fy(r)de* + +r2dQ0?, fu(r) =1 1)

The complicated appearance of the black hole mass parameter M in the denominator of the
function fp(r) guarantees the limiting curvature condition. Typically, the function fz(r)
has two zeroes, corresponding to the inner horizon and the outer horizon, respectively.
Of course, in the absence of a fundamental theory predicting the precise form of a
non-singular metric, many different parametrizations can be explored. From a fundamental
physics perspective, however, this is somewhat dissatisfying, since there is no physical
argument that favors one type of non-singular metric over another equally non-singular
one. In this paper, we propose an avenue to approach this problem by connecting the
regularity properties of static black hole spacetime metrics with Gauss’ law. Starting from a
modified radius variable, we construct a non-singular metric that turns out to not have an
inner horizon but still features a de Sitter core. The form of the modified radius variable is
motivated by recent results in non-local gravity, thereby removing a layer of ambiguities.

2. Modified Radius Variable

In a local field theory in four spacetime dimensions, the potential of a point particle
decreases monotonically with the inverse spatial distance (in suitable units),

Proc = *% . 2)

Similarly, the field strength decreases with the inverse area, due to Gauss’ law. Simply
speaking, this is a consequence of the Poisson equation,

V2 Proc(r) = —4m 60 (r). 3)

Now, reversing this logic, one could measure the field strength and thereby deduce
the radial distance away from the source. As the field strength diverges, one reaches r = 0.
For the sake of simplicity, but without loss of generality, in what follows, we shall consider
the potential as the fundamental variable, for which similar mathematical properties hold
true. Hence, one may be inclined to define a radius to be the inverse of the potential,

_ 1
4)loc '

However, the singularity of the local potential is deemed unphysical since it gives

r =

4)

rise to infinite forces and accelerations. It is possible to modify the equations of motion for
scalar potentials, and at the linear level, a class of non-local theories has proven particularly
successful in removing the divergence at r = 0 [16-23]; for earlier work in non-commutative
geometry and regular black holes, see Refs. [24-27]. Within a quantum mechanical approach
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to the singularity problem, one also encounters non-local terms [28,29]. For these reasons,
we consider the non-local equation

F(V2) V2 = —4m60) (x). (5)

Therein, F(V?) is a so-called form factor that depends on a regularization parameter
¢ > 0 and that satisfies F(0) = 1. A popular choice motivated from string field theory
is [17]

F(V?) = V2, ©6)

This equation can be used with the method of non-local Green functions; for a com-
prehensive review, we refer to Ch. 2.8 in [23] as well as the references therein. For a general
form factor, the spherically symmetric point particle solution takes the form

pulr) = -1\/2 / < F(lﬁ)h/z(z)/ 7)

where ], 5(z) = \/2/(mx) sinx is the Bessel function of the first kind, and the Coulomb
potential is recovered by setting F = 1 and using [ dxx~! sinx = 71/2. For the above
choice of form factor, one readily obtains
erf(~;
Pl = — <”), ®)

r

where erf(x) denotes the error function which asymptotes exponentially fast to unity [30]:

42
ex

Vx

This relation guarantees that in the limit /(2¢) — oo (that is, at large distances r

erf(x — o0) & 1—

©)

compared to the regulator ¢, or at vanishing regulator scale £ — 0 at fixed r)m we recover
the Coulomb potential. At small distances, however, this potential differs appreciably from
the singular Coulomb potential: it is finite and regular at r = 0. Using this non-locally
regularized potential, we may now define a modified radial distance

1 r

Ff=—— = .
¢n1 erf(zlg)

(10)

In Figure 1, we plot the local potential with its regularized, non-local counterpart,
as well as the two corresponding radius variables. As becomes apparent, the modified
radius variable 7 has a minimal value proportional to the regulator scale ¢:

Fr—0) =l +0(?). (11)

At large distances, however, the two radial coordinates approach each other exponen-
tially fast [30],

2
Fr —o0) =7+ \/%e_rz/(w) : (12)
Hence, taking this non-locally modified radius variable 7 as the physical radius variable
effectively cuts out the region r € [0, /7t¢] from the manifold, while rapidly approaching
the standard radius definition for distances larger than /.



Universe 2025, 11, 112

40f 15

w

radius

S -

rescaled

non-local

Newtonian 1t standard

Figure 1. Newtonian and regularized potential (left), and corresponding radius functions (right).

3. Non-Singular “Gauss” Black Hole Model

Let us now explore the ramifications for a static and spherically symmetric black hole
spacetime subjected to the formal substitution r — 7(r),

dr? 2 > _ 2M . r
fnl(r)—i-r dO-, fnl(r)—l—m, r—@. (13)

Due to its motivation via the non-local Gauss law (and the appearance of the error

ds? = —fu(r)dt* +

function erf(x) as well as Gaussian factors ¢~/(4?) in the radius and curvature), we shall
refer to it as the “Gauss” model. Note that this is not a coordinate transformation since
we explicitly keep r as the coordinate radius variable. However, it is clear that circles of
r = const now have the proper circumference 277(r). Unlike what is usually assumed
in non-singular black hole models, we here explicitly rescale the spherical part of the
geometry as well, which is a necessary step to render this black hole model finite at r = 0.
This is similar to the model proposed by Simpson and Visser [9]. In what follows, we
will discuss this metric in more detail. In particular, we will discuss (i) the horizons, and,
in particular, the absence of an inner horizon; (ii) the absence of an outer horizon for
large regulators (“mass gap”); (iii) a thorough study of curvature invariants including
the Kretschmann scalar as well as squared of the Weyl tensor, the tracefree Ricci tensor,
and the Ricci scalar, demonstrating the manifest regularity of this metric; (iv) the question
of universal boundedness in curvature (“limiting curvature condition”); (v) the properties
of the effective energy—-momentum tensor and violation of energy conditions; (vi) the
Hawking temperature and entropy of this metric as compared to the Schwarzschild case;
and, finally, (vii) the interpretation of the hypersurface » = 0 in relation to wormholes and
geodesic completeness.

3.1. Horizons

Let us briefly compare the metric function f,(7) to that of general relativity and
the Hayward model; see Figure 2. For generic values of £ and M, where we assume
that M/¢ > 1, it is clear that the behavior at r = 0 is rather different. In the general
relativity case, one has the standard spacelike singularity, whereas the Hayward model is
de Sitter-like. At r = 0, the Gauss model behaves as

oM, MR
NCRR NG

which shows that for large masses 2M > /7t/, the geometry is indeed de Sitter-like at

flr<t)~1- (14)

the origin.
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Figure 2. Metric functions for the Schwarzschild, Hayward, and Gauss black hole.

The striking difference between the Gauss and Hayward models lies in the absence
of an inner horizon for the latter. An apparent horizon is located wherever the following
condition is satisfied:

(Vr)?=g"=0, (15)

such that the locations of apparent horizons correspond to the zeros of the metric function
f(r), or, equivalently, wherever the vector field 9#r = &/ becomes null. While the outer
horizons are roughly located around r ~ 2M, modulo small corrections due to ¢, there is
an inner horizon for the Hayward model, but none for the Gauss and Schwarzschild black
holes; see Figure 3 for a visualization of the horizon radii.

4.0F
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000 025 050 075 100 125 150 175  2.00
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Figure 3. Horizon radii for the Gauss black hole compared to the Schwarzschild metric and Hayward
metric. Note that the horizon radius for the Gauss black hole at critical mass M) is zero.

Since inner horizons make black holes susceptible to mass inflation [31,32], the generic
absence of such a structure in this model is an interesting feature of the non-local regulator.
While more work is needed to understand the precise origins, it is likely due to the fact
that our model is intrinsically non-polynomial. In this way, the absence of the inner
horizon would be directly inherited from the “ghost-free property” of non-local gravity
which in turn heavily relies upon entire non-polynomial functions for the gravitational
propagator [23,33,34], such as e V% as employed in Equation (5).

In fact, one may check that substituting the complicated function erf(x) by a rational
approximation x?/(1 + x?) gives rise to an inner horizon; see Figure 4 for a plot of the

metric functions as well as the error function and its approximation. (The substitution
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x/ (14 x) is not allowed since it induces a conical singularity around r = 0.) For this reason,
we believe that the absence of the inner horizon is indeed due to the non-rational form of
our modification.

Gauss
Schwarzschild
approx.

4 5 6

37'/(‘2/')

Figure 4. (Left): The metric function f(r) for the Gauss regular black hole (solid line),
the Schwarzschild metric (dotted line), and the Gauss regular black hole subjected to the approx-
imation erf(x) — x2/(1+ x?) (dashed line). Clearly, this approximation induces an inner horizon.
(Right): The error function erf(x) and its approximation x?/ (1 + x2) in direct comparison.

Let us understand the consequences of the error function approximation at a deeper
level. To that end, in non-local field theory, we may write the inverse of the form factor as
the following regularized integral over the potential of a point particle [23],

[e9)
1

i) = —kg}% J dre="r sin(kr)p(r) . (16)

One may verify that setting ¢(r) = —1/r yields F(—k?) = 1, as expected. A non-trivial
check for ¢(r) = ¢ (r), however, gives instead

1 T 2 erf(5;) 202
— 1 —€r : 20 — —k=0 17
i) +k lim J dre™¢" r sin(kr) — o =e , (17)
meaning F(—k?) = %, in exact correspondence to Equation (6) under the Fourier substi-

tution V2 — —k2. The propagator D of this theory is schematically given by

1 1

D~ erry

(18)
This implies that every pole of this function corresponds to a propagating degree of
freedom [34]. The function F(—k?) = K is everywhere non-vanishing, which implies that
for non-local theories, there are no additional propagating degrees of freedom. Incidentally,
this is one of the reasons that non-local theories are sometimes also referred to as “ghost-free”.
If one instead computes the above integral for the approximated error function,
one finds

F(—lkZ) = 1+ (k) [*Ei(—2k0) — 2 Ei(+2Kk0)|. (19)

One can easily verify that 1/F(—k?) assumes negative values for k exceeding a critical
value ko, where 1/F(k3) = 0. This then makes the propagator of the theory change sign
above a certain energy threshold, which has been shown to be related to instabilities [34],
thereby demonstrating the pathological features of such a rational function approximation.

We note, finally, that an inner horizon also does not exist for the Simpson—Visser
choice [9], which is given by f(r) = 1 —2M/Vr?+ (% and ¥ = Vr? + (? and uses the
square root function. Conversely, in Frolov’s regular black hole models that utilize rational
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functions, an inner horizon persists [6]. These considerations hence further underline the
apparent necessity of non-rational regular black hole metrics if one wants to avoid an
inner horizon.

3.2. Mass Gap

It is well known that in higher-derivative as well as non-local infinite-derivative
theories of gravity, there exists a mass gap for the dynamical formation of black holes via a
spherically symmetric collapse of null dust [35,36], and this mass gap is proportional to
the regularization scale. In other words, small black holes do not form unless their mass
parameter exceeds a critical value.

In the present context, note that the modified radius variable 7 is always larger than
the minimal distance /7t¢. For this reason, the apparent horizon condition (15) can only be
satisfied if

N

M > My = 5

(20)
that is, the mass parameter exceeds a critical value. As expected, in the limiting case of ¢ —
0, this mass gap vanishes as one recovers the Schwarzschild case. While the considerations
presented in this paper are focused on the time-independent scenario, it is still interesting
that they qualitatively reproduce the mass gap found in dynamical situations.

If the mass is less than the critical value, M < M), the resulting geometry is horizonless
but regular at ¥ = 0. Specifically, * = 0 then corresponds to a wormhole throat moving
forward in time, just as in the Simpson—Visser case [9]; for comments on the analytic
continuation, see below.

Let us conclude this section by addressing an interesting feature of the proposed
“Gauss” regular black hole: at minimal mass, M = M), the horizon radius of the Gauss black
hole is zero. Conversely, for the Hayward metric evaluated at its critical mass, the horizon
radius is non-zero. This will become relevant in the thermodynamical studies later.

3.3. Regularity and Curvature Invariants

To show the regularity of this metric, one may calculate several scalar curvature
invariants. We focus here on the Ricci scalar R, and the square of the traceless Ricci tensor
S? = (Suv)?, as well as the square of the Weyl tensor C2 = (Cjyp¢)* and the Kretschmann
scalar K = (RWW)Z. These quantities are related to each other via

K:C2+252+%R2. (21)

Their general expressions are quite cumbersome, so we will not show their explicit
values here. At r = 0, they take the following simpler form:

_3VAM A (6-2m)(  7yTAM+2(10+ )l ,

4
R 3n63 60705 r+o), (22)
Q2 9TM? + 4(3 — 271)/TTML + 2(18 + 712) ¢
B 367206
637TM? + 2(51 — 137)+/7TME + 4[90 + (15 + ) 7t] 6% , 4
- 10807208 r+o), (23)
2 BYAM = (6+ M) (27y7AM —4(5+ m)O)[3V/TM — (6 + m)¢] , .
= 27206 2707208 r+o), (24)
K- 97tM? — 870/ 2 ML +2(18 + 72) ¢
B 97206

1237M? — 8/7(15 4 7m) ML + 4(90 + 157 4 %) 2

2707208 4+ O(r4) . (25)
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Somewhat cumbersome expressions aside, it is clear that the scalar curvature at 7 = 0
is positive for large masses M > (27t — 6)¢/(31/71), consistent with our previous estimate
2M > /7tl. Moreover, the invariants are all manifestly finite as well as regular at r = 0
since no linear terms in r appear.

3.4. Limiting Curvature Condition

However, the behavior of the invariants at * = 0 is not bounded by a universal
constant. Demanding that the curvature scales at most Planckian for typical astrophysical
black holes,

GM.:
c2¢3

©

R~ S a (26)

‘ér\iz‘ —

gives the constraint that £ > 10722 m, which is thirteen orders of magnitude larger than the
Planck scale. Using this as a reference value, we can now estimate the order of magnitude
of deviations from the Schwarzschild black hole outside the horizon of an astrophysical
black hole, given by

e~ GM2/(P?) o o107 27)

This is to be compared to the case of polynomial non-singular black holes, where

deviations are equal to simple powers of c2¢/(GMy) ~ 10~%.

3.5. Effective Energy—Momentum Tensor and Energy Conditions

While the singularity-ridden black hole solutions of general relativity are vacuum
solutions of the field equations, regular black hole models such as the one presented in
this paper do not solve these field equations. This is to be expected since by virtue of the
Birkhoff theorem, the Schwarzschild solution is the unique spherically symmetric static
vacuum solution of the field equations of general relativity. However, one may argue that
in a UV-finite theory of gravity, the field equations would deviate from those of general
relativity, and hence it is not a substantial impediment that regular black hole models are
no vacuum solutions.

One may certainly take the point of view that regular black hole models are supported
by special types of matter, and then relate the regularity properties (and deviations from the
Schwarzschild metric) to the properties of this form of matter. For example, this has been
achieved in the context of non-linear electrodynamics [37], but this method does not work
for all regular black holes, and hence this analysis is outside of the scope of the present
paper. Alternatively, we may view T, = G,/ (87) as the effective energy—momentum
tensor of the proposed metric.

In that framework, we can now address energy conditions on the effective energy—
momentum tensor. Since all energy conditions (dominant, weak, strong) imply the null
energy condition, we opt to study the possible violation of the null energy condition as
another indicator for the regularity of the proposed spacetime.

Following the discussion by Simpson and Visser [9], we define the energy and density
of the effective energy-momentum tensor as

o= (1T, p =T, pL= T =T7,. (28)
The null energy condition is then equivalent to

p+p; =0, p+pL=0. (29)
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Computing the effective energy-momentum tensor, the energy density p is given by

erf(£)" =1 2Me /) gMe /IO spe /08
r2 Vea Vit lerf(4)?
re—T2/(40%) 8Me—">/(20%) 6e— 1/ (40%)

87p =

_ , 30
Vlerf(4;) * rirl?erf () * Vrlerf(5;) (30)
whereas the parallel and transverse pressures p| and p, take the form
1 — erf(2)? —r2/(262) 2p—17/(42)
sp, = @), e e, (31)
r mtl%erf( ;) Vrrlerf(g;)
e /@) [ — Merf($)] [470 + V/(r? — 402)exf(§)e 7/ 4]
8mp, = 5 . (32)
27tr203erf(5;)
Then, one finds
e 17/ (20%) [r —2Merf ()] [4% + /7 (r? — 462)erf(§)e+’2/(4€2)}
87t(o+p)) = (=1) YCWPTERY: , (33)
ntr2Berf ()
o erf(£)2 =1 3Me/(0)  gMe /U 3/
mlo+pi) = r2 + 2/ Jmrl 7r€2erf(2—r€)2
re— 1/ (46%) 6Me—""/(20%) g1/ (46%)
- — + > —~ + - (34)
Vrllerf(5;)  mrlPerf(4;)  /mrlerf(y)
Recall that the black hole horizon is located at
- 2M n .
flry) =1 " erf(zé) =0, (35)
which implies that outside of the black hole, for r > r, one has
T
r— 2Merf(ﬂ) >0, (36)

implying that p + p|| < 0 outside of the black hole (assuming that r > 2¢ which is always
satisfied in the black hole exterior above the mass gap). Hence, the null energy condition is
violated in the black hole exterior. An identical argument holds for inside the black hole
as, for example, Simpson and Visser point out [9]: inside, t and r switch their places, and we
define instead ¢ = (—1)T", and || = T';. Inside the horizon, the expression r — Merf( ;)
switches sign but so does p + p|| = (-)TH+ T, = —(p+ p||)- Hence, the null energy
condition is identically violated past the outer horizon, in the black hole interior.

Similarly, there exist values for which p + p; > 0 is violated, but this expression is
more cumbersome and hence difficult to study analytically. Hence, to avoid all ambiguities,
we also numerically verify the above statements. To that end, it is useful to work in the
dimensionless quantities r/(2/) as well as M/ (2(); see Figure 5.

In conclusion, this shows that the Gauss black hole, like all other known regular black
hole models, violates one of the energy conditions in its vicinity as well as in its interior.



Universe 2025, 11, 112

10 of 15

3.0F
1 p+p<0
o5b 0 p+pL <0
[ 1 no black hole
20| @@ numerically unstable
()
&
S 1.5F
1.0
0.5}
0.0“ 1 1 1 . T :

r/(20)

Figure 5. Visual inspection of the violation of null energy conditions, expressed at fixed ¢ for
various masses M and radial distances r. The highlighted benchmark point (visualized as a star
in the above) is located at {r/(2¢), M/ (2¢)} = {5.9,1.8} and violates the null energy condition as
87GE(p + pj) = —1.921 x 107 < 0and 8nG(*(p + p, ) = —1.379 x 10716 < 0.

3.6. Black Hole Thermodynamics

To begin our considerations of the thermodynamic properties of the proposed metric,
recall that the horizon of the black hole is defined implicitly via the transcendental equation

f(rh) =0,

Ty = 2Merf(;—2) , (37)

provided that M > My = +/7tl/2 (otherwise, no horizon exists). Since the geometry
is static, one may apply standard Euclidean gravity techniques to extract the associated
Hawking temperature as the periodicity of imaginary time [38-40], leading to

!(y 7 r 12
TH _ f( h) _ 2M [erf<h> — \/%ﬁ exp (—4£2>‘| (38)

A 4mr? 20
However, the implicit nature of r, is obfuscating the physical significance of this

expression. While it can be evaluated numerically (given the mass parameter M as well as
the regulator ¢), it is instructive to utilize Equation (37) to arrive at

1 2M 7\ 1 M r2
1= G, ™ 4720 P (‘w) i, ll T M P (‘4@2 - @

This form is interesting since it expresses the Hawking temperature to the would-be

Schwarzschild temperature 1/ (47try,), multiplied by a correction term involving both the
regulator scale ¢ (which may be expected) as well as the mass gap My, which is somewhat
less intuitive. Last, note that we can also recast Equation (37) into an expression for the
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mass. In that case, restoring the appearance of /, we arrive at a third expression for
the temperature,

1 17 1 rﬁ
Th = 47try ! VL oerf(5h) exp( 4€2>] ' (40)
Recalling the identity
—r2/(402)
lim & =W (r) (41)

one finds in the limit ¢ — 0 that

1 M
H= gy~ 0 (), )

where the last term vanishes identically since 7, > 0. This guarantees that in the absence of
the regulator ¢, the black hole temperature coincides with the Schwarzschild case as it must.

The black hole entropy, by similar Euclidean reasoning, is assumed to be given by
the quarter of the area of the event horizon. While this step is particularly trivial in most
regular black hole spacetimes (since the spherical part of the geometry is left unmodified),
this is decidedly not the case in the present paper. Namely, one finds that the entropy is
entirely regulator independent and is directly given by the black hole mass. One computes

=N

&)

S = 4M? . (43)

-

A I
o eri(f)’

This coincides with the Schwarzschild case, but it describes a black hole of a different
composition. Importantly, the result follows again from the implicit relation (37). This
result is perhaps the most surprising one encountered in the context of the thermodynamic
study of this black hole.

Let us now address the thermodynamic stability of this metric by computing its
specific heat. To begin with, we introduce a dimensionless temperature Ty = T/ as well
as a dimensionless horizon radius #, = r;,/(2¢), arriving at a compact expression for the
temperature as a function,

2
A 1 27, ek
Ty = —)[1 - =L 44
H (47‘(?;1) [ \/Eerf(?h)l ’ (“44)
where we extract the Schwarzschild prefactor in parentheses. Defining the specific heat in
the usual manner,
g3 _ 8o _ TS
oT ar, oT 9T 9y,

i

(45)

we can then express the dimensionless specific heat in terms of the horizon radius 7y,
as follows:

Vet erf(#,) — 27,
erf(7;,)? [n 2 erf(#,)2 — 4y/7T 3 o erf(#y) — 4?%}

¢ = @iz = (—27#?) (46)
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Similar to the above, we extract the Schwarzschild value in the leading paren-
theses. Last, we define the free energy by direct analogy to the Euclidean general
relativity expression,

F=M-TS, (47)

and a related dimensionless free energy taking the form

1’;\-252 <?h>zerf(?h)1+\/w(?h) (48)

where the prefactor is again the Schwarzschild value. Both the ST and the FT phase
diagrams can now be constructed as parametrized plots of the dimensionless horizon
radius #;,. For definiteness, we included the expressions for Schwarzschild as well as those
for the Hayward metric (where care has been taken that for the Gauss black hole and
the Schwarzschild black hole, we have # > 0, and in the Hayward case, we instead have
#r, > /3/2; see Figure 6). Qualitatively, the behavior of the Gauss and Hayward case is
comparable, namely, there exists a maximum temperature. The entropy is equal at the
maximum temperature for the Gauss and Hayward case, but the temperature itself is
slightly larger in the Gauss case. Conversely, the free energy at maximum temperature is
larger for the Hayward case.

50, 2.0,
Gauss Ganss
40r Schwarzschild Schwarzschild
Hayward 1.5+ Hayward
o 30F <
= ~
T~
W ol Ry 1.0k
10F
0.5
%0-60 0.01 0.02 0.03 0.04 0.0 0.00 0.01 0.02 0.03 0.04 0.05
T x (20) T x (20)

Figure 6. Dimensionless entropy (left) and dimensionless free energy (right) as a function of temper-
ature. While a closed form of their functional relation is not available, the above diagrams have been
generated parametrically in terms of the black hole horizon radius r;,. Qualitatively, the behavior of
the Gauss and Hayward metric is similar, whereas they only approach the Schwarzschild behavior
for large entropies or large free energies.

We would like to close this section by addressing the specific heat and the temperature
of the Gauss black hole—for a graphical representation, see Figure 7. The specific heat is
singular both in the Hayward and Gauss case, in a very similar fashion: for small black
holes, the specific heat is indicating stability; for large black holes, however, the specific
heat turns out to be negative, similar to the Schwarzschild case, implying instability under
Hawking radiation. However, an interesting consequence (that is not dissimilar to the
fate of the Hayward metric) is that the decay under Hawking radiation will eventually
terminate once a sufficiently small mass is reached, resulting in a remnant. The discussion
of this object, however, is outside of the scope of this paper, and may be addressed at a
later stage.
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Figure 7. We plot the dimensionless temperature and dimensionless specific heat (rescaled by
convenient numerical factors to fit them into one diagram) as a function of the dimensionless horizon
radius. Both the Gauss and Hayward metric exhibit stable small black holes, whereas the specific heat
diverges at an intermediate mass. Beyond that, like the Schwarzschild black hole, the resulting black
hole configurations are unstable. The behavior of the Hawking temperature of both the Hayward
and the Gauss black hole is similar, and approaches the Schwarzschild temperature case for black
holes that are large compared to the regulator scale .

3.7. Properties of r = 0, Wormbholes, and Geodesic (In)Completeness

The location r = 0 corresponds to 7 = /7t¢, and hence the metric is

ds?

2M
= (== —1)df + n2dQ?, 49
=0 < NG ) & )
which is nothing but a sphere of surface area 4772¢? factored with another spatial direction
t, provided the mass parameter M is large enough. It would be interesting to study the
response of this “throat” to infalling matter. A radial null geodesic in a static metric with

—gi = §'" = f(r) has a conserved quantity E = f(r)f, where the dot denotes differentiation
with respect to the affine parameter A. Then,

i? =E?, (50)

implying that any radial geodesic can reach the surface of that sphere (r = 0) at a finite
affine parameter, which in turn implies geodesic incompleteness [41]; for an application
to regular black holes, see Ref. [42]. However, this might not be a serious drawback since
many regular black hole models are geodesically incomplete [43]. In this particular case, it
seems that continuing the variable r to the entire range of R would solve that issue and
potentially give rise to a wormhole-type geometry; see also Simpson and Visser [9]. For that
reason, even though from the outside, the proposed Gauss metric appears as a black hole
(and has been proposed as a candidate for a regular black hole metric), its properties under
analytic continuation may deserve further scrutiny.
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4. Conclusions and Outlook

We have proposed a non-singular “Gauss” black hole from the principle of a non-local
regulator that “cuts out” a piece of spacetime with radii less than the non-local regulariza-
tion scale, providing a mechanism for the procedure described e.g., by Klinkhamer [44].
The presented geometry has several interesting features: first, it has no inner horizon.
Second, its deviation from the Schwarzschild vacuum decreases exponentially fast, which—
similar to the Dymnikova black hole [2]—makes it a rather good approximative vacuum
solution, and its effective energy—momentum tensor demonstrably violates the null energy
condition. And third, perhaps most interestingly, it provides a mechanism to arrive at a
regular spacetime. However, this model does not satisfy the limiting curvature condition,
thereby placing a constraint of £ > 10722 m on the scale of non-locality when applied
to astrophysical black holes. Its thermodynamics resembles that of other regular black
holes, with the interesting difference that at the critical mass My, below which the horizon
ceases to exist, the horizon radius also approaches zero. The fact that the Gauss black
hole becomes arbitrarily small at finite mass may have interesting applications in quantum
gravity phenomenology.
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