KIT | KIT-Bibliothek | Impressum | Datenschutz

FedSynthCT-Brain: A federated learning framework for multi-institutional brain MRI-to-CT synthesis

Raggio, Ciro Benito 1; Zabaleta, Mathias Krohmer 1; Skupien, Nils 1; Blanck, Oliver; Cicone, Francesco; Cascini, Giuseppe Lucio; Zaffino, Paolo; Migliorelli, Lucia; Spadea, Maria Francesca 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

The generation of Synthetic Computed Tomography (sCT) images has become a pivotal methodology in modern clinical practice, particularly in the context of Radiotherapy (RT) treatment planning. The use of sCT enables the calculation of doses, pushing towards Magnetic Resonance Imaging (MRI) guided radiotherapy treatments. Moreover, with the introduction of MRI-Positron Emission Tomography (PET) hybrid scanners, the derivation of sCT from MRI can improve the attenuation correction of PET images.
Deep learning methods for MRI-to-sCT have shown promising results, but their reliance on single-centre training dataset limits generalisation capabilities to diverse clinical settings. Moreover, creating centralised multi-centre datasets may pose privacy concerns. To address the aforementioned issues, we introduced FedSynthCT-Brain, an approach based on the Federated Learning (FL) paradigm for MRI-to-sCT in brain imaging. This is among the first applications of FL for MRI-to-sCT, employing a cross-silo horizontal FL approach that allows multiple centres to collaboratively train a U-Net-based deep learning model. We validated our method using real multicentre data from four European and American centres, simulating heterogeneous scanner types and acquisition modalities, and tested its performance on an independent dataset from a centre outside the federation.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181646
Veröffentlicht am 26.05.2025
Originalveröffentlichung
DOI: 10.1016/j.compbiomed.2025.110160
Scopus
Zitationen: 4
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 0010-4825, 1879-0534
KITopen-ID: 1000181646
Erschienen in Computers in Biology and Medicine
Verlag Elsevier
Band 192
Heft Part A
Seiten 110160
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page