KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River

Dong, Ningpeng ; Hao, Haoran ; Yang, Mingxiang; Wei, Jianhui ORCID iD icon 1,2; Xu, Shiqin; Kunstmann, Harald 1,2
1 Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

Hydrometeorological forecasting is crucial for managing water resources and mitigating the impacts of hydrological extremes. At sub-seasonal scales, readily available hydrometeorological forecast products often exhibit large uncertainties and insufficient accuracies to support decision-making. We propose a deep-learning-based modelling framework for sub-seasonal joint precipitation and streamflow ensemble forecasts for a lead time of up to 30 d. This is achieved by coupling (1) an ensemble of enhanced convolutional neural network (CNN) models with ResNet blocks and a specialized loss function for statistically downscaling of European Centre for Medium-Range Forecasts (ECMWF) ensemble precipitation forecasts to (2) a hybrid hydrologic model integrating the conceptual Xin'anjiang model (XAJ) and the long short-term memory network (LSTM) for ensemble streamflow forecasting (XAJ-LSTM). Applying the modelling framework to the source region of the Yangtze River Basin, results indicate that the CNN-based downscaling model exhibits ∼34 % and ∼26 % less root mean squared error (RMSE) than the raw ECMWF forecasts and the quantile mapping (QM) forecasts, respectively, averaged over the 30 d lead time. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000181650
Veröffentlicht am 12.05.2025
Originalveröffentlichung
DOI: 10.5194/hess-29-2023-2025
Scopus
Zitationen: 7
Web of Science
Zitationen: 6
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 22.04.2025
Sprache Englisch
Identifikator ISSN: 1027-5606, 1607-7938
KITopen-ID: 1000181650
HGF-Programm 12.11.33 (POF IV, LK 01) Regional Climate and Hydrological Cycle
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 29
Heft 8
Seiten 2023 – 2042
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page