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ABSTRACT

In this work, a finite volume method is developed to capture the interaction between the infiltrating resin
and the deforming fiber reinforcement in liquid composite molding (LCM). The method consists of three parts:
(1) the fluid flow through a porous medium, which depends on the fiber volume fraction (FVF) and the fiber
orientation, (2) the solid mechanics of the porous fiber structure considering the general anisotropic material
stiffness, which also depends on the FVF and the fiber orientation, and (3) an internal coupling approach
to couple porous solid mechanics and fluid flow with an iterative scheme. An anisotropic model of porous
solid mechanics is proposed and verified in a unidirectional case to capture fluid-induced deformations of the
porous medium. In a second verification case, the stress state is verified in an open-hole tensile test against
an analytical solution for different degrees of material anisotropy. Finally, the infiltration and compaction
predictions of the model are validated against experimental data from the literature using a three-dimensional
plate. In addition, the infiltration behavior with the anisotropic model is compared to the isotropic model to

illustrate the advantage of the new approach.

1. Introduction

One important manufacturing process for high performance com-
posites is Liquid Composite Molding (LCM), which includes Resin
Transfer Molding (RTM), Wet Compression Molding (WCM), and Vac-
uum Assisted Resin Infusion (VARI). The trend in manufacturing is
towards flexible tooling like in Compression RTM (CRTM), where a
movable mold is used to reduce the infiltration pressure and time. This
means that not only the resin flow through the porous medium, but also
the deformation of the fiber reinforcement must be taken into account.
The same applies to the manufacturing of sandwich structures with an
integrated foam core, where the deforming foam must also be taken
into account. In order to control these complex processes, avoid defects
and keep process times short, it is useful to model the manufacturing
process as accurately as possible. If the process is well understood,
emissions, energy consumption and rejects can also be reduced, which
is an important step towards a climate-friendly production. Therefore,
in this paper a method is presented to describe anisotropic deformations
of a porous medium in a finite volume framework. The aim is to be
able to better predict the deformations of the fiber reinforcement and
the formation of air inclusions simultaneously.

Simulations of infiltration flow in LCM manufacturing processes
have been extensively studied for more than three decades to better
design and understand the process [1-5]. If one domain boundary is
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flexible, the mutual influence between the fluid flow, the deformation
of the boundary, and the deformation of the fiber reinforcement poses
a particular challenge in predicting the filling behavior. The mutual
dependencies are to be reproduced in the mold filling simulation by
means of fluid—structure interaction (FSI). This is the case, for example,
in the VARI process [6-10] and in the processing of Sandwich compo-
nents with an integrated foam core. During the processing of sandwich
components the fluid pressure induces different types of deformation
and displacements of the foam core, as analyzed by Al-Hamdan et al.
[11], Binetruy and Advani [12]. In this context, Deleglise et al. [13]
and Seuffert [14] investigated the influence of forced and induced
deformations on the filling behavior and found a large influence of
foam core deformations on the injection pressure and thus on the filling
behavior.

In CRTM the movement of the upper mold and the resulting com-
pression of the fiber reinforcement have to be described additionally.
This induced compression poses the additional challenge of modeling
the deformations of the porous medium during infiltration. A finite
element approach to model the deformation of a dry fiber mat for
Injection/Compression LCM was derived by Pillai et al. [15]. The model
is capable of capturing complex preform shapes and allows for large
deformations and a variety of constitutive equations for the behavior
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of fiber reinforcement. However, the infiltration of the preform is
not considered. Based on the work of Pillai et al. [15], Bickerton
and Abdullah [16] present an experimental and numerical study on
the influence of compressive force and velocity on the infiltration
behavior in CRTM. They assume that the deformations are limited to
the thickness direction, but allow for a three-dimensional flow field.
The influence of reinforcement compaction on the infiltration flow
was also studied by Bhat et al. [17] and Merotte et al. [18] in a
parametric study using the finite element (FE) tool Liquid Injection
Molding Simulation (LIMS) in the thickness direction. Martin et al. [19]
investigated the influence of resin channels on press forces and inlet
pressure, comparing experimental findings with FE simulations using
2D elements. They found that 2D elements are sufficiently accurate for
their application and concluded that viscosity and permeability have a
large influence on the infiltration.

If the component thickness is larger, a three-dimensional approach
is required as described by Yang et al. [20] and Shojaei [21]. Shojaei
[21] model the fluid flow with a control volume (CV)/FEM approach,
while Yang et al. [20] use a multiphase Volume of Fluid (VOF) ap-
proach in a commercial FE tool. Both use a three-dimensional approach
for the fluid flow, but model compression and stress in the porous
medium only in the thickness direction. Yang et al. [20] additionally ac-
count for the initial gap as a resin channel, in which the incompressible
Navier-Stokes equation is solved instead of assuming a porous medium
with high permeability and porosity. Dereims et al. [22] also present a
three-dimensional FE approach to couple a porous solid and a fluid flow
using Terzaghi’s law of effective stress [23]. Since the authors couple
a Stokes and a Darcy flow outside and inside the porous medium,
respectively, they have to stabilize the interface velocity and the Stokes
flow with two non-physical parameters. A coupled FE approach for
WCM that takes into account fluid-solid interaction was proposed
by Poppe et al. [24]. Furthermore, some recent works focus on the
extension of the description of fiber reinforcement deformations with
anisotropic material behavior. Blais et al. [25] present a monolithic
coupled FE approach to account for the porous deformations. They
use an orthotropic FVF dependent approach for both the permeability
and the stiffness of the porous medium, but assume that the trans-
verse Poisson’s ratio is zero and thus decouple transverse and in-plane
stresses. Sarojini Narayana et al. [26] use an FE approach, in which the
reinforcement behavior is represented as an orthotropic homogeneous
medium, based on the approach of Celle et al. [9]. However, they only
consider fibrous movements in the thickness direction, as their main
focus is on the curing behavior of the infused resin.

Although much of the work on modeling fiber deformation due
to fluid injection has been done using the FEM, a finite volume (FV)
approach is used in this work because it has the advantage of automat-
ically satisfying mass conservation and modeling air entrapment in a
multiphase flow. Magagnato et al. [27] compare experimental results
of the flow front around an integrated insert to the predictions of an
FE tool and a multiphase FV approach. They show that the formation
and especially the collapse of air inclusions can be predicted more
accurately by the multiphase FV approach.

Some approaches for modeling deformations in an FV framework
have already been investigated. Carrillo and Bourg [28] developed an
FV open source solver, hybridBiotInterFoam, to model multi-
phase flow through a deformable porous solid in geomechanics. How-
ever, the model is only valid for small deformations and requires special
constitutive equations to describe the interaction between multiphase
flow and poro-mechanics. An FV approach to model orthotropic solid
mechanics was presented by Demirdzi¢ et al. [29], which was adopted
by Cardiff [30] for muscles and a hip joint. The FV solid mechanics
approach was extended for porous media by Tang et al. [31] and for
large strains by Seuffert [14]. Both assume isotropic behavior for the
porous medium.

However, for fiber reinforcements, the assumption of isotropic be-
havior leads to an overestimation of preform deformations and fiber
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Fig. 1. Cross section of a Sandwich, manufactured intrinsically in CRTM, presented
by Seuffert [14]. Deformations of the fiber reinforcement during infiltration not only
occur in thickness direction but also in-plane, especially at the sidewalls and corners
of the PET foam core.

displacements in the fiber direction. Typically, the compaction stiffness
of the fabric is measured in the thickness direction and then used to
describe the deformation behavior in all directions, while the flow
velocities are highest in the fiber direction, which means that the error
adds up. The errors are small as long as the deformations occur mainly
in the thickness direction. This is no longer the case with complex ge-
ometries and with high local infiltration pressure gradients, for example
near the inlet or around inserts. Another example is the manufacturing
of a sandwich component with an integrated foam core in CRTM, as
shown in Fig. 1 [14]. Due to the geometry and the deformations of the
foam core, the fiber reinforcement is not only compacted in thickness
direction but in-plane deformations can also occur during infiltration.
The anisotropic fabric behavior is particularly relevant at the corners
of the foam core and on the side walls.

Therefore, a three-dimensional, fully coupled FV approach of porous
solid mechanics is proposed in this work, which captures the
anisotropic stiffness of the fibrous structure. The approach is imple-
mented in the RTM extension OF-RTM-6 [32] of the Finite Volume
toolbox OpenFOAM [33]. In particular, a method is presented to handle
the stiffness tensor of fourth order in the OpenFOAM framework. There-
fore, a decomposition into isotropic and anisotropic part is proposed
and a method is presented to rotate the anisotropic stiffness tensor
depending on local fiber orientations and to adapt it to the local fiber
volume content. The fluid flow is described with a multiphase VOF
approach that uses a unified mathematical description to account for
porous zones and flow channels. The coupling between the porous de-
formations of the fiber reinforcement and the advancing resin is treated
with an internal coupling to avoid volumetric mapping throughout the
domain. An updated Lagrangian approach is used for the mesh motion.
This method enables the prediction and analyzation of anisotropic
deformations of fiber reinforcements during infiltration in the context
of real applications.

2. Methodology
2.1. Fluid flow in porous media

The fluid injection is modeled with a multiphase approach account-
ing for the air phase in the unfilled regions. For interface tracking
between resin and air, the Volume of Fluid (VOF) method is used,
developed by Hirt and Nichols [34], allowing to obtain the velocity
field by the mass continuity equation
dp
or
with fluid density p and velocity u, and the conservation form of the
momentum continuity equation for a compressible Newtonian Fluid
d(pu)

o0 +V-(pu®u)=-Vp+V.-(2uD) - %MVtr(Vu), (2)

+V-(pu) =0, €h)



S. Schlegel et al.

where ® is the outer product, D = sym(Vu) the rate of deformation
tensor, p the pressure, and p the dynamic viscosity. The fluid properties
p and y are determined by volume-weighted averaging p = ap,g, +(1—
®)p,ir» Where « is the volume share of resin in each cell.

To account for fluid flow through porous media and resin channels
at the same time, a source term

S D L
QDarcy = V1—7Dar<:y =-uK i - EP”u“Fua 3

is added to the linear momentum equation, where @ = (1 — @)u is the
volume averaged velocity, with Fiber Volume Fraction (FVF) ¢, perme-
ability tensor K, and inertial resistance coefficient F [35]. The right
Darcy-Forchheimer term was rigorously derived for high Reynolds
numbers by Whitaker [36]. However, for low Reynolds numbers Re <
1 the Forchheimer correction can be neglected in comparison to the
viscous forces, leading to:
i
% +V-(pu®i)=—-Vp+V-uVu)+ V- uvVwb)

@

- %;N(V -u) - uK i,

also used by Yang et al. [20] in a VOF approach in ANSYS Fluent.

For an incompressible fluid and low Reynolds numbers Re <« 1, the
inertia forces can also be neglected in comparison to the viscous forces.
If additionally the permeability of the fiber semi-finished product is
low, the porous drag dominates the flow behavior and Eq. (4) simplifies
to Darcy’s Equation [37] for stationary problems

a=-%.wp ©)
"

inside the porous medium, which can also be derived directly from
the Navier-Stokes-Equation as shown by Whitaker [38]. Outside the
porous medium, the permeability is high and thus, the porous drag term
vanishes and Eq. (2) is valid.

For moving cavities a mixed Lagrangian-Eulerian form is used, as
proposed by Ferziger and Peri¢ [39] and Jasak [40]. It is to be noted,
that the mesh movement imposes an additional velocity ug. Thus, the
fluid flux has to be corrected before solving the fluid linear momentum
equation by u = u,,; — u,. Otherwise the pressure would be influenced
by the moving mesh velocity.

The permeability is modeled in a local cartesian coordinate system
x' y' Z/ that is designed to be in the principal axis system of the fiber
reinforcement. Thus, only the diagonal of the permeability tensor is
occupied in the local coordinate system:

Ky 0 0
K= 0 Ky 0 |e®¢). (6)
0 0 Ks3

With this approach, global permeabilities can be defined based on
experimental data. The local flow resistance is then derived in each
cell, by interpolating the FVF-dependent permeability tensor to the
local FVF and rotating it from the local fiber orientation to the global
coordinate system.

2.2. Porous solid mechanics with updated Lagrangian formulation in FVM

The description of solid mechanics is usually based on the La-
grangian formulation and the weak form of the momentum conserva-
tion equation, using the Finite Element Method (FEM) for a numerical
description. However, a cell-centered Finite Volume (FV) approach
offers advantages for large deformations and for coupling of fluid and
solid in a monolithic approach. First efforts to derive an FV method
for solid mechanics were done by Demirdzi¢ and Peri¢ [41]. A sum-
mary of subsequent works is given by Cardiff and Demirdzi¢ [42].
Cardiff and Tukovié¢ [43] implemented FV solid mechanics methods
as solids4foam into the open-source framework OpenF0AM, ex-
tending the methods for large rotations and contact boundaries [30,
44], and for large strains and orthotropic material orientations [45].
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Another extension was developed by Tang et al. [31], using the FV
method for small-strain poro-elasticity. Seuffert [14] extended the FV
poro-elasticity method for large deformations of isotropic materials.

This work builds on the previous developments to derive a solid
mechanics FV poro-elasticity method for general anisotropic materials
and locally varying material orientations. Based on the poro-elasticity
extension of the updated Lagrangian formulation for small incremental
strains by Tang et al. [31] a non-linear incremental formulation is
developed to allow larger incremental deformations. The conservation
of linear momentum for a general control volume 2 with surface I" and
unit normal n is given in integral form as:

i/psusd.(.2=j2§n-0'd1"+/psbd.Q )
at Jo r Q

with solid velocity vector u,, effective stress tensor o, body force b,
and solid density p,. This integral form of the equation is a strong form
of conservation. In the FEM, a weak form is used. In solid mechanics,
the deformations are usually smaller than in fluid mechanics, thus, the
location can be described in Lagrangian formulation and the convection
term of the time derivative of the displacement vanishes. Thus, the solid
velocity ug can be written as u; = dd/ot, where d is the displacement.

As finite deformations are taken into account, the second Piola—
Kirchhoff stress tensor

S=JF!l.c.FT (8)

is used, where the deformation gradient F and the Jacobian determi-
nant J are derived from the displacements through

F=1+Vd )]
J = det(F). (10)

To deal with large deformations, an updated incremental Lagrangian
formulation is used, where at the end of each time step the new
configuration is set as reference configuration for the next timestep.
To compute the updated Lagrangian form of the conservation of linear
momentum, the updated form of the area element dI', has to be
inserted, where the subscript u denotes the updated state. The current,
deformed area element dI' can be derived from the reference area
element by Nanson’s equation dTI" = JFT . dr, [46,47], where dI',
is the area element of the last increment or the updated configuration
in case of the updated Lagrangian approach.

Using the updated area element and replacing the Cauchy stress
tensor by the second Piola-Kirchhoff stress tensor ¢ = J~'F - S - FT,
the momentum conservation Eq. (7) can be rewritten in an updated
form, allowing for large deformations, as

g/psusd[.):}{ (FAS)dl"u+/ . bdQ,
at Ja T, 2,

=¢ n,-(S-Fdl, +

an
psbdQ,.
Iy u
Substituting the solid velocity by the derivative of displacement and
using Terzaghi’s law of effective stress [23] in terms of the second Piola
Kirchhoff stress tensor

Stotal = Seff + Stiuia

12)
=8 —pl
Eq. (11) yields
0 ad
— [ py—dQ= n, - ((Serp — pD) - F)dT, + psbdQ,. 13)
ot Q ot I, 2,

As finite strains are taken into account, the strain is formulated by
means of the Green-Lagrange strain tensor

E= % (Vd+vdT + vd-vd"). 14

As an updated incremental Lagrangian approach is used to deal with
large deformations, the strain increment is needed:

6E = - (Véd+ Vsd" + Véd - vd" + vd - vsd" + ved - ved"). @s)

1
2
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The idea of an updated approach is that the initial displacement in
every time increment vanishes, following that

OE, = % (Véd +Vsd™ + ved - vadT) , (16)
F, =1 a7

To connect stress and strain, the St. Venant-Kirchhoff hyper-elastic
constitutive relation

S =C : E, (18)

with the effective second Piola—Kirchhoff stress tensor S, and the
stiffness tensor C, is used.

To compute the total Lagrangian results from the updated La-
grangian approach, the stress and strain rates have to be corrected to
the current configuration with

E=F'.E,-F, 19)
Serr = JF - Syppy - F7T (20)

However, with this correction the initial configuration has to be stored
and referenced in each increment nevertheless. For problems with finite
rotations and displacements, but small strains,

Serru =C 1 E, 21)

can be assumed.

Since the thickness direction is usually small in LCM processes,
gravity and thus body forces can be neglected in good approximation.
With this assumption and differentiation of Eq. (13), the incremental
form

0 a(6d)
E o ps,uT de = T, n, - 68 dFu

- }zf n, - 6pIdr, (22)
I,

+ }z{ n, - [(Sets — pI+ 8Spr — 6pI) - 6F] dT,
FH
is derived, where the simplification of the updated form Vd = 0 is used.
Inserting the St. Venant Kirchhoff constitutive law from Eq. (18) and
simplifying 6F = Véd yields to

2 pundQZj{ nu-(C:(SEdFu—jz{ n, - pldr,
ot Jo 7 ot T T
u u (23)

+ @ 0y [Segr — L+ 8See — 6pD) - Véd] I,

Because of the calcﬁlation with Terzaghi’s law of effective stress,
there is an additional dependency on the fluid pressure in Eq. (23),
allowing for a strong coupling between fluid flow and deformation of
the porous domain.

The equations are solved with a staggered implicit-explicit algo-
rithm. The second and third term on the right-hand side are rearranged
as one source term and solved in a deferred correction approach. In this
approach it is iterated over the source term in each timestep. The rest
of the equation is solved implicitly.

The FVF and fiber orientation of the fiber preform are updated in
every increment with

Q= 57 L, 24)
o, =6F" o FT, (25)
as the FVF has a huge influence on permeability and compaction
behavior and thus, on the overall fluid flow.

2.3. A formulation for anisotropic solid deformation in FVM

For a hyper-elastic material the stiffness tensor has the main sym-
metry additionally to the left and right sub-symmetry and thus, the
stress—strain-relation can be noted in Mandel Notation. In OpenFOAM,
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tensors of fourth order are not implemented and cannot be solved
internally. Thus, the stiffness tensor is split into four tensors of second
order which can be handled separately, but depend on each other if
the material is rotated. Analogously, the stresses and strains are divided
into main components and mixed components, resulting in

Sett,11 [ Clii Cim Cux Ey
Sett2 | = Gy Csz Ey
Sett 33 | sym. Ci333 E33 26
i 26
V2Cis V2C V20 V2E,;

+ \/5C2223 \/5C2213 \/ECZZIZ \/§E13 ,
\/§E12

| V2Ci  V2Ci V2Cs
T

\/ESeff,ZS V2Cis V2Ch V20, Ey,

\/Eseff,IS =| V2Cp V2Cnis V20, Ey
V2Seir12 11 V2Cyy  V2C33  V2Cs Es @7
[ 2Cr33  2Cy15 20y V2E;;

+ 2C313 2Cpp V2E;
sym. 2Cp1n V2E,,

To improve the solution stability, the stiffness tensor is divided into
an isotropic part and an anisotropic part by means of the Eigenprojec-
tors as described by Bert6ti and Bohlke [48]:

T = (T-P)) P, + % (T-B,) Py, (28)

Tanis() =T— -—Hviso’ (29)
where P; are Eigenprojectors. The Projector representation of a general
tensor is T = ZZ:] Ao P, with 4, Eigenvalues.

The isotropic contribution to the stress divergence can be included
in the implicit solution scheme by means of the Lamé parameters
AiLSO = Kis — %Gis" and y}j" = G°, which provide a scalar relation
between stress and strain. 3K™° and 2G™° are the Eigenvalues of the
isotropic part of the stiffness tensor, calculated from the Eigenprojectors
as K% = %(C -P, and G* = %(C - P,. The stress contribution by
the anisotropic part of the stiffness tensor is added as explicit source
term to the linear momentum equation. Therefore, the effective stress
increment in the momentum conservation Eq. (23) is divided as follows:

3 a(5d) 1 s L i
o | o 42 =3 }z{ n, - Qu% + A)Veddr,
—

ru

0
et

1 1 iso iso
+ ;Z{r n, (E(C 1 (Véd + Véd™ + véd - vedT) — 5(2/41 + A )Vad) dr,

u

aniso
5Seff

- 74 n, - 6pldl, + yf n, - [Sytr — pL+ 88 — 8pI) - 6F| dI, (30)
I,

u u

= % f n, - Qu + A°)yveddr, + ?{ 0, - Qepricic 417
Iy I,

where Q is calculated as explicit source term in each increment.

The anisotropic part of the stiffness tensor is rotated in each cell
from the local material orientation to the global coordinate system in
each increment. Like this, it is accounted for fiber-reorientation due
to reinforcement deformations. Furthermore, one orthotropic stiffness
can be defined globally in a main axis system, which is adapted to the
local orientation state and FVF in each cell. The local stiffness tensors
are rotated by means of the rotation tensor of fourth order R = RORT,
where O is the box product defined as (AO B);;; = Ay Bj; in index
notation, to the global orientation, so

Catobal = R™MCjoeqR. (€3]

AT is the major transpose of a tensor of 4th order meaning Al_Tj",gl =
Ay;;- The isotropic part is calculated from the unrotated stiffness tensor
to safe computational cost as the isotropic constants are independent of

the material orientation.
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As the stiffness tensor is separated in four tensors of second order,
the rotation has to be performed in Mandel notation, which was shown
to be valid for fourth order tensors with left and right sub-symmetry
by Koay [49] and Mehrabadi et al. [50] as the non symmetric part of
the rotation tensor is filtered by the stiffness tensor. In Mandel Notation
the fourth-order Rotation tensor can be derived from the second-order
rotation tensor

Ry Ry Ry
R=( Ry; Ry Ry (32)
Ry Ry Ry

to be

R, R
Rz[ [ [21] (33)
R Ry

with the components

Ry =| R, R, R, | (34)

V2R;,R;3 V2R, R;; V2R, Ry,
Ry =| V2RyRy V2R, Ry V2R Ry |- (35)
| V2R3 Rs; V2R; Ry; V2R Ry |
V2Ry Ry, V2RyRy;  V2Ry3Rs
Rs =| V2R, Ry, V2R,R;, V2R;3Ry; |- (36)
| V2R Ry V2Rj3Ry,  V2Ri3R ]
and
[ RyyRyz+ RysRy, Ry Ryz+ RyzRy Ry Ry + RypRy
Ry =| RppRsyz+RizRyn RyRyz+ Ri3Rs; RyjRy + RpRy

RppRy3+ Ri3Ry RyjRoz + Ri3Ry RyjRyy + RpRy,

(37)

The rotated stiffness parts are used to calculate the momentum balance
and to update the total stress in the last iteration.

As fabrics show highly nonlinear compaction behavior depending
on FVF, a hyperelastic approach is implemented. It is assumed that the
dependency on fiber content is equal in all material directions, because
the main deformations occur in thickness direction and deformations
are rather small in fiber direction. Thus, initial values are set for each
stiffness component and scaled thereafter piecewise linearly by FVF:

Ey+(E| - Eg)p, Vo € [, ¢1]
Epyper (@) = (38)
E;, + (Ei+1 - Ei)(ﬂs Vo € [(Pi,(/’iﬂ]

Ehyper((p)

E,

If the deformations are small, what can usually be assumed for
an updated approach, the simulation approach can be changed to an
infinitesimal strain approach to save computational cost. For small
deformations Tang et al. [31] state that it can be assumed

Cjkzm,hyper(‘/’) = CJ(')klm 39

dr = dT, (40)

for the surface increment and for the strain increment

be = 3 (Vod+ VadT) = de,. 1)
The general form of the conservation equation of linear momentum

for small deformations thus simplifies to

9 a@sd) i N
9 [, 2Dl .C: (Vod + Ved")drT,
ot o s Tor 2}{&““ (Vod +Vsd)dr,

- }Z{ n, - pldr,,
I,

u

(42)

while stiffness rotation and calculation stay the same.
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2.4. Fluid structure interaction for fluid flow through porous media

The implementation of fluid flow and moving meshes is based on an
OpenFOAM extension accounting for anisotropic porous drag, during
and changing FVF with moving meshes by Bernath et al. [32]. Based
on the FV approaches for modeling CRTM and pressure-controlled RTM
(PC-RTM) by Seuffert et al. [35,51], the solution algorithm is extended
with the anisotropic porous solid mechanics approach described in
the previous sections. A monolithic approach is chosen to avoid time
consuming volumetric coupling in the whole cavity. Therefore, in an
iterative solution scheme first the poro-elasticity is solved, and stresses
and strains are updated depending on the calculated incremental dis-
placements. Secondly, the fluid flow is calculated depending on the
stresses and displacements of the porous medium. This procedure is
repeated until a common solution is found. The solution procedure is
illustrated in Fig. 2.

For the porous mechanics calculation at first, the Lamé parame-
ters are gained from the isotropic stiffness part to setup the implicit
equation. If the stiffness is defined to be anisotropic, the local mate-
rial orientations are derived from the fiber orientation and thickness
direction and the local stiffness tensors are rotated from their main axis
systems in the material coordinate system to the global orientation,
where stress and strain increments are calculated. Either from the
anisotropic incremental stresses or from the incremental strains and
Lamé parameters and from the pressure, the explicit source term is
calculated as described in Eq. (30) and Eq. (23), respectively.

Thereafter, the momentum conservation equation is solved for poro-
mechanics and stress and strain increments are calculated. If the porous
solid mechanics solution converges, the total values are updated with
the incremental results and the mesh is moved accordingly. The mesh
movement is governed by the solid mechanics equations. The fluid
influences the mesh deformation only indirectly via the fluid pressure
in the linear momentum equation. Before solving for the fluid flow, FVF
and fiber orientation are updated to the deformed mesh according to
Egs. (24) and (25). If no convergence is reached, the total values have
to be set back to the values of the last stable time step. The incremental
displacements are relaxed using the values from the current and last
increment and the loops are repeated until convergence is reached.

3. Verification

For fiber structures, the orthotropic material behavior is of spe-
cial relevance and is therefore used for verification of the developed
method. Non-orthotropic deformation behavior can also be prescribed,
for example for sheared textiles, as long as the material coordinate
system is described in an orthonormal system. In the orthotropic case,
the number of independent material parameters reduces to nine and
the entries of the stiffness tensor depending on engineering constants
in the main axis system are:

1 —vy3vy 1 —vi3v
Cin = Db Ey, Com = TEza
1 —vpvy Va1 — Va3V31
Ciz33 = Db E;, Cim; = TElv
V31 — V32V21 V32 — V31V
Cizz = /D E,, Cpp= TEZ’ (43)
Crznz = G3, Ciz13 = Gs,
Ciip =G,

with D = 1= vipvy) = v31vi3 = Vaavap = 2VipVa3 Vi)

The engineering constants are used as input parameters in the verifi-
cation cases. Two separate verifications are introduced in the following:
a unidirectional fluid-driven deformation according to MacMinn et al.
[52] to account for the fluid-solid interaction in porous solid mechan-
ics, and a two-dimensional hole in a plate test according to Cardiff
et al. [45] to verify the anisotropic stiffness implementation against an
analytical solution.
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Fig. 2. Solution scheme accounting for the fluid—solid interaction of resin flow
and porous fiber reinforcement, extended for anisotropic porous solid mechanics
from Seuffert [14].

3.1. Uniaxial fluid driven deformation test case as proposed by MacMinn
etal [52]

In the following, the porous solid mechanics approach is verified
against the results of MacMinn et al. [52] and Seuffert [14] for a
uniaxial flow-induced deformation of a porous medium.

The fluid-driven compression test case is illustrated in Fig. 3. It is
assumed that the lateral boundaries are rigid, frictionless and imperme-
able. Thus, the case is independent of the shape and size of the cross
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Fig. 3. Schematic representation of the verification case by MacMinn et al. [52] for
a fluid-driven compression of a porous medium taking into account large strains [14].
The porous medium (light gray) with initial length L is fixed at the right boundary
by a permeable wall, indicated by a dashed black line, and compressed by a fluid
flow (blue arrows) in x-direction until a steady state is reached. The dashed red line
indicates the initial position of the porous medium and the red line the porous boundary
in compressed state. The displacement is described by d(x,r). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Summary of process parameters and material data used for the fluid-driven verification
case after MacMinn et al. [52].

Parameter Value Description

L 1m initial length of the porous medium
DPinlet 600 kPa fluid pressure at inlet

Poutlet 100 kPa fluid pressure at outlet

@y 0.5 initial FVF

AL 0 first Lamé constant

(@ =0.5) 0.5 MPa (initial) second Lamé parameter
u(p=1) 5 MPa second Lamé parameter at FVF of 100%
K?] 10710 m? (initial) permeability

AGevart 2% 10710 m? Gebart model parameter

section in y-z-direction. On the right hand side, the porous medium is
fixed by a permeable wall and on the left side, fluid is injected with a
constant pressure gradient, compressing the porous medium.

Four complexity levels are considered:

1. linear, constant permeability K and constant Lamé parameters
ML, AL

2. geometric non-linear, constant permeability K and constant
Lamé parameters y; , 4y,

3. geometric non-linear, non-constant permeability K(¢) and con-
stant Lamé parameters y; , 4,

4. geometric non-linear, non-constant permeability K(¢) and non-
constant Lamé parameters
HL(@), AL(p)

As a one-dimensional problem is investigated, the permeability
tensor reduces to a scalar permeability K, in fiber direction. For the
non-constant permeability, a Gebart type permeability is used with
Ky = K| = Agepart (';—‘;’)3, based on Gebart [53] with Agep = SCLZ
The variable ¢ depends on the fiber distribution type, and r is the fiber
radius. The non-constant Lamé parameters are formulated depending
on the FVF with a hyperelastic approach, implementing a piecewise
linear dependency between FVF and Lamé parameters, according to
Egs. (38) and (39). The process parameters and material data are
summarized in Table 1.

A one-dimensional mesh is used with one element in y- and z-
direction and 100 elements in x-direction. A mesh density study was
performed (Appendix A), showing that the mesh converges for more
than 40 elements in x-direction. To enhance convergence, the velocity
is increased over 25 timesteps. Depending on the prescribed material
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Fig. 4. Comparison of the four internal coupling verification cases along the normalized deformed state of the porous medium x* to the reference results of Seuffert [14] (ref):
Normalized displacement ¢*, component E,, of Green-Lagrange strain tensor, normalized pressure p*, and FVF ¢ from top left to bottom right.

model, 7 to 13 outer iterations are necessary in each time step to reach
convergence.

In Fig. 4, displacement, Green-Lagrange strain, pressure and FVF
over the normalized length x* of the deformed state are compared, for
the four introduced simplifications. The comparison is carried out when
a state of equilibrium is reached, in a normalized form with

«_Xx—dx)
Xt =2

I
g =3
T
»=0.5 (44)
d* = 4 and
I’
)4
P = .
E<p=0.5

Exact agreement with the results of MacMinn et al. [52] and Seuffert
et al. [54] can be observed. It is to be noted, that the purely linear
model leads to a non-physical FVF of 1 at the porous wall. This
model is not sufficient to describe the fiber semi-finished product
deformations, which is why non-linear models with material behavior
dependent on the FVF are considered in the following. The FVF-
dependent permeability shows the largest influence on filling pressure
and displacement, while the non-linearity of the process is rather
decreased by an FVF-dependent fabric stiffness.

3.2. 2D Hole-in-a-plate orthotropic solid deformation test case as proposed
by Cardiff [30]

To verify the anisotropic material definition and rotation, simula-
tions with varying stiffness in transverse direction are performed on a
two-dimensional plate with a hole in the middle as shown in Fig. 5,
analogously to the verification case proposed by Cardiff [30]. For this
case small deformations are assumed. For a two-dimensional open-hole
tension test, an analytical solution for the hoop stress on the surface
of the hole was derived by Lekhnitskii [55] depending on the rotation
angle 0 with

—kcos? 0 + (1 + n)sin” 0

oo =T ) (45)
sin* 0 + (2 — 2k) sin® @ cos2 0 + k2 cos* 6

— Y ‘\0 —
T T = 100kPa
« x —

Fig. 5. Schematic representation of the two-dimensional open-hole-tension verification
case for an orthotropic material under traction.

where T is the traction applied in x-direction and k and » are parame-
ters derived from the material stiffness as

EX
k=4/— (46)

E,

E
n=q/2k+ == =2v,, (47)
G,,

respectively. The stresses in the global cartesian coordinate system can
be derived from the hoop stress o, as follows:

6, = Cpgsin’ 0, (48)
G,y = Gggcos’ 0, (49
Gy = —GCgpsinf cos . (50)

The plate has a length of L = 8 m with a hole diameter of d = 0.6 m.
It is loaded with a traction of 7 = 100kPa in x-direction. Rigid body
rotations and displacements of the plate are prevented by fixing the
bottom left corner. The material behavior is defined with E, = 200 GPa,
G, = 76923GPa, v,, = 0.3, and E, varying between 60GPa and
200 GPa. To eliminate finite domain size effects the analytical traction
is prescribed at the boundaries as described by Demirdzi¢ et al. [56].

The resulting analytical and numerical stresses for different degrees
of anisotropy are depicted in Fig. 6. The numerical results show the
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Fig. 6. Comparison of analytical and numerical normal stresses o,,,
solution of Lekhnitskii [55].

same qualitative and quantitative behavior as the analytical solution,
although slight differences occur due to the different assumptions made
for the numerical and analytical solution. Different discretizations were
investigated to ensure convergence of the numerical predictions to-
wards the analytical solution (Appendix B, Fig. 12). Moreover, different
dimensions of the cutout were analyzed to ensure from which size of
the hole an infinitely extended domain can be assumed in comparison
to the hole dimensions (Appendix B, Fig. 13). In accordance with these
preliminary investigations, a mesh density of 960x960 elements and the
above given diameter of 0.6 m were selected.

There are some differences between the assumptions of the analyti-
cal and numerical approach, which lead to small deviations in the stress
calculation. An obvious difference to the analytical solution is the finite
domain size, which is necessary for a numerical solution. This was ad-
dressed by adapting the traction boundary conditions accordingly and
by examining different ratios between domain size and cutout radius
(Appendix B, Fig. 13) to ensure that the assumption of a finite domain
size can be justified. The clamping at the corner can also influence the
resulting stresses, even if it is far from the hole circumference under
consideration. However, the influence is assumed to be small, which
was verified by comparison to a symmetric calculation of a quarter of
the plate.

In addition, a plane stress state and a 2D problem are assumed for
the analytical solution, which have to be introduced analogously in
the simulation. For 2D formulations in the Finite Volume method, a
thickness of the geometry in the neglected spatial direction is necessary
to generate a volume through which 2D fluxes can be solved. The
top and bottom boundary faces are fixed to keep the geometrical
height constant and realize a 2D flow. Therefore, a plane strain state
is introduced by the choice of displacement boundary conditions. To
decouple the stress calculation from the third spatial direction the
transverse contraction coefficients in this direction are chosen to be
zero. Thus, a plane stress state can be achieved. Overall, the agreement
between the numerical and analytical solution is considered to be quite
accurate.

Different stress states arise for the investigated degrees of
anisotropy. This can be observed mainly for the normal stress in y-
direction but also for the shear stress progression along the hole. The
absolute value of the normal stress oy, at the hole is almost double
for the nearly isotropic case with E, = 200 GPa compared to the results
with highest anisotropy (Ey = 60 GPa). This difference shows the impact
of the new adapted model on the stress response. The effect on the

filling behavior of a plate in CRTM is analyzed in the following.

o, and shear stress ¢, around the hole depending on rotation angle 6 based on Cardiff [30] and the analytical

y
E| g
Sensor 1 X |8
o X ole
9 mm = |
X Sensor 2
310 mm
350 mm
z
. _ 1 i 4 mm
x
Sprue

Fig. 7. Schematic representation of infiltration application example of a three-
dimensional plate as presented by Sarojini Narayana et al. [57].

3.3. Experimental validation example: Isotropic and

poro-elasticity in a 3D flow under compaction

anisotropic

In order to validate the accuracy of the numerical model presented,
the filling of a three-dimensional plate with a point sprue in the center
and a fiber clamping at the edges is calculated. The material data
and geometric data of Sarojini Narayana et al. [57] are used for this
purpose. A schematic representation of the validation case is given in
Fig. 7. Based on the flow front curves presented by Sarojini Narayana
et al. [57] in partially filled states as well as the pressure curves at the
two sensor points (Figure 13 in [57]), the numerical predictions of the
newly developed model are validated against the experimental results.

The plate of length L = 350 mm and initial height H = 4 mm is
infiltrated with constant velocity u;, through a 9mm wide inlet in the
middle of the lower mold as shown in Fig. 7. The lower wall (z = 0)
is fixed, while the upper wall is moved with constant velocity u,
—1mm/s after an injection time of 60 s until the plate is compressed
to its final height of 3 mm. The initial FVF is 42% in the domain and
51% in the fiber clamping, which is compressed to a final FVF of 56%
and 72.7%, respectively. Sarojini Narayana et al. [57] assume a gap
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Fig. 8. Validation of the numerically predicted pressure evolution over time at the two
sensor points compared to the experimentally measured pressures by Sarojini Narayana
et al. [57].

between upper mold and fiber reinforcement for their displacement
calculations. However, they calculate pressure and flow front evolution
with an initially homogeneous FVF over the thickness of the cavity. Due
to the relaxation behavior of the semi-finished fiber product and the
relatively small gap, the semi-finished product is expected to expand
in the thickness direction over the entire initial height of the cavity.
Therefore, analogous to Sarojini Narayana et al. [57], a homogeneous
FVF over the height is assumed as the initial state.

On the surrounding sides the porous medium is constrained by
porous walls, where the fluid can flow out and the vent pressure is
applied. The resin is injected at room temperature (20°C) and the
molds are heated to 100°C (upper mold) and 95 °C (lower mold). The
temperature and cure dependent viscosity of the resin is considered
with a Castro Macosko model [58] analogous to Sarojini Narayana et al.
[57] and the cure rate is modeled with an Arrhenius type equation.
For the material parameters the reader is referred to Sarojini Narayana
et al. [57].

In Fig. 8, the pressure at the two sensor points (highlighted in Fig. 7)
over time is compared to the experimental results by Sarojini Narayana
et al. [57]. The same qualitative behavior can be observed for the
numerical predictions and the experimental results during infiltration
and compression phase. During infiltration (up to 60s) the pressure
stays at a low level and then quickly rises when compression starts.
It is to be noted that the simulation was stopped after 61.25s when the
mold reaches its final height. Therefore, the pressure drop observed in
the experiments after compaction is not considered in the numerical
results. The end of compression is marked by a dashed line. At this time
the maximum pressure predicted by the numerical solution is 68 bar for
the first Sensor, which fits to the final pressure of Sensor one in the
experiments after the overshoot.

Moreover, in Fig. 9 the evolution of the flow front over time
is compared with the numerical and experimental results by Saro-
jini Narayana et al. [57]. Since the pressure at the inlet is ramped up
over the first five seconds to improve numerical stability, the flow front

Composites Part B 302 (2025) 112448

T
-
:
= 200 .
s
=
S
an
]
= 100 8
g
& experimental
Z numerical ref
= .
= —a&— numerical new ||
\ \ \ \ I I I

0 10 20 30 40 50 60
Time in s

Fig. 9. Flow front evolution over time in the diagonal of the plate predicted
by the presented model compared to the experimental and numerical results (ref)
by Sarojini Narayana et al. [57].

is slightly too slow in the beginning. Despite this start-up behavior,
the filling can be predicted quite accurately and the prediction of the
flow front is closer to the experimental measurements than with the
numerical model of Sarojini Narayana et al. [57].

To illustrate the difference between the isotropic and the anisotropic
stiffness model, the FVF near the inlet is shown in Fig. 10 for two
different assumptions for the isotropic stiffness and one orthotropic
case. Different mesh configurations have been analyzed to ensure mesh
independence for the chosen configuration (Appendix C, Fig. 14). For
the isotropic approach, one solution is shown with an isotropic stiffness
equal to the stiffness measured by Sarojini Narayana et al. [57] in
thickness direction (Fig. 10(a)). However, these simulations are not
stable due to element deformations in in-plane direction. Therefore, it
was necessary to average the reinforcement stiffness in the thickness
direction and the in-plane directions to reduce element deformations
in the fiber directions (Fig. 10(b)). This led to a stiffness, which is
one order of magnitude higher than the stiffness measured by Saro-
jini Narayana et al. [57] and therefore an overestimation of the stiffness
in thickness direction. For the anisotropic approach, an orthotropic
material model was prescribed using the compaction stiffness mea-
sured by Sarojini Narayana et al. [57] in the thickness direction and
specifying an in-plane stiffness which is two orders of magnitude
higher. Sarojini Narayana et al. [57] calculated stresses and deforma-
tions only in the thickness direction of the plate and fixed the degrees
of freedom for in-plane deformations.

It can be observed, that the high fluid pressure gradient at the inlet
leads to a movement of fibers towards the upper mold for all consid-
ered stiffness models, which was also reported by Sarojini Narayana
et al. [57]. In the isotropic simulation with low stiffness, elements are
additionally dragged in the in-plane direction towards the outlet by the
inlet pressure, leading to element deformations as well as a reduced FVF
at the inlet (see Fig. 10(a)) compared to the orthotropic model (Fig.
10(c)). This can be explained by an overestimation of reinforcement
elongation along fiber direction due to equal material stiffness in all
directions. It is to be noted, that the simulation crashes shortly after the
shown comparison due to element distortions. Although the presented
approach is capable of handling flow through porous zones and pure
resin flow, the formation of new pure fluid zones during infiltration
cannot be captured. The fiber volume content reduces near the inlet
due to fluid pressure but cannot reach zero because fibers are not trans-
ported over cell boundaries. Therefore, the approach is able to predict
fiber deformations in a homogenized form only to a certain extend. If
local deformations get too high, distorted elements can occur, which
lead to a termination of the simulation. However, element deformations
in fiber direction are decreased by the anisotropic approach compared
to the isotropic one.
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(a) FVF with isotropic poro-elasticity with the correct stiffness in thickness direction after 0.4 s of
filling time.
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(b) FVF with isotropic poro-elasticity with averaged stiffness in thickness and fiber direction one
order of magnitude higher than measured in thickness direction after 0.4 s of filling time.
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(c) FVF with orthotropic poro-elasticity after 0.4 s of filling time.

Fig. 10. Comparison of FVF distribution near the inlet in a three-dimensional plate
with isotropic ((a) stiffness equals measured stiffness in thickness direction, but
simulation is instable, and (b) averaged stiffness one order of magnitude higher than
the measured stiffness in thickness direction) and (c) orthotropic poro-elastic behavior
of the fabric. Due to the slender structure, the symmetry of the plate at the center
line is used to better represent the behavior at the inlet and the plate is cut off
towards the edge. The inlet is indicated in red and the flow front at the given time
in orange. Depending on the stiffness model, the fiber reinforcement is deformed to
varying degrees by the fluid pressure at the inlet, which is reflected in the change in
the FVF. This in turn has a strong influence on the permeability and therefore the flow
behavior.

The stable isotropic model with high stiffness (Fig. 10(b)) leads to
an underestimation of deformations and the FVF changes from 42% to
40% at the inlet. As the stiffness of the real porous material is quite
high in fiber direction, it would be expected that no fiber movements
occur along x-direction, but a shift of fibers at the inlet towards the
upper mold due to the pressure gradient in thickness direction at the
inlet. That is, what can be observed for the orthotropic model (Fig.
10(c)), illustrating the use of the developed anisotropic porous solid
mechanics model. Moreover, the simulation is more stable than the
isotropic approach using the same stiffness in thickness direction. Due
to the strong influence of the fiber volume content on the permeability,
the flow front velocity also changes under pressure boundary conditions
at the inlet depending on the stiffness of the fiber reinforcement.

4. Conclusion

In this work a general anisotropic and three-dimensional finite
volume approach for porous solid mechanics was derived and verified
with two different tests to adequately capture the fluid-solid interaction
inside the porous medium as well as the anisotropic material behavior.
This makes it possible to analyze and predict the anisotropic deforma-
tion behavior of fiber reinforcements during infiltration in the context
of real applications. To describe the anisotropic behavior of the fiber
reinforcement, a method was presented to decompose and rotate the
stiffness tensor of 4th order to account for local fiber orientation and
local fiber content. It was shown that the derived approach is suitable
for modeling fluid flow induced deformations of the porous medium
and the resulting stresses in the anisotropic reinforcement.

Furthermore, the pressure and flow front predictions of the pro-
posed model have been validated against experimental and numerical
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results from literature for the infiltration of a three-dimensional plate
in CRTM. A good agreement between the results of the new model
and the reference values was found. It was shown that the anisotropic
nature of fibrous reinforcements can be captured more appropriately by
the new approach than by the isotropic FV state of the art approach,
especially if high pressure gradients in the fiber direction are involved.
The new model is observed to be more stable, since accounting for
the anisotropic nature of the fiber reinforcements limits the distortion
tendency of the mesh because deformations occur mainly in the thick-
ness direction of the fiber reinforcements, where they are physically
reasoned. Nevertheless, for more complex geometries mesh distortions
can still occur as the fiber volume fraction (FVF) is updated in each cell
depending on the mesh deformations but not yet transported over cell
boundaries.

Fiber deformations can be captured in a homogenized form with the
presented approach due to the internal coupling of fluid flow and solid
deformation via Terzaghi’s law. However, high local pressure gradients
can lead to excessive deformation of the mesh and termination of the
simulation. Therefore, a further development is necessary in future
work to describe the reinforcement deformation with an Euler approach
and decouple it from the mesh deformation. This is also necessary
to model the new formation of pure fluid zones during infiltration.
Although interfaces between porous medium and free fluid zones are
already supported by the approach, the formation of new pure fluid
zones cannot be captured. The proposed methods offer a profound basis
from which the complexity can be further increased.

Yet a limitation of the approach is, that for materials with high
anisotropy the stiffness tensor is poorly conditioned which may lead to
high computational times for larger or more complex geometries. The
material properties can be defined globally and rotated depending on
fiber orientation and scaled to local FVF, allowing for different local
fiber orientations and contents. However, due to shearing of fabrics
or stacking of different materials, it could be interesting to allow for
different global material properties in different model zones and skew
local material coordinate systems, which is planned as next step in the
model evolution.
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Fig. 12. Comparison of the resulting stresses at the circular cutout over the angle
in an open-hole-tension verification case for four different mesh densities against the
analytical solution with E, = 150 GPa.

Appendix A. Mesh density study for the 1D porous solid mechan-
ics verification

See Fig. 11.

Appendix B. Mesh density study for the 2D orthotropic solid me-
chanics verification

See Figs. 12 and 13.
Appendix C. Mesh sensitivity study for the 3D validation case

See Fig. 14.
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Fig. 13. Comparison of the resulting stresses at the circular cutout over the angle in
an open-hole-tension verification case for different sizes of the cutout in a fixed size
plate against the analytical solution with Ey = 150 GPa.
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(a) FVF with orthotropic poro-elasticity and 10908 cells after 0.15 s of filling time.
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(b) FVF with orthotropic poro-elasticity and 19668 cells after 0.15 s of filling time.
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(c) FVF with orthotropic poro-elasticity and 157344 cells after 0.15 s of filling time.
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(d) FVF with orthotropic poro-elasticity and 520128 cells after 0.15 s of filling time.

Fig. 14. Comparison of FVF distribution near the inlet in a three-dimensional plate
with four different mesh densities ((a) 10908 cells, (b) 19668 cells (chosen), (c) 157344
cells, and (d) 520128 cells). Analogously to Fig. 10, the symmetry of the plate at the
center line is used to better represent the behavior at the inlet and the plate is cut off
towards the edge. The inlet is indicated in red and the flow front at the given time in
orange. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Data availability
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