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 A B S T R A C T

In this work, a finite volume method is developed to capture the interaction between the infiltrating resin 
and the deforming fiber reinforcement in liquid composite molding (LCM). The method consists of three parts: 
(1) the fluid flow through a porous medium, which depends on the fiber volume fraction (FVF) and the fiber 
orientation, (2) the solid mechanics of the porous fiber structure considering the general anisotropic material 
stiffness, which also depends on the FVF and the fiber orientation, and (3) an internal coupling approach 
to couple porous solid mechanics and fluid flow with an iterative scheme. An anisotropic model of porous 
solid mechanics is proposed and verified in a unidirectional case to capture fluid-induced deformations of the 
porous medium. In a second verification case, the stress state is verified in an open-hole tensile test against 
an analytical solution for different degrees of material anisotropy. Finally, the infiltration and compaction 
predictions of the model are validated against experimental data from the literature using a three-dimensional 
plate. In addition, the infiltration behavior with the anisotropic model is compared to the isotropic model to 
illustrate the advantage of the new approach.
1. Introduction

One important manufacturing process for high performance com-
posites is Liquid Composite Molding (LCM), which includes Resin 
Transfer Molding (RTM), Wet Compression Molding (WCM), and Vac-
uum Assisted Resin Infusion (VARI). The trend in manufacturing is 
towards flexible tooling like in Compression RTM (CRTM), where a 
movable mold is used to reduce the infiltration pressure and time. This 
means that not only the resin flow through the porous medium, but also 
the deformation of the fiber reinforcement must be taken into account. 
The same applies to the manufacturing of sandwich structures with an 
integrated foam core, where the deforming foam must also be taken 
into account. In order to control these complex processes, avoid defects 
and keep process times short, it is useful to model the manufacturing 
process as accurately as possible. If the process is well understood, 
emissions, energy consumption and rejects can also be reduced, which 
is an important step towards a climate-friendly production. Therefore, 
in this paper a method is presented to describe anisotropic deformations 
of a porous medium in a finite volume framework. The aim is to be 
able to better predict the deformations of the fiber reinforcement and 
the formation of air inclusions simultaneously.

Simulations of infiltration flow in LCM manufacturing processes 
have been extensively studied for more than three decades to better 
design and understand the process [1–5]. If one domain boundary is 
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flexible, the mutual influence between the fluid flow, the deformation 
of the boundary, and the deformation of the fiber reinforcement poses 
a particular challenge in predicting the filling behavior. The mutual 
dependencies are to be reproduced in the mold filling simulation by 
means of fluid–structure interaction (FSI). This is the case, for example, 
in the VARI process [6–10] and in the processing of Sandwich compo-
nents with an integrated foam core. During the processing of sandwich 
components the fluid pressure induces different types of deformation 
and displacements of the foam core, as analyzed by Al-Hamdan et al. 
[11], Binetruy and Advani [12]. In this context, Deleglise et al. [13] 
and Seuffert [14] investigated the influence of forced and induced 
deformations on the filling behavior and found a large influence of 
foam core deformations on the injection pressure and thus on the filling 
behavior.

In CRTM the movement of the upper mold and the resulting com-
pression of the fiber reinforcement have to be described additionally. 
This induced compression poses the additional challenge of modeling 
the deformations of the porous medium during infiltration. A finite 
element approach to model the deformation of a dry fiber mat for 
Injection/Compression LCM was derived by Pillai et al. [15]. The model 
is capable of capturing complex preform shapes and allows for large 
deformations and a variety of constitutive equations for the behavior 
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of fiber reinforcement. However, the infiltration of the preform is 
not considered. Based on the work of Pillai et al. [15], Bickerton 
and Abdullah [16] present an experimental and numerical study on 
the influence of compressive force and velocity on the infiltration 
behavior in CRTM. They assume that the deformations are limited to 
the thickness direction, but allow for a three-dimensional flow field. 
The influence of reinforcement compaction on the infiltration flow 
was also studied by Bhat et al. [17] and Merotte et al. [18] in a 
parametric study using the finite element (FE) tool Liquid Injection 
Molding Simulation (LIMS) in the thickness direction. Martin et al. [19] 
investigated the influence of resin channels on press forces and inlet 
pressure, comparing experimental findings with FE simulations using 
2D elements. They found that 2D elements are sufficiently accurate for 
their application and concluded that viscosity and permeability have a 
large influence on the infiltration.

If the component thickness is larger, a three-dimensional approach 
is required as described by Yang et al. [20] and Shojaei [21]. Shojaei 
[21] model the fluid flow with a control volume (CV)/FEM approach, 
while Yang et al. [20] use a multiphase Volume of Fluid (VOF) ap-
proach in a commercial FE tool. Both use a three-dimensional approach 
for the fluid flow, but model compression and stress in the porous 
medium only in the thickness direction. Yang et al. [20] additionally ac-
count for the initial gap as a resin channel, in which the incompressible 
Navier–Stokes equation is solved instead of assuming a porous medium 
with high permeability and porosity. Dereims et al. [22] also present a 
three-dimensional FE approach to couple a porous solid and a fluid flow 
using Terzaghi’s law of effective stress [23]. Since the authors couple 
a Stokes and a Darcy flow outside and inside the porous medium, 
respectively, they have to stabilize the interface velocity and the Stokes 
flow with two non-physical parameters. A coupled FE approach for 
WCM that takes into account fluid–solid interaction was proposed 
by Poppe et al. [24]. Furthermore, some recent works focus on the 
extension of the description of fiber reinforcement deformations with 
anisotropic material behavior. Blais et al. [25] present a monolithic 
coupled FE approach to account for the porous deformations. They 
use an orthotropic FVF dependent approach for both the permeability 
and the stiffness of the porous medium, but assume that the trans-
verse Poisson’s ratio is zero and thus decouple transverse and in-plane 
stresses. Sarojini Narayana et al. [26] use an FE approach, in which the 
reinforcement behavior is represented as an orthotropic homogeneous 
medium, based on the approach of Celle et al. [9]. However, they only 
consider fibrous movements in the thickness direction, as their main 
focus is on the curing behavior of the infused resin.

Although much of the work on modeling fiber deformation due 
to fluid injection has been done using the FEM, a finite volume (FV) 
approach is used in this work because it has the advantage of automat-
ically satisfying mass conservation and modeling air entrapment in a 
multiphase flow. Magagnato et al. [27] compare experimental results 
of the flow front around an integrated insert to the predictions of an 
FE tool and a multiphase FV approach. They show that the formation 
and especially the collapse of air inclusions can be predicted more 
accurately by the multiphase FV approach.

Some approaches for modeling deformations in an FV framework 
have already been investigated. Carrillo and Bourg [28] developed an 
FV open source solver, hybridBiotInterFoam, to model multi-
phase flow through a deformable porous solid in geomechanics. How-
ever, the model is only valid for small deformations and requires special 
constitutive equations to describe the interaction between multiphase 
flow and poro-mechanics. An FV approach to model orthotropic solid 
mechanics was presented by Demirdžić et al. [29], which was adopted 
by Cardiff [30] for muscles and a hip joint. The FV solid mechanics 
approach was extended for porous media by Tang et al. [31] and for 
large strains by Seuffert [14]. Both assume isotropic behavior for the 
porous medium.

However, for fiber reinforcements, the assumption of isotropic be-
havior leads to an overestimation of preform deformations and fiber 
2 
Fig. 1. Cross section of a Sandwich, manufactured intrinsically in CRTM, presented 
by Seuffert [14]. Deformations of the fiber reinforcement during infiltration not only 
occur in thickness direction but also in-plane, especially at the sidewalls and corners 
of the PET foam core.

displacements in the fiber direction. Typically, the compaction stiffness 
of the fabric is measured in the thickness direction and then used to 
describe the deformation behavior in all directions, while the flow 
velocities are highest in the fiber direction, which means that the error 
adds up. The errors are small as long as the deformations occur mainly 
in the thickness direction. This is no longer the case with complex ge-
ometries and with high local infiltration pressure gradients, for example 
near the inlet or around inserts. Another example is the manufacturing 
of a sandwich component with an integrated foam core in CRTM, as 
shown in Fig.  1 [14]. Due to the geometry and the deformations of the 
foam core, the fiber reinforcement is not only compacted in thickness 
direction but in-plane deformations can also occur during infiltration. 
The anisotropic fabric behavior is particularly relevant at the corners 
of the foam core and on the side walls.

Therefore, a three-dimensional, fully coupled FV approach of porous 
solid mechanics is proposed in this work, which captures the
anisotropic stiffness of the fibrous structure. The approach is imple-
mented in the RTM extension OF-RTM-6 [32] of the Finite Volume 
toolbox OpenFOAM [33]. In particular, a method is presented to handle 
the stiffness tensor of fourth order in the OpenFOAM framework. There-
fore, a decomposition into isotropic and anisotropic part is proposed 
and a method is presented to rotate the anisotropic stiffness tensor 
depending on local fiber orientations and to adapt it to the local fiber 
volume content. The fluid flow is described with a multiphase VOF 
approach that uses a unified mathematical description to account for 
porous zones and flow channels. The coupling between the porous de-
formations of the fiber reinforcement and the advancing resin is treated 
with an internal coupling to avoid volumetric mapping throughout the 
domain. An updated Lagrangian approach is used for the mesh motion. 
This method enables the prediction and analyzation of anisotropic 
deformations of fiber reinforcements during infiltration in the context 
of real applications.

2. Methodology

2.1. Fluid flow in porous media

The fluid injection is modeled with a multiphase approach account-
ing for the air phase in the unfilled regions. For interface tracking 
between resin and air, the Volume of Fluid (VOF) method is used, 
developed by Hirt and Nichols [34], allowing to obtain the velocity 
field by the mass continuity equation 
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0, (1)

with fluid density 𝜌 and velocity 𝐮, and the conservation form of the 
momentum continuity equation for a compressible Newtonian Fluid 
𝜕(𝜌𝐮)

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝 + ∇ ⋅ (2𝜇𝐃) − 2𝜇∇tr(∇𝐮), (2)

𝜕𝑡 3
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where ⊗ is the outer product, 𝐃 = sym(∇𝐮) the rate of deformation 
tensor, 𝑝 the pressure, and 𝜇 the dynamic viscosity. The fluid properties 
𝜌 and 𝜇 are determined by volume-weighted averaging 𝜌 = 𝛼𝜌resin+(1−
𝛼)𝜌air , where 𝛼 is the volume share of resin in each cell.

To account for fluid flow through porous media and resin channels 
at the same time, a source term 

𝐐Darcy = ∇𝑝Darcy = −𝜇𝐊−1𝐮̃ − 1
2
𝜌‖𝐮̃‖𝐹 𝐮̃, (3)

is added to the linear momentum equation, where 𝐮̃ = (1 − 𝜑)𝐮 is the 
volume averaged velocity, with Fiber Volume Fraction (FVF) 𝜑, perme-
ability tensor 𝐊, and inertial resistance coefficient 𝐹  [35]. The right 
Darcy–Forchheimer term was rigorously derived for high Reynolds 
numbers by Whitaker [36]. However, for low Reynolds numbers 𝑅𝑒 ≪
1 the Forchheimer correction can be neglected in comparison to the 
viscous forces, leading to: 
𝜕(𝜌𝐮̃)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮̃⊗ 𝐮̃) = −∇𝑝 + ∇ ⋅ (𝜇∇𝐮) + ∇ ⋅ (𝜇(∇𝐮)T)

− 2
3
𝜇∇(∇ ⋅ 𝐮) − 𝜇𝐊−1𝐮̃,

(4)

also used by Yang et al. [20] in a VOF approach in ANSYS Fluent.
For an incompressible fluid and low Reynolds numbers 𝑅𝑒 ≪ 1, the 

inertia forces can also be neglected in comparison to the viscous forces. 
If additionally the permeability of the fiber semi-finished product is 
low, the porous drag dominates the flow behavior and Eq.  (4) simplifies 
to Darcy’s Equation [37] for stationary problems 

𝐮̃ = −𝐊
𝜇

⋅ (∇𝑝) (5)

inside the porous medium, which can also be derived directly from 
the Navier–Stokes-Equation as shown by Whitaker [38]. Outside the 
porous medium, the permeability is high and thus, the porous drag term 
vanishes and Eq.  (2) is valid.

For moving cavities a mixed Lagrangian-Eulerian form is used, as 
proposed by Ferziger and Perić [39] and Jasak [40]. It is to be noted, 
that the mesh movement imposes an additional velocity 𝐮s. Thus, the 
fluid flux has to be corrected before solving the fluid linear momentum 
equation by 𝐮 = 𝐮total − 𝐮s. Otherwise the pressure would be influenced 
by the moving mesh velocity.

The permeability is modeled in a local cartesian coordinate system 
𝑥′ 𝑦′ 𝑧′ that is designed to be in the principal axis system of the fiber 
reinforcement. Thus, only the diagonal of the permeability tensor is 
occupied in the local coordinate system: 

𝐊′ =
⎡

⎢

⎢

⎣

𝐾11 0 0
0 𝐾22 0
0 0 𝐾33

⎤

⎥

⎥

⎦

𝐞′𝑖 ⊗ 𝐞′𝑗 . (6)

With this approach, global permeabilities can be defined based on 
experimental data. The local flow resistance is then derived in each 
cell, by interpolating the FVF-dependent permeability tensor to the 
local FVF and rotating it from the local fiber orientation to the global 
coordinate system.

2.2. Porous solid mechanics with updated Lagrangian formulation in FVM

The description of solid mechanics is usually based on the La-
grangian formulation and the weak form of the momentum conserva-
tion equation, using the Finite Element Method (FEM) for a numerical 
description. However, a cell-centered Finite Volume (FV) approach 
offers advantages for large deformations and for coupling of fluid and 
solid in a monolithic approach. First efforts to derive an FV method 
for solid mechanics were done by Demirdžić and Perić [41]. A sum-
mary of subsequent works is given by Cardiff and Demirdžić [42]. 
Cardiff and Tuković [43] implemented FV solid mechanics methods 
as solids4foam into the open-source framework OpenFOAM, ex-
tending the methods for large rotations and contact boundaries [30,
44], and for large strains and orthotropic material orientations [45]. 
3 
Another extension was developed by Tang et al. [31], using the FV 
method for small-strain poro-elasticity. Seuffert [14] extended the FV 
poro-elasticity method for large deformations of isotropic materials.

This work builds on the previous developments to derive a solid 
mechanics FV poro-elasticity method for general anisotropic materials 
and locally varying material orientations. Based on the poro-elasticity 
extension of the updated Lagrangian formulation for small incremental 
strains by Tang et al. [31] a non-linear incremental formulation is 
developed to allow larger incremental deformations. The conservation 
of linear momentum for a general control volume 𝛺 with surface 𝛤  and 
unit normal 𝐧 is given in integral form as: 
𝜕
𝜕𝑡 ∫𝛺

𝜌s 𝐮s d𝛺 = ∮𝛤
𝐧 ⋅ 𝝈 d𝛤 + ∫𝛺

𝜌s 𝐛d𝛺 (7)

with solid velocity vector 𝐮s, effective stress tensor 𝝈, body force 𝐛, 
and solid density 𝜌s. This integral form of the equation is a strong form 
of conservation. In the FEM, a weak form is used. In solid mechanics, 
the deformations are usually smaller than in fluid mechanics, thus, the 
location can be described in Lagrangian formulation and the convection 
term of the time derivative of the displacement vanishes. Thus, the solid 
velocity 𝐮s can be written as 𝐮s = 𝜕𝐝∕𝜕𝑡, where 𝐝 is the displacement.

As finite deformations are taken into account, the second Piola–
Kirchhoff stress tensor 
𝐒 = 𝐽𝐅−1 ⋅ 𝝈 ⋅ 𝐅−T (8)

is used, where the deformation gradient 𝐅 and the Jacobian determi-
nant 𝐽 are derived from the displacements through
𝐅 = 𝐈 + ∇𝐝 (9)

𝐽 = det(𝐅). (10)

To deal with large deformations, an updated incremental Lagrangian 
formulation is used, where at the end of each time step the new 
configuration is set as reference configuration for the next timestep. 
To compute the updated Lagrangian form of the conservation of linear 
momentum, the updated form of the area element dΓu has to be 
inserted, where the subscript u denotes the updated state. The current, 
deformed area element dΓ can be derived from the reference area 
element by Nanson’s equation dΓ = 𝐽𝐅−T ⋅ dΓu [46,47], where dΓu
is the area element of the last increment or the updated configuration 
in case of the updated Lagrangian approach.

Using the updated area element and replacing the Cauchy stress 
tensor by the second Piola–Kirchhoff stress tensor 𝝈 = 𝐽−1𝐅 ⋅ 𝐒 ⋅ 𝐅T, 
the momentum conservation Eq. (7) can be rewritten in an updated 
form, allowing for large deformations, as 
𝜕
𝜕𝑡 ∫𝛺

𝜌s 𝐮s d𝛺 = ∮𝛤u
(𝐅 ⋅ 𝐒)dΓu + ∫𝛺u

𝜌s 𝐛d𝛺u

= ∮𝛤u
𝐧u ⋅ (𝐒 ⋅ 𝐅)d𝛤u + ∫𝛺u

𝜌s 𝐛d𝛺u.
(11)

Substituting the solid velocity by the derivative of displacement and 
using Terzaghi’s law of effective stress [23] in terms of the second Piola 
Kirchhoff stress tensor 
𝐒total = 𝐒eff + 𝐒f luid

= 𝐒eff − 𝑝𝐈
(12)

Eq. (11) yields 
𝜕
𝜕𝑡 ∫𝛺

𝜌s
𝜕𝐝
𝜕𝑡
d𝛺 = ∮𝛤u

𝐧u ⋅ ((𝐒eff − 𝑝𝐈) ⋅ 𝐅)d𝛤u + ∫𝛺u

𝜌s 𝐛d𝛺u. (13)

As finite strains are taken into account, the strain is formulated by 
means of the Green–Lagrange strain tensor 

𝐄 = 1
2
(

∇𝐝 + ∇𝐝T + ∇𝐝 ⋅ ∇𝐝T
)

. (14)

As an updated incremental Lagrangian approach is used to deal with 
large deformations, the strain increment is needed: 

𝛿𝐄 = 1 (

∇𝛿𝐝 + ∇𝛿𝐝T + ∇𝛿𝐝 ⋅ ∇𝐝T + ∇𝐝 ⋅ ∇𝛿𝐝T + ∇𝛿𝐝 ⋅ ∇𝛿𝐝T
)

. (15)

2
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The idea of an updated approach is that the initial displacement in 
every time increment vanishes, following that

𝛿𝐄u =
1
2
(

∇𝛿𝐝 + ∇𝛿𝐝T + ∇𝛿𝐝 ⋅ ∇𝛿𝐝T
)

, (16)

𝐅u = 𝐈. (17)

To connect stress and strain, the St. Venant-Kirchhoff hyper-elastic 
constitutive relation 
𝐒eff = C ∶ 𝐄, (18)

with the effective second Piola–Kirchhoff stress tensor 𝐒eff , and the 
stiffness tensor C, is used.

To compute the total Lagrangian results from the updated La-
grangian approach, the stress and strain rates have to be corrected to 
the current configuration with
𝐄̇ = 𝐅T ⋅ 𝐄̇u ⋅ 𝐅, (19)

𝐒̇eff = 𝐽𝐅−1 ⋅ 𝐒̇eff ,u ⋅ 𝐅−T. (20)

However, with this correction the initial configuration has to be stored 
and referenced in each increment nevertheless. For problems with finite 
rotations and displacements, but small strains, 
𝐒̇eff ,u = C ∶ 𝐄̇u (21)

can be assumed.
Since the thickness direction is usually small in LCM processes, 

gravity and thus body forces can be neglected in good approximation. 
With this assumption and differentiation of Eq.  (13), the incremental 
form 
𝜕
𝜕𝑡 ∫𝛺

𝜌s,u
𝜕(𝛿𝐝)
𝜕𝑡

d𝛺 = ∮𝛤u
𝐧u ⋅ 𝛿𝐒eff d𝛤u

− ∮𝛤u
𝐧u ⋅ 𝛿𝑝𝐈d𝛤u

+ ∮𝛤u
𝐧u ⋅

[

(𝐒eff − 𝑝𝐈 + 𝛿𝐒eff − 𝛿𝑝𝐈) ⋅ 𝛿𝐅
]

d𝛤u

(22)

is derived, where the simplification of the updated form ∇𝐝 = 𝟎 is used. 
Inserting the St. Venant Kirchhoff constitutive law from Eq.  (18) and 
simplifying 𝛿𝐅 = ∇𝛿𝐝 yields to 
𝜕
𝜕𝑡 ∫𝛺

𝜌s,u
𝜕(𝛿𝐝)
𝜕𝑡

d𝛺 = ∮𝛤u
𝐧u ⋅ C ∶ 𝛿𝐄d𝛤u − ∮𝛤u

𝐧u ⋅ 𝛿𝑝𝐈d𝛤u

+ ∮𝛤u
𝐧u ⋅

[

(𝐒eff − 𝑝𝐈 + 𝛿𝐒eff − 𝛿𝑝𝐈) ⋅ ∇𝛿𝐝
]

d𝛤u.
(23)

Because of the calculation with Terzaghi’s law of effective stress, 
there is an additional dependency on the fluid pressure in Eq.  (23), 
allowing for a strong coupling between fluid flow and deformation of 
the porous domain.

The equations are solved with a staggered implicit–explicit algo-
rithm. The second and third term on the right-hand side are rearranged 
as one source term and solved in a deferred correction approach. In this 
approach it is iterated over the source term in each timestep. The rest 
of the equation is solved implicitly.

The FVF and fiber orientation of the fiber preform are updated in 
every increment with
𝜑u = 𝛿𝐽−1𝜑, (24)

𝝎u = 𝛿𝐅−1 ⋅ 𝝎 ⋅ 𝛿𝐅−T, (25)

as the FVF has a huge influence on permeability and compaction 
behavior and thus, on the overall fluid flow.

2.3. A formulation for anisotropic solid deformation in FVM

For a hyper-elastic material the stiffness tensor has the main sym-
metry additionally to the left and right sub-symmetry and thus, the 
stress–strain-relation can be noted in Mandel Notation. In OpenFOAM, 
4 
tensors of fourth order are not implemented and cannot be solved 
internally. Thus, the stiffness tensor is split into four tensors of second 
order which can be handled separately, but depend on each other if 
the material is rotated. Analogously, the stresses and strains are divided 
into main components and mixed components, resulting in 
⎡

⎢

⎢

⎣

𝑆eff ,11
𝑆eff ,22
𝑆eff ,33

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶1111 𝐶1122 𝐶1133
𝐶2222 𝐶2233

sym. 𝐶3333

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐸11
𝐸22
𝐸33

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

√

2𝐶1123
√

2𝐶1113
√

2𝐶1112
√

2𝐶2223
√

2𝐶2213
√

2𝐶2212
√

2𝐶3323
√

2𝐶3313
√

2𝐶3312

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

√

2𝐸23
√

2𝐸13
√

2𝐸12

⎤

⎥

⎥

⎥

⎦

,

(26)

⎡

⎢

⎢

⎢

⎣

√

2𝑆eff ,23
√

2𝑆eff ,13
√

2𝑆eff ,12

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

√

2𝐶1123
√

2𝐶1113
√

2𝐶1112
√

2𝐶2223
√

2𝐶2213
√

2𝐶2212
√

2𝐶3323
√

2𝐶3313
√

2𝐶3312

⎤

⎥

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

𝐸11
𝐸22
𝐸33

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

2𝐶2323 2𝐶2313 2𝐶2312
2𝐶1313 2𝐶1312

sym. 2𝐶1212

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

√

2𝐸23
√

2𝐸13
√

2𝐸12

⎤

⎥

⎥

⎥

⎦

.

(27)

To improve the solution stability, the stiffness tensor is divided into 
an isotropic part and an anisotropic part by means of the Eigenprojec-
tors as described by Bertóti and Böhlke [48]: 

Tiso =
(

T ⋅ P1
)

P1 +
1
5
(

T ⋅ P2
)

P2, (28)

Taniso = T − Tiso, (29)

where P𝑖 are Eigenprojectors. The Projector representation of a general 
tensor is T =

∑𝛾
𝛼=1 𝜆𝛼P𝛼 with 𝜆𝛼 Eigenvalues.

The isotropic contribution to the stress divergence can be included 
in the implicit solution scheme by means of the Lamé parameters 
𝜆isoL = 𝐾 iso − 2

3𝐺
iso and 𝜇iso

L = 𝐺iso, which provide a scalar relation 
between stress and strain. 3𝐾 iso and 2𝐺iso are the Eigenvalues of the 
isotropic part of the stiffness tensor, calculated from the Eigenprojectors 
as 𝐾 iso = 1

3C ⋅ P1 and 𝐺iso = 1
10C ⋅ P2. The stress contribution by 

the anisotropic part of the stiffness tensor is added as explicit source 
term to the linear momentum equation. Therefore, the effective stress 
increment in the momentum conservation Eq. (23) is divided as follows:
𝜕
𝜕𝑡 ∫𝛺

𝜌s,u
𝜕(𝛿𝐝)
𝜕𝑡

d𝛺 = 1
2 ∮𝛤u

𝐧u ⋅ (2𝜇iso
L + 𝜆isoL )∇𝛿𝐝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿𝐒isoeff

d𝛤u

+ ∮𝛤u
𝐧u ⋅

( 1
2
C ∶ (∇𝛿𝐝 + ∇𝛿𝐝T + ∇𝛿𝐝 ⋅ ∇𝛿𝐝T) − 1

2
(2𝜇iso

L + 𝜆isoL )∇𝛿𝐝
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿𝐒anisoeff

d𝛤u

− ∮𝛤u
𝐧u ⋅ 𝛿𝑝𝐈 d𝛤u + ∮𝛤u

𝐧u ⋅
[

(𝐒eff − 𝑝𝐈 + 𝛿𝐒eff − 𝛿𝑝𝐈) ⋅ 𝛿𝐅
]

d𝛤u (30)

= 1
2 ∮𝛤u

𝐧u ⋅ (2𝜇iso
L + 𝜆isoL )∇𝛿𝐝 d𝛤u + ∮𝛤u

𝐧u ⋅𝐐explicit d𝛤u,

where 𝐐 is calculated as explicit source term in each increment.
The anisotropic part of the stiffness tensor is rotated in each cell 

from the local material orientation to the global coordinate system in 
each increment. Like this, it is accounted for fiber-reorientation due 
to reinforcement deformations. Furthermore, one orthotropic stiffness 
can be defined globally in a main axis system, which is adapted to the 
local orientation state and FVF in each cell. The local stiffness tensors 
are rotated by means of the rotation tensor of fourth order R = 𝐑□𝐑T, 
where □  is the box product defined as (𝐴□𝐵)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘𝐵𝑙𝑗 in index 
notation, to the global orientation, so 
Cglobal = RTMClocalR. (31)

ATM  is the major transpose of a tensor of 4th order meaning 𝐴TM
𝑖𝑗𝑘𝑙 =

𝐴𝑘𝑙𝑖𝑗 . The isotropic part is calculated from the unrotated stiffness tensor 
to safe computational cost as the isotropic constants are independent of 
the material orientation.
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As the stiffness tensor is separated in four tensors of second order, 
the rotation has to be performed in Mandel notation, which was shown 
to be valid for fourth order tensors with left and right sub-symmetry 
by Koay [49] and Mehrabadi et al. [50] as the non symmetric part of 
the rotation tensor is filtered by the stiffness tensor. In Mandel Notation 
the fourth-order Rotation tensor can be derived from the second-order 
rotation tensor 

𝐑 =
⎡

⎢

⎢

⎣

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

⎤

⎥

⎥

⎦

(32)

to be 

R =
[

𝐑[1] 𝐑[2]
𝐑[3] 𝐑[4]

]

(33)

with the components 

𝐑[1] =
⎡

⎢

⎢

⎣

𝑅2
11 𝑅2

12 𝑅2
13

𝑅2
21 𝑅2

22 𝑅2
23

𝑅2
31 𝑅2

32 𝑅2
33

⎤

⎥

⎥

⎦

, (34)

𝐑[2] =

⎡

⎢

⎢

⎢

⎣

√

2𝑅12𝑅13
√

2𝑅11𝑅13
√

2𝑅11𝑅11
√

2𝑅22𝑅23
√

2𝑅21𝑅23
√

2𝑅21𝑅22
√

2𝑅32𝑅33
√

2𝑅31𝑅33
√

2𝑅31𝑅32

⎤

⎥

⎥

⎥

⎦

, (35)

𝐑[3] =

⎡

⎢

⎢

⎢

⎣

√

2𝑅21𝑅31
√

2𝑅22𝑅33
√

2𝑅23𝑅33
√

2𝑅11𝑅31
√

2𝑅12𝑅32
√

2𝑅13𝑅33
√

2𝑅11𝑅21
√

2𝑅12𝑅22
√

2𝑅13𝑅23

⎤

⎥

⎥

⎥

⎦

, (36)

and 

𝐑[4] =
⎡

⎢

⎢

⎣

𝑅22𝑅33 + 𝑅23𝑅32 𝑅21𝑅33 + 𝑅23𝑅31 𝑅21𝑅32 + 𝑅22𝑅31
𝑅12𝑅33 + 𝑅13𝑅32 𝑅11𝑅33 + 𝑅13𝑅31 𝑅11𝑅32 + 𝑅12𝑅31
𝑅12𝑅23 + 𝑅13𝑅22 𝑅11𝑅23 + 𝑅13𝑅21 𝑅11𝑅22 + 𝑅12𝑅21

⎤

⎥

⎥

⎦

.

(37)

The rotated stiffness parts are used to calculate the momentum balance 
and to update the total stress in the last iteration.

As fabrics show highly nonlinear compaction behavior depending 
on FVF, a hyperelastic approach is implemented. It is assumed that the 
dependency on fiber content is equal in all material directions, because 
the main deformations occur in thickness direction and deformations 
are rather small in fiber direction. Thus, initial values are set for each 
stiffness component and scaled thereafter piecewise linearly by FVF:

𝐸hyper (𝜑) =

⎧

⎪

⎨

⎪

⎩

𝐸0 + (𝐸1 − 𝐸0)𝜑, ∀𝜑 ∈ [𝜑0, 𝜑1]
...

𝐸𝑖 + (𝐸𝑖+1 − 𝐸𝑖)𝜑, ∀𝜑 ∈ [𝜑𝑖, 𝜑𝑖+1]
(38)

𝐶𝑗𝑘𝑙𝑚,hyper (𝜑) = 𝐶0
𝑗𝑘𝑙𝑚

𝐸hyper (𝜑)
𝐸0

(39)

If the deformations are small, what can usually be assumed for 
an updated approach, the simulation approach can be changed to an 
infinitesimal strain approach to save computational cost. For small 
deformations Tang et al. [31] state that it can be assumed 

dΓ = dΓu (40)

for the surface increment and for the strain increment 
𝛿𝜺 = 1

2
(

∇𝛿𝐝 + ∇𝛿𝐝T
)

= 𝛿𝜺u. (41)

The general form of the conservation equation of linear momentum 
for small deformations thus simplifies to 
𝜕
𝜕𝑡 ∫𝛺

𝜌s,u
𝜕(𝛿𝐝)
𝜕𝑡

d𝛺 = 1
2 ∮𝛤u

𝐧u ⋅ C ∶ (∇𝛿𝐝 + ∇𝛿𝐝T) d𝛤u

− ∮𝛤u
𝐧u ⋅ 𝑝𝐈 d𝛤u,

(42)

while stiffness rotation and calculation stay the same.
5 
2.4. Fluid structure interaction for fluid flow through porous media

The implementation of fluid flow and moving meshes is based on an 
OpenFOAM extension accounting for anisotropic porous drag, during 
and changing FVF with moving meshes by Bernath et al. [32]. Based 
on the FV approaches for modeling CRTM and pressure-controlled RTM 
(PC-RTM) by Seuffert et al. [35,51], the solution algorithm is extended 
with the anisotropic porous solid mechanics approach described in 
the previous sections. A monolithic approach is chosen to avoid time 
consuming volumetric coupling in the whole cavity. Therefore, in an 
iterative solution scheme first the poro-elasticity is solved, and stresses 
and strains are updated depending on the calculated incremental dis-
placements. Secondly, the fluid flow is calculated depending on the 
stresses and displacements of the porous medium. This procedure is 
repeated until a common solution is found. The solution procedure is 
illustrated in Fig.  2.

For the porous mechanics calculation at first, the Lamé parame-
ters are gained from the isotropic stiffness part to setup the implicit 
equation. If the stiffness is defined to be anisotropic, the local mate-
rial orientations are derived from the fiber orientation and thickness 
direction and the local stiffness tensors are rotated from their main axis 
systems in the material coordinate system to the global orientation, 
where stress and strain increments are calculated. Either from the 
anisotropic incremental stresses or from the incremental strains and 
Lamé parameters and from the pressure, the explicit source term is 
calculated as described in Eq.  (30) and Eq.  (23), respectively.

Thereafter, the momentum conservation equation is solved for poro-
mechanics and stress and strain increments are calculated. If the porous 
solid mechanics solution converges, the total values are updated with 
the incremental results and the mesh is moved accordingly. The mesh 
movement is governed by the solid mechanics equations. The fluid 
influences the mesh deformation only indirectly via the fluid pressure 
in the linear momentum equation. Before solving for the fluid flow, FVF 
and fiber orientation are updated to the deformed mesh according to 
Eqs. (24) and (25). If no convergence is reached, the total values have 
to be set back to the values of the last stable time step. The incremental 
displacements are relaxed using the values from the current and last 
increment and the loops are repeated until convergence is reached.

3. Verification

For fiber structures, the orthotropic material behavior is of spe-
cial relevance and is therefore used for verification of the developed 
method. Non-orthotropic deformation behavior can also be prescribed, 
for example for sheared textiles, as long as the material coordinate 
system is described in an orthonormal system. In the orthotropic case, 
the number of independent material parameters reduces to nine and 
the entries of the stiffness tensor depending on engineering constants 
in the main axis system are:

𝐶1111 =
1 − 𝜈23𝜈32

𝐷
𝐸1, 𝐶2222 =

1 − 𝜈13𝜈31
𝐷

𝐸2,

𝐶3333 =
1 − 𝜈12𝜈21

𝐷
𝐸3, 𝐶1122 =

𝜈21 − 𝜈23𝜈31
𝐷

𝐸1,

𝐶1133 =
𝜈31 − 𝜈32𝜈21

𝐷
𝐸1, 𝐶2233 =

𝜈32 − 𝜈31𝜈12
𝐷

𝐸2, (43)

𝐶2323 = 𝐺23, 𝐶1313 = 𝐺13,

𝐶1212 = 𝐺12,

with 𝐷 = 1 − 𝜈12𝜈21 − 𝜈31𝜈13 − 𝜈32𝜈32 − 2𝜈12𝜈23𝜈31.
The engineering constants are used as input parameters in the verifi-

cation cases. Two separate verifications are introduced in the following: 
a unidirectional fluid-driven deformation according to MacMinn et al. 
[52] to account for the fluid–solid interaction in porous solid mechan-
ics, and a two-dimensional hole in a plate test according to Cardiff 
et al. [45] to verify the anisotropic stiffness implementation against an 
analytical solution.
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Fig. 2. Solution scheme accounting for the fluid–solid interaction of resin flow 
and porous fiber reinforcement, extended for anisotropic porous solid mechanics 
from Seuffert [14].

3.1. Uniaxial fluid driven deformation test case as proposed by MacMinn 
et al. [52]

In the following, the porous solid mechanics approach is verified 
against the results of MacMinn et al. [52] and Seuffert [14] for a 
uniaxial flow-induced deformation of a porous medium.

The fluid-driven compression test case is illustrated in Fig.  3. It is 
assumed that the lateral boundaries are rigid, frictionless and imperme-
able. Thus, the case is independent of the shape and size of the cross 
6 
Fig. 3. Schematic representation of the verification case by MacMinn et al. [52] for 
a fluid-driven compression of a porous medium taking into account large strains [14]. 
The porous medium (light gray) with initial length 𝐿 is fixed at the right boundary 
by a permeable wall, indicated by a dashed black line, and compressed by a fluid 
flow (blue arrows) in 𝑥-direction until a steady state is reached. The dashed red line 
indicates the initial position of the porous medium and the red line the porous boundary 
in compressed state. The displacement is described by 𝑑(𝑥, 𝑡).  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Table 1
Summary of process parameters and material data used for the fluid-driven verification 
case after MacMinn et al. [52].
 Parameter Value Description  
 𝐿 1 m initial length of the porous medium  
 𝑝inlet 600 kPa fluid pressure at inlet  
 𝑝outlet 100 kPa fluid pressure at outlet  
 𝜑0 0.5 initial FVF  
 𝜆L 0 first Lamé constant  
 𝜇L(𝜑 = 0.5) 0.5 MPa (initial) second Lamé parameter  
 𝜇L(𝜑 = 1) 5 MPa second Lamé parameter at FVF of 100% 
 𝐾0

11 10−10 m2 (initial) permeability  
 𝐴Gebart 2 × 10−10 m2 Gebart model parameter  

section in 𝑦-𝑧-direction. On the right hand side, the porous medium is 
fixed by a permeable wall and on the left side, fluid is injected with a 
constant pressure gradient, compressing the porous medium.

Four complexity levels are considered:

1. linear, constant permeability 𝐾 and constant Lamé parameters 
𝜇L, 𝜆L

2. geometric non-linear, constant permeability 𝐾 and constant 
Lamé parameters 𝜇L, 𝜆L

3. geometric non-linear, non-constant permeability 𝐾(𝜑) and con-
stant Lamé parameters 𝜇L, 𝜆L

4. geometric non-linear, non-constant permeability 𝐾(𝜑) and non-
constant Lamé parameters
𝜇L(𝜑), 𝜆L(𝜑)

As a one-dimensional problem is investigated, the permeability 
tensor reduces to a scalar permeability 𝐾11 in fiber direction. For the 
non-constant permeability, a Gebart type permeability is used with 
𝐾11 = 𝐾∥ = 𝐴Gebart ⋅

(1−𝜑)3

𝜑2 , based on Gebart [53] with 𝐴Gebart = 8𝑟2
𝑐 . 

The variable 𝑐 depends on the fiber distribution type, and 𝑟 is the fiber 
radius. The non-constant Lamé parameters are formulated depending 
on the FVF with a hyperelastic approach, implementing a piecewise 
linear dependency between FVF and Lamé parameters, according to 
Eqs. (38) and (39). The process parameters and material data are 
summarized in Table  1.

A one-dimensional mesh is used with one element in y- and 𝑧-
direction and 100 elements in 𝑥-direction. A mesh density study was 
performed (Appendix  A), showing that the mesh converges for more 
than 40 elements in 𝑥-direction. To enhance convergence, the velocity 
is increased over 25 timesteps. Depending on the prescribed material 
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Fig. 4. Comparison of the four internal coupling verification cases along the normalized deformed state of the porous medium 𝑥∗ to the reference results of Seuffert [14] (ref): 
Normalized displacement 𝑑∗, component 𝐸𝑥𝑥 of Green–Lagrange strain tensor, normalized pressure 𝑝∗, and FVF 𝜑 from top left to bottom right.
model, 7 to 13 outer iterations are necessary in each time step to reach 
convergence.

In Fig.  4, displacement, Green–Lagrange strain, pressure and FVF 
over the normalized length 𝑥∗ of the deformed state are compared, for 
the four introduced simplifications. The comparison is carried out when 
a state of equilibrium is reached, in a normalized form with

𝑥∗ =
𝑥 − 𝑑(𝑥)

𝐿
,

𝐒∗ = 𝐒
𝐸𝜑=0.5

,

𝑑∗ = 𝑑
𝐿
,  and

𝑝∗ =
𝑝

𝐸𝜑=0.5
.

(44)

Exact agreement with the results of MacMinn et al. [52] and Seuffert 
et al. [54] can be observed. It is to be noted, that the purely linear 
model leads to a non-physical FVF of 1 at the porous wall. This 
model is not sufficient to describe the fiber semi-finished product 
deformations, which is why non-linear models with material behavior 
dependent on the FVF are considered in the following. The FVF-
dependent permeability shows the largest influence on filling pressure 
and displacement, while the non-linearity of the process is rather 
decreased by an FVF-dependent fabric stiffness.

3.2. 2D Hole-in-a-plate orthotropic solid deformation test case as proposed 
by Cardiff [30]

To verify the anisotropic material definition and rotation, simula-
tions with varying stiffness in transverse direction are performed on a 
two-dimensional plate with a hole in the middle as shown in Fig.  5, 
analogously to the verification case proposed by Cardiff [30]. For this 
case small deformations are assumed. For a two-dimensional open-hole 
tension test, an analytical solution for the hoop stress on the surface 
of the hole was derived by Lekhnitskii [55] depending on the rotation 
angle 𝜃 with 

𝝈𝜃𝜃 = 𝑇
−𝑘 cos2 𝜃 + (1 + 𝑛) sin2 𝜃

, (45)

sin4 𝜃 + (𝑛2 − 2𝑘) sin2 𝜃 cos2 𝜃 + 𝑘2 cos4 𝜃

7 
Fig. 5. Schematic representation of the two-dimensional open-hole-tension verification 
case for an orthotropic material under traction.

where 𝑇  is the traction applied in 𝑥-direction and 𝑘 and 𝑛 are parame-
ters derived from the material stiffness as 

𝑘 =

√

𝐸𝑥
𝐸𝑦

, (46)

𝑛 =

√

2𝑘 +
𝐸𝑥
𝐺𝑥𝑦

− 2𝜈𝑥𝑦, (47)

respectively. The stresses in the global cartesian coordinate system can 
be derived from the hoop stress 𝝈𝜃𝜃 as follows:

𝝈𝑥𝑥 = 𝝈𝜃𝜃 sin
2 𝜃, (48)

𝝈𝑦𝑦 = 𝝈𝜃𝜃 cos2 𝜃, (49)

𝝈𝑥𝑦 = −𝝈𝜃𝜃 sin 𝜃 cos 𝜃. (50)

The plate has a length of 𝐿 = 8 m with a hole diameter of 𝑑 = 0.6m. 
It is loaded with a traction of 𝑇 = 100 kPa in 𝑥-direction. Rigid body 
rotations and displacements of the plate are prevented by fixing the 
bottom left corner. The material behavior is defined with 𝐸𝑥 = 200GPa, 
𝐺𝑥𝑦 = 76.923GPa, 𝜈𝑥𝑦 = 0.3, and 𝐸𝑦 varying between 60GPa and 
200GPa. To eliminate finite domain size effects the analytical traction 
is prescribed at the boundaries as described by Demirdžić et al. [56].

The resulting analytical and numerical stresses for different degrees 
of anisotropy are depicted in Fig.  6. The numerical results show the 



S. Schlegel et al. Composites Part B 302 (2025) 112448 
Fig. 6. Comparison of analytical and numerical normal stresses 𝜎𝑥𝑥 , 𝜎𝑦𝑦 and shear stress 𝜎𝑥𝑦 around the hole depending on rotation angle 𝜃 based on Cardiff [30] and the analytical 
solution of Lekhnitskii [55].
same qualitative and quantitative behavior as the analytical solution, 
although slight differences occur due to the different assumptions made 
for the numerical and analytical solution. Different discretizations were 
investigated to ensure convergence of the numerical predictions to-
wards the analytical solution (Appendix  B, Fig.  12). Moreover, different 
dimensions of the cutout were analyzed to ensure from which size of 
the hole an infinitely extended domain can be assumed in comparison 
to the hole dimensions (Appendix  B, Fig.  13). In accordance with these 
preliminary investigations, a mesh density of 960x960 elements and the 
above given diameter of 0.6m were selected.

There are some differences between the assumptions of the analyti-
cal and numerical approach, which lead to small deviations in the stress 
calculation. An obvious difference to the analytical solution is the finite 
domain size, which is necessary for a numerical solution. This was ad-
dressed by adapting the traction boundary conditions accordingly and 
by examining different ratios between domain size and cutout radius 
(Appendix  B, Fig.  13) to ensure that the assumption of a finite domain 
size can be justified. The clamping at the corner can also influence the 
resulting stresses, even if it is far from the hole circumference under 
consideration. However, the influence is assumed to be small, which 
was verified by comparison to a symmetric calculation of a quarter of 
the plate.

In addition, a plane stress state and a 2D problem are assumed for 
the analytical solution, which have to be introduced analogously in 
the simulation. For 2D formulations in the Finite Volume method, a 
thickness of the geometry in the neglected spatial direction is necessary 
to generate a volume through which 2D fluxes can be solved. The 
top and bottom boundary faces are fixed to keep the geometrical 
height constant and realize a 2D flow. Therefore, a plane strain state 
is introduced by the choice of displacement boundary conditions. To 
decouple the stress calculation from the third spatial direction the 
transverse contraction coefficients in this direction are chosen to be 
zero. Thus, a plane stress state can be achieved. Overall, the agreement 
between the numerical and analytical solution is considered to be quite 
accurate.

Different stress states arise for the investigated degrees of
anisotropy. This can be observed mainly for the normal stress in 𝑦-
direction but also for the shear stress progression along the hole. The 
absolute value of the normal stress 𝜎yy at the hole is almost double 
for the nearly isotropic case with 𝐸y = 200GPa compared to the results 
with highest anisotropy (𝐸y = 60GPa). This difference shows the impact 
of the new adapted model on the stress response. The effect on the 
filling behavior of a plate in CRTM is analyzed in the following.
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Fig. 7. Schematic representation of infiltration application example of a three-
dimensional plate as presented by Sarojini Narayana et al. [57].

3.3. Experimental validation example: Isotropic and anisotropic
poro-elasticity in a 3D flow under compaction

In order to validate the accuracy of the numerical model presented, 
the filling of a three-dimensional plate with a point sprue in the center 
and a fiber clamping at the edges is calculated. The material data 
and geometric data of Sarojini Narayana et al. [57] are used for this 
purpose. A schematic representation of the validation case is given in 
Fig.  7. Based on the flow front curves presented by Sarojini Narayana 
et al. [57] in partially filled states as well as the pressure curves at the 
two sensor points (Figure 13 in [57]), the numerical predictions of the 
newly developed model are validated against the experimental results.

The plate of length 𝐿 = 350 mm and initial height 𝐻 = 4 mm is 
infiltrated with constant velocity 𝑢in through a 9mm wide inlet in the 
middle of the lower mold as shown in Fig.  7. The lower wall (𝑧 = 0) 
is fixed, while the upper wall is moved with constant velocity 𝑢s =
−1mm/s after an injection time of 60 s until the plate is compressed 
to its final height of 3 mm. The initial FVF is 42% in the domain and 
51% in the fiber clamping, which is compressed to a final FVF of 56% 
and 72.7%, respectively. Sarojini Narayana et al. [57] assume a gap 
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Fig. 8. Validation of the numerically predicted pressure evolution over time at the two 
sensor points compared to the experimentally measured pressures by Sarojini Narayana 
et al. [57].

between upper mold and fiber reinforcement for their displacement 
calculations. However, they calculate pressure and flow front evolution 
with an initially homogeneous FVF over the thickness of the cavity. Due 
to the relaxation behavior of the semi-finished fiber product and the 
relatively small gap, the semi-finished product is expected to expand 
in the thickness direction over the entire initial height of the cavity. 
Therefore, analogous to Sarojini Narayana et al. [57], a homogeneous 
FVF over the height is assumed as the initial state.

On the surrounding sides the porous medium is constrained by 
porous walls, where the fluid can flow out and the vent pressure is 
applied. The resin is injected at room temperature (20 ◦C) and the 
molds are heated to 100 ◦C (upper mold) and 95 ◦C (lower mold). The 
temperature and cure dependent viscosity of the resin is considered 
with a Castro Macosko model [58] analogous to Sarojini Narayana et al. 
[57] and the cure rate is modeled with an Arrhenius type equation. 
For the material parameters the reader is referred to Sarojini Narayana 
et al. [57].

In Fig.  8, the pressure at the two sensor points (highlighted in Fig.  7) 
over time is compared to the experimental results by Sarojini Narayana 
et al. [57]. The same qualitative behavior can be observed for the 
numerical predictions and the experimental results during infiltration 
and compression phase. During infiltration (up to 60 s) the pressure 
stays at a low level and then quickly rises when compression starts. 
It is to be noted that the simulation was stopped after 61.25 s when the 
mold reaches its final height. Therefore, the pressure drop observed in 
the experiments after compaction is not considered in the numerical 
results. The end of compression is marked by a dashed line. At this time 
the maximum pressure predicted by the numerical solution is 68 bar for 
the first Sensor, which fits to the final pressure of Sensor one in the 
experiments after the overshoot.

Moreover, in Fig.  9 the evolution of the flow front over time 
is compared with the numerical and experimental results by Saro-
jini Narayana et al. [57]. Since the pressure at the inlet is ramped up 
over the first five seconds to improve numerical stability, the flow front 
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Fig. 9. Flow front evolution over time in the diagonal of the plate predicted 
by the presented model compared to the experimental and numerical results (ref) 
by Sarojini Narayana et al. [57].

is slightly too slow in the beginning. Despite this start-up behavior, 
the filling can be predicted quite accurately and the prediction of the 
flow front is closer to the experimental measurements than with the 
numerical model of Sarojini Narayana et al. [57].

To illustrate the difference between the isotropic and the anisotropic 
stiffness model, the FVF near the inlet is shown in Fig.  10 for two 
different assumptions for the isotropic stiffness and one orthotropic 
case. Different mesh configurations have been analyzed to ensure mesh 
independence for the chosen configuration (Appendix  C, Fig.  14). For 
the isotropic approach, one solution is shown with an isotropic stiffness 
equal to the stiffness measured by Sarojini Narayana et al. [57] in 
thickness direction (Fig.  10(a)). However, these simulations are not 
stable due to element deformations in in-plane direction. Therefore, it 
was necessary to average the reinforcement stiffness in the thickness 
direction and the in-plane directions to reduce element deformations 
in the fiber directions (Fig.  10(b)). This led to a stiffness, which is 
one order of magnitude higher than the stiffness measured by Saro-
jini Narayana et al. [57] and therefore an overestimation of the stiffness 
in thickness direction. For the anisotropic approach, an orthotropic 
material model was prescribed using the compaction stiffness mea-
sured by Sarojini Narayana et al. [57] in the thickness direction and 
specifying an in-plane stiffness which is two orders of magnitude 
higher. Sarojini Narayana et al. [57] calculated stresses and deforma-
tions only in the thickness direction of the plate and fixed the degrees 
of freedom for in-plane deformations.

It can be observed, that the high fluid pressure gradient at the inlet 
leads to a movement of fibers towards the upper mold for all consid-
ered stiffness models, which was also reported by Sarojini Narayana 
et al. [57]. In the isotropic simulation with low stiffness, elements are 
additionally dragged in the in-plane direction towards the outlet by the 
inlet pressure, leading to element deformations as well as a reduced FVF 
at the inlet (see Fig.  10(a)) compared to the orthotropic model (Fig. 
10(c)). This can be explained by an overestimation of reinforcement 
elongation along fiber direction due to equal material stiffness in all 
directions. It is to be noted, that the simulation crashes shortly after the 
shown comparison due to element distortions. Although the presented 
approach is capable of handling flow through porous zones and pure 
resin flow, the formation of new pure fluid zones during infiltration 
cannot be captured. The fiber volume content reduces near the inlet 
due to fluid pressure but cannot reach zero because fibers are not trans-
ported over cell boundaries. Therefore, the approach is able to predict 
fiber deformations in a homogenized form only to a certain extend. If 
local deformations get too high, distorted elements can occur, which 
lead to a termination of the simulation. However, element deformations 
in fiber direction are decreased by the anisotropic approach compared 
to the isotropic one.
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Fig. 10. Comparison of FVF distribution near the inlet in a three-dimensional plate 
with isotropic ((a) stiffness equals measured stiffness in thickness direction, but 
simulation is instable, and (b) averaged stiffness one order of magnitude higher than 
the measured stiffness in thickness direction) and (c) orthotropic poro-elastic behavior 
of the fabric. Due to the slender structure, the symmetry of the plate at the center 
line is used to better represent the behavior at the inlet and the plate is cut off 
towards the edge. The inlet is indicated in red and the flow front at the given time 
in orange. Depending on the stiffness model, the fiber reinforcement is deformed to 
varying degrees by the fluid pressure at the inlet, which is reflected in the change in 
the FVF. This in turn has a strong influence on the permeability and therefore the flow 
behavior.

The stable isotropic model with high stiffness (Fig.  10(b)) leads to 
an underestimation of deformations and the FVF changes from 42% to 
40% at the inlet. As the stiffness of the real porous material is quite 
high in fiber direction, it would be expected that no fiber movements 
occur along 𝑥-direction, but a shift of fibers at the inlet towards the 
upper mold due to the pressure gradient in thickness direction at the 
inlet. That is, what can be observed for the orthotropic model (Fig. 
10(c)), illustrating the use of the developed anisotropic porous solid 
mechanics model. Moreover, the simulation is more stable than the 
isotropic approach using the same stiffness in thickness direction. Due 
to the strong influence of the fiber volume content on the permeability, 
the flow front velocity also changes under pressure boundary conditions 
at the inlet depending on the stiffness of the fiber reinforcement.

4. Conclusion

In this work a general anisotropic and three-dimensional finite 
volume approach for porous solid mechanics was derived and verified 
with two different tests to adequately capture the fluid-solid interaction 
inside the porous medium as well as the anisotropic material behavior. 
This makes it possible to analyze and predict the anisotropic deforma-
tion behavior of fiber reinforcements during infiltration in the context 
of real applications. To describe the anisotropic behavior of the fiber 
reinforcement, a method was presented to decompose and rotate the 
stiffness tensor of 4th order to account for local fiber orientation and 
local fiber content. It was shown that the derived approach is suitable 
for modeling fluid flow induced deformations of the porous medium 
and the resulting stresses in the anisotropic reinforcement.

Furthermore, the pressure and flow front predictions of the pro-
posed model have been validated against experimental and numerical 
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results from literature for the infiltration of a three-dimensional plate 
in CRTM. A good agreement between the results of the new model 
and the reference values was found. It was shown that the anisotropic 
nature of fibrous reinforcements can be captured more appropriately by 
the new approach than by the isotropic FV state of the art approach, 
especially if high pressure gradients in the fiber direction are involved. 
The new model is observed to be more stable, since accounting for 
the anisotropic nature of the fiber reinforcements limits the distortion 
tendency of the mesh because deformations occur mainly in the thick-
ness direction of the fiber reinforcements, where they are physically 
reasoned. Nevertheless, for more complex geometries mesh distortions 
can still occur as the fiber volume fraction (FVF) is updated in each cell 
depending on the mesh deformations but not yet transported over cell 
boundaries.

Fiber deformations can be captured in a homogenized form with the 
presented approach due to the internal coupling of fluid flow and solid 
deformation via Terzaghi’s law. However, high local pressure gradients 
can lead to excessive deformation of the mesh and termination of the 
simulation. Therefore, a further development is necessary in future 
work to describe the reinforcement deformation with an Euler approach 
and decouple it from the mesh deformation. This is also necessary 
to model the new formation of pure fluid zones during infiltration. 
Although interfaces between porous medium and free fluid zones are 
already supported by the approach, the formation of new pure fluid 
zones cannot be captured. The proposed methods offer a profound basis 
from which the complexity can be further increased.

Yet a limitation of the approach is, that for materials with high 
anisotropy the stiffness tensor is poorly conditioned which may lead to 
high computational times for larger or more complex geometries. The 
material properties can be defined globally and rotated depending on 
fiber orientation and scaled to local FVF, allowing for different local 
fiber orientations and contents. However, due to shearing of fabrics 
or stacking of different materials, it could be interesting to allow for 
different global material properties in different model zones and skew 
local material coordinate systems, which is planned as next step in the 
model evolution.
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Fig. 11. Comparison of four different mesh densities of the internal coupling verifica-
tion case along the normalized deformed state of the porous medium 𝑥∗: Normalized 
displacement 𝑑∗, component 𝐸𝑥𝑥 of Green–Lagrange strain tensor, normalized pressure 
𝑝∗, and FVF 𝜑 from top left to bottom right.

Fig. 12. Comparison of the resulting stresses at the circular cutout over the angle 
in an open-hole-tension verification case for four different mesh densities against the 
analytical solution with 𝐸y = 150GPa.

Appendix A. Mesh density study for the 1D porous solid mechan-
ics verification

See Fig.  11.

Appendix B. Mesh density study for the 2D orthotropic solid me-
chanics verification

See Figs.  12 and 13.

Appendix C. Mesh sensitivity study for the 3D validation case

See Fig.  14.
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Fig. 13. Comparison of the resulting stresses at the circular cutout over the angle in 
an open-hole-tension verification case for different sizes of the cutout in a fixed size 
plate against the analytical solution with 𝐸y = 150GPa.

Fig. 14. Comparison of FVF distribution near the inlet in a three-dimensional plate 
with four different mesh densities ((a) 10908 cells, (b) 19668 cells (chosen), (c) 157344 
cells, and (d) 520128 cells). Analogously to Fig.  10, the symmetry of the plate at the 
center line is used to better represent the behavior at the inlet and the plate is cut off 
towards the edge. The inlet is indicated in red and the flow front at the given time in 
orange.  (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Data availability

No data was used for the research described in the article.
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