t.)

Check for
Updates

Adaptive Shielding via Parametric Safety Proofs

YAO FENG?, Tsinghua University, China

JUN ZHU, Tsinghua University, China

ANDRE PLATZER, Karlsruhe Institute of Technology (KIT), Germany
JONATHAN LAUREN TT, KIT, Germany and Carnegie Mellon University, USA

A major challenge to deploying cyber-physical systems with learning-enabled controllers is to ensure their
safety, especially in the face of changing environments that necessitate runtime knowledge acquisition.
Model-checking and automated reasoning have been successfully used for shielding, i.e., to monitor un-
trusted controllers and override potentially unsafe decisions, but only at the cost of hard tradeoffs in terms
of expressivity, safety, adaptivity, precision and runtime efficiency. We propose a programming-language
framework that allows experts to statically specify adaptive shields for learning-enabled agents, which enforce
a safe control envelope that gets more permissive as knowledge is gathered at runtime. A shield specification
provides a safety model that is parametric in the current agent’s knowledge. In addition, a nondeterministic
inference strategy can be specified using a dedicated domain-specific language, enforcing that such knowledge
parameters are inferred at runtime in a statistically-sound way. By leveraging language design and theorem
proving, our proposed framework empowers experts to design adaptive shields with an unprecedented level
of modeling flexibility, while providing rigorous, end-to-end probabilistic safety guarantees.

CCS Concepts: « Computer systems organization — Embedded and cyber-physical systems; « Software
and its engineering — Formal methods; - Computing methodologies — Reinforcement learning.

Additional Key Words and Phrases: Safe Reinforcement Learning, Programming Languages, Differential
Dynamic Logic, Statistical Inference, Hybrid Systems

ACM Reference Format:
Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent. 2025. Adaptive Shielding via Parametric Safety Proofs.
Proc. ACM Program. Lang. 9, OOPSLA1, Article 109 (April 2025), 28 pages. https://doi.org/10.1145/3720450

1 Introduction

Learning-based methods such as reinforcement learning have shown great promise in the fields
of autonomous driving [28, 38] and robot control [19, 37, 39]. However, their deployment in the
real-world has been held back by reliability and safety concerns. The use of formal methods
has been suggested to guarantee the safety of learning-enabled systems, both after and during
training [10, 15, 16, 20]. Many different approaches have been proposed to do so, which share as a
foundation the idea of sandboxing or shielding [2, 15, 29, 43]. In this framework, the intended actions
of a learning-enabled agent are monitored at runtime and overridden by appropriate fallbacks
whenever they cannot be proved safe with respect to a model of the environment.

“Yao Feng contributed a majority of the case studies and experiments.
TJonathan Laurent contributed a majority of the theoretical framework and writing.

Authors’ Contact Information: Yao Feng, Tsinghua University, Beijing, China, y-feng23@mails.tsinghua.edu.cn; Jun Zhu,
Tsinghua University, Beijing, China, dcszj@mail.tsinghua.edu.cn; André Platzer, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany, platzer@kit.edu; Jonathan Laurent, KIT, Karlsruhe, Germany and Carnegie Mellon University, Pitts-
burgh, USA, jonathan.laurent@kit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/4-ART109

https://doi.org/10.1145/3720450

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0002-8213-5181
HTTPS://ORCID.ORG/0000-0002-6254-2388
HTTPS://ORCID.ORG/0000-0001-7238-5710
HTTPS://ORCID.ORG/0000-0002-8477-1560
https://doi.org/10.1145/3720450
https://orcid.org/0000-0002-8213-5181
https://orcid.org/0000-0002-6254-2388
https://orcid.org/0000-0001-7238-5710
https://orcid.org/0000-0002-8477-1560
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720450
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720450&domain=pdf&date_stamp=2025-04-09

109:2 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

Most existing approaches leverage automated techniques for proving safety such as reachability
analysis [26, 43], LTL model-checking [2, 27] or Hamilton-Jacobi solving [13]. Such techniques
can be applied offline to precompute numerical, table-based control envelopes that indicate what
actions are safe in every possible state of the system. Alternatively, they can be used at runtime
to analyze the safety of different actions with respect to the current state. Such online methods
mostly offer only bounded-horizon guarantees and must typically make aggressive tradeoffs to
regain efficiency at the cost of precision or generality. However, an advantage of online methods
is that they allow the model to be updated at runtime as the agent gathers information about its
environment. Indeed, in many situations, a fully-specified model of the environment is not known at
design-time and using a necessarily conservative static model may lead to overly cautious behavior.
In principle, adaptivity can also be offered by offline methods, by precomputing control envelopes
for every possible model that may be considered at runtime. However, doing so further compounds
the scalability challenges of model-checking. Finally, existing approaches to adaptive shielding,
whether online or offline, are either offering limited expressivity to encode model uncertainty (e.g.
bounded disturbance terms [3] or finite model families [16]) or failing to provide rigorous end-to-end
guarantees under assumptions that can be easily validated (e.g. methods based on learning Gaussian
processes [4, 5, 9, 13]).

This work introduces a programming-language framework for designing adaptive safety shields,
leveraging a minimal yet crucial amount of human insight to target a very general class of model
families, while shifting the full burden of safety analysis offline. In this framework, control envelopes
are described by nondeterministic controllers, whose safety is established using differential dynamic
logic [31, 32]. Environment models can be parametrized by unknown function symbols. Those
function symbols are subject to parametric bounds, whose parameters are accessible to the controller
and can be instantiated and refined at runtime. Updating these parameters in a way that is sound and
efficient is a great challenge in itself. We address this challenge by offering experts a domain-specific
language to express nondeterministic inference strategies that are sound by construction, and whose
nondeterminism is resolved by an inference policy that can be programmed or learned in the same
way that the control policy is.

We illustrate our framework on four case studies, demonstrating its safety and its ability to handle
advanced uncertainty models that are beyond the reach of existing methods. We also showcase the
possibility of having agents learn how to manage their own safety budget by learning inference
policies, which - to the best of our knowledge — has no equivalent in the literature.

2 Overview

In this section, we motivate and illustrate our framework on a series of closely-related examples.

2.1 Extracting Shields from Verified Nondeterministic Controllers

Our framework builds on the idea of extracting runtime controller monitors from provably safe,
nondeterministic controllers [15, 29]. The safety of such nondeterministic controllers is established
using differential dynamic logic (dL) [31, 32], which is designed specifically to verify hybrid systems
with both discrete and continuous dynamics. In dL, we use hybrid programs (HPs) to model
both controllers and the differential equations of the physical environments they interact with. A
summary of the syntax and semantics of hybrid programs can be found in Table 1. Proving the
safety of a cyber-physical system using dL typically comes down to proving a modal formula of the
form Init — [(Ctrl; Plant)*]Safe, where Init and Safe are logical formulas while Ctrl and Plant are
hybrid programs. This means that under a certain initial condition (Init), no matter how often we
execute the discrete-time controller (Ctrl) and let the continuous-time system evolve to the next
control cycle (Plant), the safety condition (Safe) is satisfied.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:3

Table 1. Semantics of Hybrid Programs in dL

Syntax Semantics
x:=e Assign the value of e to variable x, leaving all other variables unchanged.
X = Assign variable x nondeterministically to some real value.
?0 If Q is true, continue running; else abort.
x'=f(x)&Q Follow the system of differential equations x” = f(x) for a certain (nonde-
terministic) amount of time while Q holds true.
aup Nondeterministically run either HP « or f.
a;p Sequentially run f after a.
a* Run « repeatedly for any > 0 amount of iterations.
Model = Init — [(Ctrl;Plant)*] Safe (1)
Init = (A>0AB>0AT >0) A (x+0?/2B<e)
Ctrl = (a:==B) U (2(x +oT + AT?/2+ (v + AT)?/2B < e) ; a:=A) (2)
Plant = t:=0 ; {x' =0, v ' =a, ' =1 &t <T Av > 0}
Safe = x <e

Fig. 1. A Simple dL Model of a Train Braking-Control System [33]

For example, the dL. model described in Figure 1 designates a nondeterministic train controller
that must stop by the end of movement authority e located somewhere ahead of the train, as assigned
by the train network scheduler [33]. Variable x models the position of the train on its tracks. At
every control cycle, the driver can choose between braking with acceleration —B < 0 or accelerating
with acceleration A > 0. It then gives control to the environment until the next control cycle,
which happens in at most T seconds. However, the option to accelerate is only acceptable when a
sufficient distance remains to accelerate and then brake safely. The safety of this nondeterministic
train controller can be established by proving the validity of Formula 1, using the rules and axioms
of dL. This can be done interactively in a proof assistant such as KeYmaera X [14]. In particular,
doing so requires finding a loop invariant Inv that holds initially, implies the safety property and is
preserved by any run of hybrid program Ctrl; Plant. Here, one can take Inv = Init.

Crucially, one can extract a runtime monitor from the nondeterministic controller shown in
Equation 2 and use it as a shield for a learning-enabled agent [15]. For example, one could use
reinforcement learning to learn a deterministic train controller that optimizes for speed, energy
efficiency and passenger comfort, while guaranteeing safety by overriding acceleration whenever
the distance to the end-of-movement authority is insufficient (i.e. the guard in Equation 2 is violated).

2.2 Adding Adaptivity via Parametric Bounds

As illustrated in the previous section, previous work [15, 29] has shown how to extract shields from
nondeterministic controllers whose safety is established using differential dynamic logic. However,
doing so requires an accurate model of every safety-relevant aspect of the system. In cases where
only a conservative model is available, the shield may force the system into an overly cautious
behavior. One contribution of this work is to allow the design of adaptive shields, whose behavior

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:4 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

is refined at runtime as the agent gathers more information about its environment. To do so, we
allow environment models to be parameterized by unknown quantities and control envelopes to be
parameterized by bounds on these same quantities.

An example of such an adaptive shield is described in Figure 2. It is specified using our proposed
shield specification language, which we define rigorously in Sections 4 and 5. This example is a
variation of the train control system from Figure 1 with a continuous action space: instead of
making a binary choice between accelerating and braking, the agent must select a commanded
acceleration u € [-B, A], which is expressed in dL using a nondeterministic assignment u :=x
followed by a test ?(—B<u <A). In addition, the relationship between the commanded acceleration
u and the actual acceleration a of the train is governed by an unknown linear function: a = fu + ¢
where 6 > 0 and ¢ are unknown real parameters. At runtime, the actual acceleration of the train is
measured repeatedly, allowing the agent to compute increasingly precise estimates of the systematic
disturbance 0 and ¢ and thus allowing the shield to be increasingly permissive.

The shield specification in Figure 2 consists of eleven sections, each of them introduced by a
distinct keyword. cONSTANT introduces real quantities that are known by the agent at runtime
such as the maximum commanded acceleration A. UNKNOWN introduces quantities that are not
known and must be estimated at runtime, namely 0 and ¢. AssuME gathers global assumptions
about constant and unknown symbols such as A > 0 and 6 > 0. Such assumptions could be encoded
as system invariants instead (see INVARIANT) but separating them from state-dependent invariants
leads to greater conceptual clarity and more concise proof obligations (global assumptions are
preserved by definition). The CONTROLLER, PLANT, SAFE and INVARIANT sections define a dL model
similar in shape to the one already studied in Figure 1. However, the plant model can feature
unknown symbols, which it does here via the v’ = 6u + ¢ differential equation. Also the controller
can depend on bound parameters that constrain these unknowns and that are introduced in the
BOUND section. Here, we introduce a lower bound 6 on 6, an upper bound 0 on 6, and an upper
bound ¢ on ¢. These parameters are instantiated and refined at runtime as the agent is gathering
knowledge, using statistical inference. The controller is similar to Equation 2, except that it offers a
continuous action space and conservatively assumes a maximum achievable braking rate of B — .
Thus, the control envelope defined by the nondeterministic controller gets increasingly permissive
as tighter bounds are obtained on 0 and ¢.

The invariant can depend on bound parameters but only monotonically, in the sense that it can
only be made more permissive by a tightening of the bounds. This is an intuitive requirement: ac-
quiring knowledge must never transition an agent from a state considered safe to a state considered
unsafe. Here, this requirement clearly holds since the maximum guaranteed braking rate of B — ¢
can only get larger as § and ¢ tighten. Finally, NoISE and oBSERVE specify the kind of information
that may become available at runtime to compute and refine such bounds. Here, we are assuming
that at every control cycle, an estimate of the actual acceleration of the system may be measured,
with some Gaussian noise of standard deviation o. No guarantee is offered on when and under
what conditions such an observation becomes available. INFER defines a family of provably-sound
strategies for updating 6, § and ¢ based on such observations, as we discuss shortly in Section 2.4.
Before we do so though, we introduce a last variant of our train control shield that illustrates how
functional unknowns can be handled, using the concept of a local bound.

2.3 Handling Functional Unknowns with Local Bounds

In our previous example from Figure 2, two real-valued unknowns are estimated at runtime.
However, our framework can handle a more powerful and flexible form of model-uncertainty in the
form of functional unknowns. Figure 3 provides an example, considering a train that evolves on tracks
of unknown, varying slope. Variable x denotes the train position on an arc-length parametrization

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:5

CONSTANT A,B, T, o
UNKNOWN 0, ¢
ASSUME A>0,B>0,T>0,0>0, 0>0
BOUND 0:0<0,0:020,p:02¢
CONTROLLER
u=x; 2 (-B<u<A); ?(x+0T + (Qu+@)T?/2+ (v + (Qu+ @) T)*/2(6B — p) < e)
PLANT t:=0;{x’' = 0,0 =0u+¢,t' =1 &t <TAv >0}
SAFE x < e
INVARIANT (0B — @ > 0) A (x +02/2(0B—) < e)
NOISE 7 ~ N (0, 0?)
OBSERVE w =0u+¢ — 1
INFER
0,0 = AGGREGATE i, j : (wj = wi)[(uj = u;) AND (n; — 1;)/(uj — u;) WHEN u; > u; ;
7

‘= AGGREGATE i : w; — Bu; AND 1; WHEN u; < 0

Fig. 2. An adaptive shield for a train control system, where the relationship between the commanded and
actual train acceleration is governed by an unknown linear function.

of the tracks. A train at position x is subject to an additional acceleration term of —g - sin(6y)
where g ~ 9.81 ms™? is Earth’s gravitational acceleration and 0, the track angle at coordinate x.
We model this influence by defining the train’s kinematics as v’ = a + f(x), with a the acceleration
commanded by the controller and f an unknown function of x. In addition, f is assumed to be
k-Lipschitz, globally lower-bounded by —A (ensuring that the train will always move forward when
instructed to accelerate at rate A) and upper-bounded by a known constant F. One could simply use
this global bound to implement a conservative shield. Our challenge is to do better by estimating
superior, local estimates of f based on runtime observations.

We do so by introducing the concept of a local bound. Figure 3 defines such a bound, namely
f = f(x). As opposed to the global bounds used in the previous section, this bound involves
quantity f(x) that is state-dependent. The guarantee that comes with such a definition is that
before every control cycle, the inference module must provide a value f that is an upper bound on
the value of f(x), as evaluated in the current state. The value of f can be used in the controller.
However, f cannot be mentioned in the invariant since f > f(x) may not hold anymore as the plant
executes and the train moves further on the tracks. A local bound is only guaranteed to be valid
at discrete points in time, after each run of the inference module and right before the controller
executes. Thus, we also maintain an upper bound y on f(x) that holds throughout the plant and
can therefore be used in the invariant. Variable y is updated before the controller executes with
the value of f whenever the latter provides a tighter bound. Then, it is evolved via the differential
equation y’ = kv, degrading the precision of our bound at a rate proportional to the Lipschitz
constant of f to ensure its preservation by the plant (df/dt < df/dx - dx/dt < k - 0).

We can now derive our invariant, from which the controller’s acceleration guard follows. Given
a particular state and provided a bound y > f(x), we wonder whether the train can be kept safe
indefinitely from the current state by fully engaging the brakes. Given a constant, effective braking
rate of b and starting with speed v, it can be shown that the distance needed for the train to brake
to a full stop is Bdist,(b) = v?/2b. Thus, a sufficient condition for the train to be safe indefinitely is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:6 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

CONSTANT A,B,F, k, o
UNKNOWN f ()
ASSUME
A>0,B>0,T>0,k>0,06>0 F<B, A+F >0,
(Vx =A< f(x) < F), (YxVy |f(x) = f(y)| < klx — y])
BOUND [: f(x) < f

CONTROLLER

y:=min(y, f) ;

((a:=-B) U

(?(x + 0T + 3 (A + F)T? + Bdisty.(arp)7 (B — min(F, y + k(oT + 3(A+ F)T?) +
k- Bdistys(a+r)7(B—F))) <€) ; a:=A)

PLANT t:=0;{x' =0,0' =a+ f(x),y =ko,t' =1 &t < T Av >0}
SAFE x < e
INVARIANT (v > 0) A (y = f(x)) A (x + Bdist,(B — min(F, y + k-Bdist,(B — F))) < e)
NOISE 7 ~ N (0, 0?)
OBSERVE 0 = f(x) — 7

INFER f := F; f := BEST i : f; + k|x — x;| ; f '= AGGREGATE i : w; + k|x — x;| AND 7;

Fig. 3. An adaptive shield for a train control system where the railway tracks are assumed to follow an
unkown, space-varying slope function. We write Bdist,(b) = v%/2b. For simplicity, the train faces a binary
choice between acceleration and braking (as in Figure 1 and unlike in Figure 2).

x + Bdist,(B — F) < e, since we can guarantee an effective braking rate of at least B — F using the
global bound F on f. However, a stronger guarantee may result from combining the local bound
y > f(x) and the fact that f is k-Lipschitz. Indeed, since we already know from our naive estimate
that the train can stop within distance Bdist,(B — F), we also know that the value of f along this
trajectory must be upper-bounded by y + k - Bdist,(B — F). This gives us an effective braking
rate along the stopping trajectory of B — (y + k - Bdist,(B — F)). In turn, a new stopping distance
can be computed from this estimate, yielding the invariant shown in Figure 3. The controller’s
acceleration guard follows from the invariant, as it simply ensures that the invariant will still hold
after executing the plant for time T.

So far, we have seen how adaptive shields can be extracted from nondeterministic, parametric
controllers. Our next step is to show how inference modules can also be synthesized that are
guaranteed to instantiate such parameters from runtime observations in a statistically sound way.

2.4 Inferring Statistically-Sound Bound Parameters

In this section, we delve into our proposed inference strategy language, which is used to specify
nondeterministic inference strategies for instantiating bound parameters at runtime. Inference
strategies are introduced by the INFER keyword. We consider the strategy from Figure 3 as an exam-
ple (the strategy from Figure 2 is analyzed in the extended version of this paper [11, Appendix E.1]).
An inference strategy consists of a sequence of inference assignments, where each assignment
computes a value for a particular bound parameter and updates this parameter whenever the new
value is tighter than the old one. Our language supports three forms of assignments, which are all

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:7

represented in the strategy from Figure 3. Each assignment yields a proof obligation that establishes
its soundness.

The first assignment f := F indicates that the global bound F can always be used as a local
bound on f(x). Its soundness is justified by the validity of the following proof obligation, which is
automatically generated by our framework and to be proved by the user:

o A(Vx (A< f(x) <F) A+ — f(x) <F.

Here, the right-hand-side of the implication is simply the definition of f, where f has been substi-
tuted into the assignment’s right-hand-side. The left-hand-side consists of the global assumptions,
from which only the relevant ones are shown here. The second assignment f := BEST i : f;+k|x—x;]
indicates that any previously established local bound f; induces a new bound f; + k|x — x;| for the
current state. The associated proof obligation is:

(VxVylf () = fWI < klx =y A (f(xi) < f) = f(x) < fi+klx —xil,

where all irrelevant assumptions have been removed for clarity. To a first approximation, the
semantics of this assignment is to compute one such bound for every element in the agent’s history
and assign the tightest one to f if it beats its current value. The third assignment f := AGGREGATE i :
w; + k|x — x;| AND n; is most interesting and the one that performs statistical inference from
observations. To understand it better, let us start from the associated proof obligation:

(VxVy|f(x) = fW)] < klx —yD) A (wi = f(x:) —mi) = (f(x) S wi+klx—xi[+m). (3)

The validity of this obligation establishes the inequality f(x) < w; + k|x — x;| + n; for every triple
(xi, wi, m;) in the agent’s history. This does not directly give us a usable bound since w; and n; are
random variables, only the first one of which is observed. However, given a tolerance-level of ¢, we
can use the standard tail bound on Gaussians to establish a concrete upper-bound on f(x) that
holds with probability at least 1 — ¢. Here, we get the upper-bound b; = w; + k|x — x;| + 0 - z,, where
ze = V2 -erf (1 — 2¢) and erf™ is the inverse of the error function [6]. Indeed:

P{f(x) > b;} < Plwi+k|lx—xi|+n >b;} =P{gi>0-z} = e

The first inequality above is a consequence of Equation 3, the middle equality holds by substituting
the definition of b;, and the last equality holds by definition of the error function.

Such a probabilistic bound may be acceptable in cases where measurement noise is small.
However, when o is large, it may be unacceptably conservative. Fortunately, we can get tighter
bounds by aggregating multiple independent observations together. More precisely, consider some
nonnegative coefficients A; that sum up to one. Then, one can show that the following is a bound
on f(x) with probability at least 1 — ¢:

bie = Y A (i tklx—xl) + |> Aoz, (4)
i i

The proof is similar to the one for Equation 3. We have f(x) > b — w; + k|x — x;| + n; > b for all i
and b. Thus, taking a convex combination, we have f(x) > b — X; Aj(w; + k|x — x;| + n;) > b for
all b. As a consequence:

P{f(x) > by} < P{Z/li(wi+k|x_xi| +1:) > bl,s; = P{Z/Iiﬂi > U'Ze} =& (5)

where ¢’ =0,/Y; A? is the standard deviation of }; A;7;, which is a zero-mean Gaussian provided

that the choice of A is uninformed by - and thus independent from — the values of 1; and w;.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:8 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

A Human Expert Verified Shield @ Agent
) safety budget
desi > {
l esigns : Inference module Inference policy
Shield Specification \ parameter inference action Loy vl Dot o ety

instantiation how to weight observations?

o dL model with unknowns
o parametric bounds

o observation slots

o inference strategy

{ Controller ' Control policy

how to gather knowledge
and maximize rewards?

state
<—I reward [

action

action proposal

compiles to

L Proof Obligations

proves

invariant validity >
controller totality @ Physical World
parameter monotonicity

inference soundness

observations

Fig. 4. Adaptive Shielding Overview Diagram

The bound obtained in Equation 4 is the sum of two terms. Minimizing the first term requires
putting all the weight on the closest measurement, where k|x — x;| is smallest. On the other hand,
minimizing the second term requires spreading the weights uniformly between measurements,
resulting in a value of (o - z.)/v/n, where n is the number of considered measurements. Finding
the right tradeoff can be subtle and situation-dependent. Similarly, the value chosen for ¢ at every
control cycle must be substracted from a global safety budget, whose proper management constitutes
an important challenge. Fortunately, our framework does not force such choices on the shield
designers. Rather, it enables the specification of nondeterministic inference strategies, where the
choice of € and A is determined at each control cycle by a non-soundness-critical inference policy
that can be learned similarly to the control policy.

The AGGREGATE construct from our inference strategy language allows generalizing the reasoning
above to a large class of bounds and distributions. Provided a symbolic bound that can be expressed
as the sum of an observable component and of a noise component (syntactically separated using the
AND keyword), AGGREGATE computes a weighted average of multiples instances of such bounds,
using probabilistic tail inequalities to handle the aggregated noise term. More generally, a strategy
written in our proposed inference languages can be compiled into one proof obligation per inference
assignment, along with an inference module that integrates with an inference policy at runtime.

2.5 System Overview

Figure 4 provides a diagrammatic summary of our proposed framework for designing adaptive
shields. In this framework, human experts are offered a domain-specific language for specifying
shields in the form of parametric dL. models coupled with nondeterministic inference strategies.
A specification written in this language can be automatically compiled into a shield and into a
series of proof obligations that are sufficient in establishing its soundness. All obligations are dL
formulas, which can be discharged automatically in many cases but also proved interactively in a
proof assistant such as KeYmaera X [14]. Obligations include the following:

e The proposed invariant must be preserved when running the controller and the plant in
sequence, assuming that all assumptions and bounds hold initially.
e The proposed invariant and the global bounds must imply the postcondition.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:9

Hybrid Program: «,f = x:=e | x:=x |?P | x' = f(x) & Q | aUB | a;5 | &
Formula: P,Q == 01 ~0, | VxP | 3xP | [@]P |{(a)P |=-P| PVQ | PAQ | P> Q
Term: 0 ==r|x| f(0,...,6,)]10] | 6,006,

Number literal: r € R Variable: x € Var Function symbol: f € Symb

Term comparison: ~ € {=,<,<,>,>} Arithmetic operator: © € {+, X, min, max}

Fun = Up,ew R® > R) Interp = Symb — Fun VState = Var -» R
[a] : Interp — P(VState x VState) [P] : P(Interp X VState) [0] : Interp X VState —» R

Fig. 5. Syntax and semantics of dL. P (-) denotes the powerset operator.

e The nondeterministic controller must be total, in the sense that at least one action should be
available in any state where the invariant and bounds are true.
o All inference assignments must be sound.

In the particular case where no functional unknowns are used and all differential equations admit
an analytical solution expressible as a multivariate polynomial, all generated proof obligations are
decidable. In general, manual proof assistance may be required for certain obligations. Notably, dL
has proved effective at reasoning about unsolvable differential equations [23, 35].

The generated shield consists of three components. The first one is an inference module that
is extracted from the expert-defined, nondeterministic inference strategy. The other two are a
controller monitor and a fallback policy, both of which are extracted from the nondeterministic dL
controller. At runtime, an untrusted agent interacts with the physical world under the protection of
the shield, which overrides any proposed action that is not validated by the controller monitor using
its fallback policy. The inference module is tasked to instantiate the model’s bound parameters,
which the controller monitor and the fallback policy depend on. The inference module is guided by
the agent’s inference policy, which provides hints on how the safety budget should be spent and
how observations should be weighted when building aggregates. The safety budget is initialized
with the system’s tolerated probability of failure, which is typically a small value such as 107,
In cases where not enough budget remains to honor the inference policy’s recommendation, the
inference module skips the associated inference assignment.

Importantly, the inference policy must not depend on the value of the observations processed by
the inference module and must only base its decisions on the availability of these observations and
on features of their associated states. Intuitively, this restriction prevents the agent from p-hacking
its way to unsafety [30]. Indeed, it would be unsound for the agent to make several measurements
of the same quantity and then discard all measurements but the most favorable one. Another
requirement enforced by the inference module is that the same observation cannot be reused
across control cycles. Indeed, allowing the reuse of observations across control cycles enables an
indirect form of cherry-picking since the next state after each control cycle may be influenced by
the observations made during this cycle and thus carry some amount of information about it.

3 Background
3.1 Differential Dynamic Logic

Differential dynamic logic (dL) [31, 32] is designed specifically to verify hybrid systems with both
discrete and continuous dynamics. The syntax and semantics of dL is summarized in Figure 5. A
state is defined as a mapping from variable names to real values. An interpretation is defined as a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:10 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

mapping from function symbols to real functions of proper arity (possibly zero). The semantics of a
hybrid program a can be defined by induction on a. For I an interpretation, [«] (I) denotes the set
of all pairs of states (s1, sz) such that s, is reachable from s; by executing a. We provide an intuitive
summary of such semantics in Table 1 but formal definitions can be found in the literature [32].
The semantics [P] of a formula P is defined as the set of all (I, s) pairs such that P is true in state
s and under interpretation I. It follows naturally from first-order logic. In addition, [«]P is true
if and only if P is true after all runs of the hybrid program « and ()P is true if and only if there
exists a run of the hybrid program « after which P is true. Atomic formulas consist in comparisons
of terms. The semantics [0] of a term 6 maps a pair of an interpretation and a state to a real value.
A formula P is said to be valid (written E P) if it is true in all states and interpretations.

3.2 Notations for Valuations

Given a set of variables V, a valuation of V is defined as a function p : V — R that maps each
variable in V to a value. Moreover, a partial valuation of V is defined as a partial function p’ : V.— R
that attributes values to a subset dom p’ of variables from V (note the special arrow symbol for
partial functions). We denote {} an empty valuation. Moreover, if v and v” are valuations of two
disjoint subsets of variables V and V', we write v U v’ the valuation of V U V' induced by v and v’.

3.3 Reinforcement Learning

Reinforcement learning (RL) is about learning to make decisions in an environment in such a way
to maximize rewards. Environments are typically represented using Markov Decision Processes
(MDPs) [41]. An MDP is defined by a tuple (S, A, P, R, y) where S is the state space, A is the action
space, and P : S X A — D(S) is the transition function, which maps any state-action pair to a
probability distribution over new states. R : S X A X S — R is the reward function, which describes
the reward associated with a specific state-action pair and a specific next state. Finally, y € (0,1) is
the factor by which future rewards are discounted at each time step. The goal of RL is to find an
optimal policy 7 : § — D(A) for the agent to maximize the expected discounted sum of future
rewards: B, [Z;’io Y'R(si, al-)]. In the most common model-free RL setting, P and R are unknown
and the agent accesses samples of these by directly interacting with the environment.

3.4 Safe Reinforcement Learning via Shielding

This work builds on the Justified Speculative Control framework (JSC) [15], which leverages models
written in dL to shield reinforcement learning agents by only allowing provably-safe control actions.
JSC crucially relies on the ability to extract monitors [29] from nondeterministic dL controllers. To
define those monitors [29], we need to bridge dL models with reinforcement learning environments.
Thus, consider a dL model of the kind defined in Equation 1. Such a model induces a state space
State = FV(Model) — R, where a state maps each free variable occuring in the model to a real
value. In addition, the controller Ctrl induces an action space that can be defined inductively:

Ala v pl=Ala] W AlLl, Ale;pl=Alal x A[p], Alx:==]=R, Alx:=e]l=A[?Q]=1.

In this definition, X WY = {(left,x) : x € X} U {(right,y) : y € Y} denotes the disjoint union of
sets X and Y and 1 = {«} denotes a set with a single element. Intuitively, an action records a
sequence of choices that uniquely characterizes a run of the controller. For example, the discrete
controller defined in Equation 2 has an action space A[Ctrl] = 1 W (1 X 1), which is isomorphic to
a 2-element set containing a braking and an accelerating action. The continuous controller used in
Figure 2 has an action space A[Ctrl] = R X 1. For any state s € State and action a € A[Ctrl], we
write E[Ctrl] (s, a) for the state that results from executing Ctrl while performing the sequence
of choices encoded in a. A formal definition is provided in the extended version of this paper [11,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:11

Appendix D.1]. From the structure of a nondeterministic controller, one can extract a controller
monitor that takes as an input a state and an action and returns a Boolean value indicating whether
or not the action is permissible.

LEMMA 3.1 (EXISTENCE OF A CONTROLLER MONITOR AND FALLBACK POLICY). Let Ctrl be a nonde-
terministic controller in the form of a dL hybrid program that is free of loops, modalities, differential
equations, quantifiers and function symbols of nonzero arity. Then, there exists a computable function
M[Ctrl] : (FV(Ctrl) > R) x A[Ctrl] — {true,false} that we call controller monitor and such
that for all state s and action a, M[Ctrl] (s, a) = true if and only if (s, E[Ctrl](s,a)) € [CtrI]({}).
In addition, given any formula Inv such that £ Inv — (Ctrl) true (i.e. there exists an outgoing con-
troller transition for all states in Inv), there exists a computable function F[Ctrl] : (FV(Ctrl) —
R) — A[Ctrl] that we call fallback policy and such that for all state s such that ({},s) € [Inv],
(s, E[Ctrl] (s, FICtrll(s)) € [Ctrll({}).

In our train example from Figure 2 (with a continuous control input), the action space A[Ctrl] is
isomorphic to R. An action is a commanded acceleration u and the runtime monitor M[Ctrl] simply
evaluates the two tests featured in the controller definition for the selected value of u: it checks that
both formula (-B <u < A) and formula (x + 0T + (Qu + §)T?/2 + (v + (Qu + ¢)T)*/2(9B — §) < e)
evaluate to true in the current state and for the current values of bound parameters 6, and ¢. In
our train example from Figure 3 (with a binary control input), the action space is isomorphic to
{brake, accelerate}. The braking action is always allowed. To determine whether or not to allow
acceleration, the monitor evaluates the test from the associated branch of the nondeterministic
controller from Figure 3. In general, controller monitors can be derived from shield specifications
via a simple syntactic transformation. We formalize this transformation and provide a proof of
Lemma 3.1 in the extended version of this paper [11, Appendix D]. The KeYmaera X toolchain
features a tool called ModelPlex [29] for extracting executable controller monitors from dL models.

The existence of a fallback policy is guaranteed by the assumption £ Inv— (Ctrl) true, which
indicates that there exists at least one way to resolve the nondeterministic choices in Ctrl in such a
way to pass all tests (i.e. not trigger any monitor alert). The corresponding action can be computed
systematically by solving a decidable SMT problem, hence the existence of a decidable fallback
policy (see the extended version of this paper for details [11, Appendix D.3]). However, for the sake
of monitoring efficiency, tools like ModelPlex require the user to specify an explicit fallback policy
on a case-by-case basis. Doing so is never a problem in practice since proving k Inv— (Ctrl) true
requires characterizing such a policy anyway. In particular, an explicit fallback policy can be
automatically extracted from a constructive proof of this formula [7]. In our train examples, a
possible fallback policy is to brake with maximal force, which corresponds to action —B in the
continuous case and action “brake” in the discrete case.

4 Adaptive Shielding
4.1 Shield Specifications

We define a language to specify adaptive shields via parametric safety models. Models can assume
a set of parametric bounds on a number of unknown quantities. The derived runtime controller
is parametric in these same bounds, which are maintained and improved at runtime by a derived
inference module. Examples of shield specifications are available in Figures 2 and 3. Formally, a
shield specification is defined by a tuple of the following elements:

Const: a set of constants, which are dL symbols of arity zero whose value is known at runtime.
Unknown: a set of unknowns, which are dL symbols of fixed arity, whose value is not known at
runtime and can be estimated by the inference module using observations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:12 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

Assum: a set of assumptions, which are dL formulas representing global assumptions about the
constants and unknowns. Assumptions can feature symbols but no free variables. When clear
from the context, we also write Assum for the conjunction of all assumptions.

StateVar: a set of state variables, which are dL variables used to represent model state. In our
concrete syntax, the set of state variables is inferred as the set of all mentioned free variables
that are not parameters, observation variables or noise variables (see below).

Param, Dir, Bound: a set of parametric bounds. Param is a set of dL variables called bound pa-
rameters (or parameters for short). Each parameter p is mapped to a dL formula Bound,,
that is either monotone or anti-monotone with respect to p, depending on bound direction
Dir, € {up, lo}. In our concrete syntax, the bound direction can be omitted whenever easily
inferrable. For 6 a dL term, we write Bound,, 0] for the result of substituting 6 for p in Bound,,.
If Dirj, = up, we call Bound, an upper-bound and we mandate that it is monotone, meaning
that F Vxy (x < y — Bound,[x] — Bound,[y]). If Dir, = lo, we call Bound,, a lower-bound
and we mandate that it is anti-monotone: k¥ Vxy (x < y — Bound,[y] — Bound,[x]).
Bound,, can feature constants, unknowns and state variables. It cannot feature any parameter
other than p. It is said to be local if it contains a free occurence of a state variable. Otherwise,
it is said to be global. The associated parameter p is also called local or global accordingly. We
write LParam the set of local parameters and GParam the set of global parameters. We write
GBound = A ,cgparam Bound,, for the conjunction of all global bounds. Finally, when clear
from the context, we use the notational shortcut Bound = A ,cpsram Bound,, for the conjunc-
tion of all bounds. For b € Param — R, we also write Bound[b] = A ,ed4oms Bound, [b(p)].

Ctrl: a controller, in the form of a (nondeterministic) dL hybrid program that is free of loops,
modalities, differential equations and quantifiers. The controller can involve constants, pa-
rameters and state variables but no unknowns. Only state variables can be modified. For
¢ € Const » R and b € Param — R, we write Ctrl[c, b] for the result of substituting all
constants and parameters in Ctrl by their value according to ¢ and b. Thus, Ctrl[c, b] has no
symbols and its free variables are all in StateVar. For any (c, b) pair, Lemma 3.1 guarantees
that a controller monitor and a fallback policy can be extracted from Ctrl[c, b].

Plant: a dL hybrid program that represents the physical environment. As opposed to the controller,
it can feature unknowns but no parameters. Only state variables can be modified.

Safe: a dL formula that represents the safety constraint under which the system must operate. It
can involve constants, unknowns and state variables but no parameters, since the safety
condition cannot change over time as knowledge is gathered.

Inv: an invariant, in the form of a dL formula. The invariant can feature constants, state variables
and unknowns but only global parameters. Local parameters are not allowed in the invariant.
The following proof obligations are generated that involve the invariant:

(1) The invariant must imply the postcondition: £ Assum A GBound A Inv — Safe.

(2) The invariant must be preserved: £ Assum A Bound A Inv — [Ctrl; Plant] Inv.

(3) There always exists a safe controller action: £ Assum A Bound A Inv — (Ctrl) true.

(4) The invariant must be monotone with respect to upper-bound parameters and anti-monotone
with respect to lower-bound parameters.

NoiseVar, Noise: a set of noise variable declarations. NoiseVar is a set of dL variables that can be
used in the definition of observations and that model samples from mutually independent
random variables. Each noise variable 1 € NoiseVar is mapped to an expression Noise,, that
denotes a probability distribution. NoiseVar, can be either N'(61, 6) for a normal distribution,
U (01, 0,) for a uniform distribution or B(6;) for a Bernouilli distribution. In all cases, 6; and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:13

0, are dL terms that can feature constants and state variables. We write [Noise] : (Const —
R) — NoiseVar — Distr(R) for the semantic denotation of Noise.

ObsVar, Obs: a set of observations. ObsVar is a set of dL variables called observation variables. Each
observation variable w is mapped to a defining dL term Obs,, that may feature constants,
unknowns, state variables and noise variables (but no bound parameter).

Infer: an inference strategy, which defines an inference module that issues concrete values for
bound parameters at runtime, using an external inference policy for guidance.

The inference strategy can be defined in a custom, domain-specific language that is explained
in details in Section 5. Before we dive into this language though, we characterize the abstract
requirements that an inference module must fulfill in Section 4.2. The soundness of our proposed
inference strategy language can then be established against these requirements.

4.2 Symbolic Bound Instantiations

An inference strategy Infer induces an action space A[Infer] for the agent’s inference policy,
which is defined rigorously in Section 5. In particular, inference actions associated with a single
AGGREGATE assignment are (¢,) pairs, as seen in Section 2.4. An inference strategy denotes a
function [Infer] : A[lInfer] — List(Param X SBlInst X [0, 1]) that maps an inference action to a
list of symbolic inference assignments. A symbolic inference assignment consists of a triple (p, e,)
of a bound parameter p, a symbolic bound instantiation e and a failure probability e.

To illustrate the concept of a symbolic bound instantiation, consider the following example
statement from Section 2.4: “f := AGGREGATE i : w; + k|x — x;| AND 7;”. Provided a (¢, 1) pair and
a history of states and observations, the right-hand-side of this statement can be evaluated into a
concrete, numerical value proposal for f. This is done in two stages, the first one of which being the
computation of a symbolic bound instantiation e for f. For example, if ¢ = 1078, 1, = 0.3, A5 = 0.7
and A; = 0 for all i ¢ {2, 4}, we obtain the following symbolic bound instantiation:

e = 0.3X (ws+k|x—2x0) +0.7 X (ws + k|x — x5]|) + CDF,;;USNN(O, o?) (0.37, +0.775,107%). (6)

In the expression above, the CDF ! construct provides a symbolic representation of the inverse tail
function of a probability distribution, also called its inverse complementary cumulative distribution
function — hence the notation. Given a random expression and a tolerance &, CDF ! returns the best
upper-bound obtainable on this expression that is true with probability 1 — ¢ at least. For example,
we have ﬁ;~¢1(o,1) (X+1,6) =2—¢forall e € [0,1] since Px.q/01){X +1 > 2 — ¢} = ¢. Details
on how to compute or approximate the CDF ! operator numerically are available in the extended
version of this paper [11, Appendix E.2].

Provided some values for the constant symbols, for the current state and for past states and
observations from the agent’s history, the symbolic bound instantiation from Equation 6 can be
in turn evaluated into a real number. There are two reasons for performing such staging. First, it
makes it very clear that [Infer] has no access to the actual observation values when building e,
which is critical for soundness (as previously discussed in Section 2.4). Second, this pushes the
orthogonal challenge of evaluating CDF ! outside of the core inference machinery.

4.2.1 Formal Syntax and Semantics. A sketch of a formal syntax and semantics for symbolic bound
instantiations is provided in Figure 6. A symbolic bound instantiation e can be a dL term 0, the
sum of two other symbolic bound instantiations, an application of the CDF ! operator or a guarded
expression (e when P), where P is a quantifier-free, modality-free dL formula. Importantly, the
evaluation of a symbolic bound instantiation can fail and return a special value L. It does so when
attempting to access the value of an undefined variable or symbol, or when evaluating (e when P)
while P evaluates to false. Support for L is important since our framework does not mandate

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:14 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

8 u= N(01.02) | UBLO:) | B(O) e = 0] e+er | e when P | CDF, 5., s (01,02
[el : (Symb — Fun) x (Var = R) - RU {L}

[CDF, 5,5, (01, 01 (L) € {5 B, sy (10 (LoU(Um)) > b) < [6:1(L0) } U {1}

Fig. 6. Syntax and semantics of symbolic bound instantiations. We only show the contract that CDF "' must
fulfill for soundness. Concrete implementations must optimize for small, real return values.

observations to be available at each cycle, making some observation variables possibly unassigned.
In addition, “when” is necessary for our inference strategy language to support conditionally
sound bounds, which we use in the example from Figure 2 and discuss further in Section 5.

4.2.2 Indexed Variables. Finally, symbolic bound instantiations can contain special dL variables,
whose name contains an integer index (i.e. w;). Semantically, there is nothing special about such
variables and we can just regard them as normal variables following a naming convention. The
only thing that matters is that for any x € Vand i € N, x; ¢ V where V = StateVar U Param U
ObsVar U NoiseVar. We also introduce some notations to ease the manipulation of indexed variables.
For v a partial valuation over V and i € N, we write 0 = {x; — r : o(x) = r} the same
valuation in which all domain variables are tagged with index i. For example, if x,y € V and
v={x+ 0,y — 1}, then 0@ = {x2 + 0,y, > 1}. In addition, for P a formula with variables in V,
we write P(!) the formula that results from P after tagging every free variable with index i. Finally,
we also allow the use of symbolic names as indices. For example, in the inference assignment
“AGGREGATE i : w; + k|x — x;| AND 1,;”, w; is a normal dL variable whose name follows a particular
convention. We introduce a special syntactic transformation for “instantiating” symbolic indices in
formulas. For example, if P = x; + x; > 0, we write P[i, j\2,3] = x3 + x3 > 0.

4.3 Soundness of Symbolic Inference Assignments

As mentioned in the previous section, an inference strategy denotes a function [Infer] : A[Infer] —
List(ParamxSBInstx [0, 1]) that maps an inference action to a list of symbolic inference assignments.
Our proposed inference strategy language is sound in the sense that any strategy expressed with it
produces sound assignments by construction. In turn, a symbolic inference assignment (p, e, ¢) is
sound if e evaluates to a “correct” instantiation of p with probability at least 1 — ¢. To make this
definition more precise, we need a couple of preliminary definitions:

o A state is defined as a valuation of the state variables: State = StateVar — R.

e A bound instantiation is a partial valuation of the parameters: Inst = Param — R.

e An observation availability set is a subset of observation variables indicating what observation
were made at one point in time: ObsAvail = £ (ObsVar).

We can now define the notion of soundness for symbolic inference assignments. Intuitively, (p, e, €)
is sound if and only if for any possible history of states, observations and bound instantiations
and for any intepretation of the model unknowns, updating an instantiation b by assigning the
value of e to p preserves the truth of Bound[b] with probability at least 1 — ¢. The challenge in
formalizing this intuition is to precisely characterize what counts as a possible history. We do so in
Definition 4.1, building a valuation v that stands for an arbitrary, consistent history.

Definition 4.1 (Sound inference assignment). A symbolic inference assignment (p, e, ¢) is said to
be sound if and only if for any ¢ € Const =R, u € Unknown — Fun,n € N, (sy...s,) € State”,
(z1...z,) € ObsAvail™ and (b; ...b,) € Inst” such that (¢ Uu,s;) € [Assum A Inv A Bound[b;]]

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:15

for all i < n, we have:
P{(cUu,s,) ¢ [Bound[b,[p < r]]l} < ¢

where r = [e]l(¢,0),0 = (sp Ubp) U (Uj<icn 5P U b, U 0i"), 0; = {w > [Obs, I (c Uu,s; Un;) :
w € ParamNz;}foralll <i<n,andn;-- -5, ~ [Noise] (c) i.i.d.

4.4 Compatible Environments

A shield acts as a buffer between an untrusted agent and a compatible environment. By compatible,
we mean that the environment must conform to the assumptions made by the shield specification,
without which no safety guarantee can be provided. The following definition formalizes this notion.

Definition 4.2 (Compatible environments). Consider a shield specification (Const, ..., Infer). A
compatible environment is a tuple ((S, AP,Ry), ¢s, @ (pa_l, C, U, a, /1) where:

e (S,A,P,R,y) is a Markov Decision Process.

e @5 : S — State is a state mapping function that maps environment states to shield states.
e ¢, : A — A[Ctrl] is a surjective action mapping.

@;! : A[Ctrl] — A s a reverse action mapping such that ¢, o ;! = id.

¢ : Const — R is an interpretation of the shield’s constant symbols.

u : Unknown — Fun is an interpretation of the shield’s unknown symbols.

a : S — P(ObsVar) is an observation availability function.

u:S — D(ObsVar — R) is an observation measurement function.

In addition, the following should hold:

(1) The shield’s plant correctly models the environment’s transition function: for all 5,s" € S,
a € Aand b € Inst, assuming that (1) s’ € supp(P(s,a)) (i.e (s,a,s’) is a valid transition),
(2) (cUu, ps(s) Ub) € [Assum A Bound A Inv], and (3) (ps(s) Ub,s” Ub) € [Ctrl](c) where
s” = E[[Ctrlc, b]1(¢s(s), pa(a)), then we have (s”, ps(s’)) € [Plant](c U u).

(2) The observation measurement function behaves consistently with Noise and Obs: for all
s € Sand o € ObsVar— R, then Pq~[[Noise]](c){[[Ob5]](C Uu,@s(s) Un) =0} = pu(s)(o).

A compatible environment extends a standard RL environment with a formal mapping between
this environment and a shield specification’s underlying model. It also defines some ground-truth
values for all unknown symbols, along with two observation functions for acquiring knowledge
about those. We choose to have two separate functions, where « indicates what observations
are available in any given state and p performs an actual measurement of those observations.
Such a separation is convenient since the inference policy is allowed to access information about
observation availability but cannot access actual observation values.

4.5 Shielded Environments and Main Safety Theorem

We define our main shielding algorithm by describing how a shield acts as a wrapper around
compatible environments, resulting into shielded environments that are amenable to RL themselves
and in which no unsafe state is reachable by construction.

Definition 4.3 (Shielded environment). Consider a shield specification (Const, ..., Infer) and a
compatible environment ((S, A, P,R,y),..., 1) (see Definition 4.2). We define the induced shielded
environment as an MDP <S, A, P,R, y> where:

o A state § = (s, h, bg, €rem) consists of a state s from the original environment, a history h,
an instantiation of global parameters b; and a remaining safety budget ¢rey, > 0. In turn, a
history is a list of (s’, z, b,) triples where s’ is a state, z is an observation availability set and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:16 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

Algorithm 1 Sampling a transition in a shielded MDP

1: procedure SHIELDED_TRANSITION (8, 4)
2 S, h, bg, €rem «— § > Decompose § € S
3 Actrl, Qinf < > Decompose a € A
4 B « [Infer] (aijnf) > Get list of symbolic bound assignments B
5: Q ={w; € FV(e) : (p,e,¢) € B, v € ObsVar} > Determine observations to make
6 n« |hl+1 > Get index of history element being built
7 v — @5(s) U @5 (s)™ U bg U b ™ > Initialize a valuation for B
8 for ie {i:w; € Q} do > For every relevant step i in history
9 s’,2',b] « h;
10: o « sample p(s’) > Measure observations for step i
11: ve—oU{w — o(w):w € wez} > Update v with accessible measurements
12: v — o U ;s (sH)Du b[(i) > Update v with history element i
13: h—hli « (s, {}, b))] > Ensure observations are not reused
14: for (p,e,e) € Bdo > For every symbolic bound assignment in B
15: if ¢ > £em then > If not enough budget remains
16: continue > We skip the assignment
17: Erem — Erem — € > Update the remaining safety budget
18: r < [el(c,0) > Evaluate symbolic instantiation with o
19: if r # Land (p ¢ domov or r < v(p)) then > Whenever a tighter value is obtained
20: v —o[p—r][p™ «r] > Update v with the new tighter bound

21: b < {p — v(p) : p € LParam}
22: bg «— {p — v(p) : p € GParam}

23: assert dom b, = LParam > Ensure that all local parameters are set
24: h—h-(s, a(s), b)) > Add current state to the inference history
25: safe «— M[Ctrl[c, bs U b.]] > Instantiate the control monitor
26: fallback < F[Ctrl[c, bs U b.]] > Instantiate the fallback policy
27: if not safe(@s(s), pa(act1)) then > When the control action is deemed unsafe
28: acrl < @ ' (fallback(gs(s))) > Override it with a fallback action
29: s « sample P(s, acy) > Perform the action in the underlying MDP
30: return (s, h, bg, £rem) > Return a new value of §

b, is a local parameter instantiation. Formally, $ = S x Hist x (GParam — R) x [0, 1] and
Hist = List(S X £ (ObsVar) x (LParam — R)).

e An action d = (acyl, ainf) is defined as a pair of a control action and of an inference action.
Formally, A = A[Ctrl] x A[Infer].

e The transition function P : $ x A — D(S) is defined as in Algorithm 1.

e The reward function is lifted from the original MDP: if § = (s, h, b, €rem), d = (@ctrl, @inf) and
§ = (s, W, b, €opm), then R(5,4,8) = R(s, ac, §).

Note that in our definition, a state of the shielded MDP does not contain any information about
past observation values. Keeping such knowledge from the agent is crucial for soundness since the
agent could otherwise engage in cherry-picking. Instead, the history component of a state only
indicates which past observations are available and not used already.

Algorithm 1 rigorously defines the process of sampling a transition from a shielded environment,
indirectly defining the behavior of our proposed adaptive shield (see Figure 4 for a synthetic view).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:17

Lines 4 to 24 describe the execution of the inference module, which computes valuations b; and b,
for global and local bound parameters respectively while updating the history h and the remaining
safety budget ¢em. Lines 25 to 28 instantiate the controller monitor and fallback policy using bg
and b,. If the action proposed by the agent is rejected by the controller monitor, it is overriden via
the fallback policy. Finally, line 29, executes the resulting action in the real environment.

Note that we rely on a formalization trick where Algorithm 1 performs observation measurements
lazily (Line 10), sometimes on past states, rather than performing them eagerly and storing them.
Although physically unrealistic, this formalization enables us to stay within the standard MDP
framework that is dominant in RL. Concrete implementations would of course perform observations
eagerly and “secretely” cache them, offering the same interface. An alternative choice would have
been to define our shielding algorithm using framework of Partially-Observed Markov Decision
Processes (POMDPs) [24]. However, doing so would complicate our proofs and definitions for
little gain. Finally, instantiating the controller monitor (Line 25) requires every global and local
parameter to be mapped to a real value. This trivially holds for global parameters, by definition
of a shielded environment state (Definition 4.3). However, this does not obviously hold for local
parameters, hence the assertion on Line 23. It is the inference strategy itself that must guarantee
the validity of this assertion, which it does by statically enforcing that every local parameter is
provided a default value that is independent from observations or other local parameters. In the
example from Figure 3, the first assignment f := F serves this role. We can now state our main
safety theorem (a proof sketch is provided in the extended version of this paper [11, Appendix F.1]).

THEOREM 4.4 (SAFETY OF SHIELDED ENVIRONMENTS). Consider a shield specification (Const,...)
and a compatible environment ((S,...),...,) (see Definition 4.2). Let E be the resulting shielded
MDP (see Definition 4.3). Then, given a safety budget ¢ € [0, 1], an initial global bound instantiation
b € GParam — R and an initial state s € S such that (¢ U u, ps(s) U b) € [Assum A Bound A Inv],
any trace in E starting with state $, = (s, 0, b, €) is safe with probability at least 1 — ¢, meaning that
(cUu,@s(sy)) € [Safe] for all state $; = (sy, ...) in the trace.

4.6 Learning in a Shielded Environment

Adaptive shields such as defined in Section 4.5 can be used to protect any agent from acting
unsafely in its environment, whether or not it is capable of learning and regardless of how it is
implemented. This is emphasized by our choice of formalizing shields as environment wrappers,
which are agent-agnostic by construction. Still, for the sake of concreteness, it is useful to illustrate
the use of Algorithm 1 and Theorem 4.4 in two typical reinforcement-learning scenarios:

Learning in a fixed environment. A shielded agent is placed in a fixed, compatible environment.
It ignores the value of unknowns but those are kept constant across training. A total safety
budget is defined for the inference module, which must be small enough to make crashes
unlikely (as per Theorem 4.4). Initially, the parameter bounds provided by the inference
module are very loose and so the shield’s action monitor is equally conservative. However, at
each control cycle, the inference module spends some safety budget to improve those bounds,
thereby allowing the agent to take increasingly aggressive exploratory moves. When the
safety budget is fully spent, the inference module is not allowed to update parameter bounds
anymore. However, the agent is still guaranteed to remain safe indefinitely, and in particular
as it finishes to optimize its control policy. Section 6 demonstrates this setting by showcasing
a train that learns to navigate on a fixed circuit.

Meta-learning across a family of environments. In many practical scenarios, autonomous
cyber-physical systems must be capable of quickly adapting to changing environments
without training a dedicated policy from scratch. It is thus useful to train an agent across a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:18 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

family of environments so that it can generalize across them. Such a meta-learning setting
integrates particularly well with our shielding framework. Indeed, we can train a shielded
agent through a series of episodes, each of which takes place in a possibly different environ-
ment that is nonetheless compatible with the agent’s shield (for possibly different values of
the unknowns). At the start of each episode, the inference module is reinitialized and a fixed,
per-episode safety budget is granted. In addition to the state information, the agent is given
access to the current bound parameters and the remaining safety budget at all times. It must
learn to gather suitable information about its environment and adapt its actions accordingly
within each episode. In particular, this allows a form of active sensing, where the agent learns
to act in such a way to receive useful information from the inference module. This also allows
optimizing the behavior of the inference module itself by learning inference policies, as we
discuss in Section 5. In the meta-learning setting, Theorem 4.4 is applied at each episode and
so a global safety bound can be obtained by multiplying the per-episode safety budget by the
number of training episodes. Section 6 explores this setting in three different case studies,
including one with a train controller that must learn to quickly adapt to different circuits
with different slope profiles.

5 The Inference Strategy Language

We define the syntax and semantics of our inference strategy language in Figure 7. An inference
strategy is defined as a sequence of inference assignments. Each kind of assignment defines its
own action space and the action space for a whole strategy is the product of the action spaces of
individual assignments. Three kinds of assignments are supported. Any assignment can be attached
a WHEN-clause that restricts its applicability, as illustrated in Figure 2 and in the extended version
of this paper [11, Appendix E.1]. A direct assignment “p := 6 ” does not require any input from the
inference policy and executing it costs no budget. It yields a single symbolic bound instantiation,
which is 6 itself. An assignment of the form “p := BEST iy, -, i, : 6~ expects as an input a list of
n-tuples of history indices and yields one bound instantiation 6[iy, - - - ,in \ j1,- - -, jn] for each tuple
(J1,- -+, jn). An alternate design would expect no input and consider every possible combination
of indices through the current history. However, the number of such combinations may grow
intractably large, which explains our current pragmatic choice.

Semantics of AGGREGATE. An assignment of the form “p := AGGREGATE iy, -+ ,i, : 0; AND 65"
takes as an input an (¢, D) pair, where ¢ indicates how much safety budget should be spent and
D is a finite distribution over all n-tuples of history indices. More precisely, D is a sequence of
(A, j) pairs where j indexes a combination of measurements from history and A is a positive weight
attached to it (X, jep A = 1). It yields a single bound instantiation that performs a weighted
average over all instances of the observable bound component 0;, while using the CDF ! operator
to handle the noise component 6,. As a requirement, 6; can contain observation variables but no
noise variables, while 6, can contain noise variables but no observation variables. The semantics of
AGGREGATE generalizes our reasoning from Section 2.4 (see Equation 5). Indeed, let us assume that
Bound, [(6; + 02)[i\j]] is true for any instantiation j = (jy, ..., jn) of i = (i1, ..., i), as guaranteed
by the generated proof obligation. Also, let us assume without loss of generality that p is an upper-
bound. Since Bound,, is monotone in p and thus convex, we know that Bound, [b*] is true where
b* = Y5 jep A(O1 + 02)[i\ j]. However, b* is not known at runtime since 0, features noise variables
that are not observed directly. Instead, our semantics yields instantiation b = 3’ ;cp 401 [i\j] + 6,
where § = ﬁ'l(ZMeD A0;[i\j], €). Since Bound,, is monotone, we have b > b* — Bound, [b].
Contraposing, we get ~Bound, [b] — b* > b. We can then establish the soundness of (p, b, ¢) with

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:19

L = pri=er; ... Pni=en (p1,--spni=¢€) = (p1i=e€;...;pni=¢)

e = 0 WHEN G | BEST iy,...,i, : @ WHEN G | AGGREGATE Iy,...,i, : 0 AND 6, WHEN G
Alpr==e1;...; pni=en] = Alpr:=er] X - X Al pn :=ey]
Alp :=e] = Alel
Al6] =1

ABEST iy,...,i, : 0] = List(N")
Al AGGREGATE iy, ..., I, : 0; AND 0] = [0, 1] X FinDistr(N")

[« : Al — List(Param x SBInst x [0, 1])
[pi:=e1:...;pni=enl((ar,....an)) = [p1:=el(a1) ®--- @l pn = enll(an)
[p :=el(a) = [(p.e.€) : (e.¢) € [el(a)]
[0 waEN G](e) = [(0 when G, 0)]
[BEST iy,...,i, : 0 wHEN G](J) = [(0[i\j] when G[i\j], 0) : j € J]

[AGGREGATE iy, ...,i, : 6; AND 6, WHEN G]((¢g, D))
- ((el + ﬁ*l(> -6\, g)) when /\ G[i\j]. g)
AjeD AjeD AjED

Fig. 7. Syntax and semantics of the inference strategy language. Without loss of generality, all bounds are
assumed to be upper-bounds (otherwise, substitute some parameter p by —p). All wHEN-clauses can be omitted
when G = true. We use the list concatenation operator ® and the list comprehension notation. FinDistr(X)
denotes the set of all distributions over set X with finite support: FinDistr(X) = {[(A1,x1),..., (An,xn)] :
neN, xi,...xpn€X, M, ., An >0, 2 A = 1}.

the exact same reasoning that was demonstrated in Equation 5:

P(~Bound,[b]) < P(b* > b) = P(3 20,00\ > 5) < e
i,AeD

Details on how to evaluate or approximate the CDF ! operator are available in the extended version
of this paper [11, Appendix E.2]. In the particular case where 6, is a linear combinations of Gaussian
variables (with possibly state-dependent coefficients), closed-form solutions exist that involve the
erf™! function. Concentration inequalities (e.g. Chebyshev, Hoeffding, or Chernoff bounds) can be
used to approximate it conservatively in the general case [6].

Proof obligations and soundness. An inference strategy Infer induces a proof obligation in the form
of a dL formula, P[Infer], which is defined inductively in Figure 8. Provided that this obligation
is valid, our language guarantees the soundness of all resulting inferences. This is expressed in
Theorem 5.1 (a proof is provided in the extended version of this paper [11, Appendix F.2].

THEOREM 5.1 (SOUNDNESS OF THE INFERENCE STRATEGY LANGUAGE). Let (Const,...,Infer) a
shield specification. If the formula P[Infer] is valid, then [Infer](a) is a list of sound inference
assignments for any inference action a € A[Infer].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:20 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

Plpi=e1 ;... pni=enll = Plpr:=el]l A APlpn:=enl

Plp :=e] = Assum A (/\ Z)(FV(e))) — Plel(p)
P[0 wreN G (p) = G — Bound,[0]
PIBEST iy,...,i, : 0 WHEN G[(p) = G — Bound,[0]

P AGGREGATE i,..., i, : 01 AND 8, WHEN G| (p) = G — Bound, [0; + 0,]

D(xx) =D(x)® D(p) =Bound, D(w)=(w=0bs,) D(v)=Inv

Fig. 8. Obligation induced by an inference strategy. Per convention, p € Param, @ € ObsVar and v € StateVar.

Learning inference policies. A crucial feature of our inference strategy language is its nondeter-
minism: an inference strategy does not fully specify the behavior of the inference module and key
decisions about what measurements to aggregate, how much budget to spend and when are left to
a separate inference policy. As illustrated in Section 2.4, such a policy must make subtle tradeoffs.
However, it is not soundness-critical and amenable to learning. Learning an inference policy is
possible within the meta-learning setting described in Section 4.6. A per-episode safety-budget is
fixed and the agent must learn a way to best manage this budget within an episode, in a way that
generalizes across a family of environments and allows maximizing returns. Section 6 illustrates
this idea in three different case studies.

6 Experimental Evaluation
We evaluate our framework on a series of case studies and demonstrate the claims:

C1 Our framework allows expressing diverse types of model uncertainty in a unified way.

C2 Shielded agents always remain safe.

C3 Adaptive shields allow more aggressive control strategies than non-adaptive shields.

C4 Inference policies can be learned that generalize across settings.

C5 Control policies can be learned that actively seek information as a prerequisite for success.

All case studies are summarized in Table 2. Each case study trains a shielded reinforcement
learning agent, either in a fixed environment or using the meta-learning setting described in
Section 4.6. We demonstrate the qualitative claim C1 by having each case study illustrate distinct
modelling concepts, all of which are listed in Table 2. Claims C2 and C3 are evaluated on all
case studies. As shown in Table 3 and validating Theorem 4.4, shielded agents never encounter
crashes. Unshielded agents reach unsafe states during training, but also after training in all but one
environment. Furthermore, disabling the inference module leads to inferior policies in all examples.
Claims C4 and C5 are relevant in the meta-learning setting, which is explored in three case studies
whose results we summarize below. Full details on our experimental protocol, results, and on the
shield used for each case study are available in the extended version of this paper [11, Appendix A].

Versatile Train. This case study uses the shield from Figure 3, which is inspired by published
models of train control systems [23, 34], with added support for runtime track slope estimation.
Our key results are summarized in Figures 9 and 10. We show how different inference policies work
best for different kinds of train tracks and noise models. A policy that aggregates observations
in small batches works better in a setting with irregular tracks (large k) and low sensor noise
(small o), while a policy that aggregates observations in large batches works better in settings with
regular tracks and high sensor noise. Importantly, inference policies can be learned that are at least
competitive with the best hardcoded solution in both cases.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:21

Table 2. Summary of our Experimental Evaluation. Each case study is annotated with references to the main
experimental claims C; that it provides evidence for. A “FIXED” annotation means that learning is conducted in
a fixed environment, while a“META” annotation means that the case study involves meta-learning (as defined
in Section 4.6). No shielded agent encountered an unsafe state in our experiments (Table 3).

Case Study Property
Concepts: Fixed environment, Concentration inequalities
S1SYPHEAN TRAIN Description: A train must go up-and-down a hill repeatedly to transport mer-
C1, C2, C3, FIXED chandise, protected by a variant of the shield from Figure 3 that
assumes uniform measurement noise.
Results: Enabling the inference module yields a more efficient controller.
Hoeffding bounds beat Chebyshev bounds for inference.
Concepts: Meta-learning, Learned inference policy
VERSATILE TRAIN Description: A train is exposed to a variety of track topologies and must learn
C1, C2, C3, C4, META to spend its safety budget wisely in unknown terrains.
Results: Different types of tracks call for different inference policies. Appro-

priate inference policies can be learned automatically.

Concepts: Mapping, Active sensing
CrOSSING THE River ~ Description: A robot equipped with a lamp must cross a bridge located at an
C1, C2, C3, C5, META unknown position along a river, at night. The lamp sheds light
within a fixed radius.

Results: The robot successfully learns to approach the river, switch on its
lamp and go along the river until it locates the bridge. Disabling
the inference module prevents learning. A non-shielded agent fre-
quently falls into the river, even after training.

Concepts: Discrete model switching, Boolean inference
RevISITING ACAS X Description: We consider a variant of the next-generation Airborne Collision
Cl1, C2, C3, C4, META Avoidance System (ACAS X) [22]. The agent controls a plane and
must learn to react to an intruder aircraft entering its airspace.
Results: A provably-safe policy can be learned that attempts to infer whether
or not the intruding aircraft flies in ACAS-compliant ways in order
to avoid drastic maneuvers whenever possible.

Crossing the River. This case study illustrates the concept of active sensing and demonstrates
claim C5 in a minimal setting. The goal is for a robot equipped with a lamp to cross a bridge at
night. The robot must find the position of the bridge, which translates into a model where the
unknown is in the safety property instead of the plant. The robot only observes the bridge when
it gets close enough and its lamp is on. In addition to an inference policy, it must learn a control
policy that seeks knowledge explicitly. We illustrate this learned control policy in Figure 11.

Revisiting ACASX. This case study revisits a classic of cyberphysical-system verification: the next-
generation Airborne Collision Avoidance System (ACAS X) [22]. However, rather than assuming a
known intruder trajectory or a random-walk intruder model [25], we propose a new uncertainty
model where intruders are either ACAS-compliant (in which case they are also actively trying to
avoid collision) or not (in which case they must be treated as adversarial). The agent must attempt
to infer the compliance of the intruder so as to avoid drastic maneuvers whenever possible. We
illustrate the effectiveness of our learned inference policy in Figure 12.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:22 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

k/o large k/o small

I I
5 5
g 5T g
L =7

g g 3

ot

|

-5 | 1 I I I -5 |.J I I I
0 2000 4000 6000 0 2000 4000 6000
Episode Episode
—— Unshielded —— Adaptive Non-adaptive ==+ Aggregate-1 v Aggregate-20

Fig. 9. Returns for the VERSATILE TRAIN case study, for two different combinations of k and o (and averaged
across three random seeds, with standard deviations represented as shaded areas around the mean). The train
gets rewarded for reaching the station as quickly as possible (a fixed negative reward is issued at every step
before the train reaches destination) and penalized for (unsafely) overshooting its target. Training returns are
shown for an unshielded agent (red), an agent using our proposed adaptive shield (green), and a nonadaptive
variant where the inference module is deactivated (orange). In addition, the Aggregate-i agent is a variant
of the Adaptive agent that uses a hardcoded inference policy that spends a fixed budget to aggregate all
available observations every i steps. Different hardcoded inference policies perform best in different settings
but the learned inference policy manages to match the best one in both cases.

k/o small
0.2 — 0.2
0.0 e 0.0 :
’E\ -0.2F i i i i ’g -0.2 F i
& HIHHE & i
% —04 = 04} : ”l
g ML £ =
£ 0.6 FH{{H 2 -06 :H
E L Z :
A —0.8 Fiet ~ —08
jry
~1.0 € ~10f
_1o 4 1 1 1 _19o 1 1 1
0 10 20 30 0 10 20 30
Time ¢ (s) Time ¢ (s)

Fig. 10. A visualization of the learned control and inference policies for the VERSATILE TRAIN case study, on
two random tracks and for two different combinations of k and 0. We show the position of the train over
time using dots. The train needs to stop before x = 0 (bold black line). At each time step, a vertical segment
indicates the estimated braking distance assuming that the train decides to accelerate for this time step. The
segment is drawn in red if the train effectively decides to accelerate and in blue if it decides to brake. A green
circle is shown whenever the inference module aggregates existing measurements to improve the local slope
estimate. The resulting reduction in the shield’s estimated braking distance is plotted as a green segment.
In particular, we observe as expected that the learned inference policy aggregates measurements in bigger
batches when k/o is small.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:23

Table 3. Return at testing time (average value of the last 100 episodes during 10,000 evaluation steps) and
number of crashes during training and testing time, for different case studies and under different settings.
The number of training steps and the maximum episode length for each setting are 80,000/100; 400,000/100;
400,000/100; 400,000/50; and 400,000/40 respectively. Agents are given a total safety budget of 1073 in fixed-
environment settings (SIsYPHEAN TRAIN) and 1077 per episode in meta-learning settings (all others).

Setting Method Return Crashes during training Crashes during testing
Unshielded 83+0.1 110.7 = 21.5 1.3+£0.5
S1ISYPHEAN TRAIN Adaptive 7.0£0.0 0.0+0.0 0.0 0.0
Non-adaptive 5.5 + 0.0 0.0+ 0.0 0.0+ 0.0
VERSATILE TRAIN Unshielded 10.0 £ 0.7 102.7 +45.0 0.0+0.0
(k/o large) Adaptive 9.1+£0.3 0.0+ 0.0 0.0+ 0.0
& Non-adaptive 5.8 + 0.0 0.0+0.0 0.0+0.0
VERSATILE TRAIN Unshielded 9.5+1.2 943 +6.2 0.7+ 0.5
(k/o small) Adaptive 9.1+£0.2 0.0+ 0.0 0.0+ 0.0
Non-adaptive 5.8 +0.1 0.0 0.0 0.0 0.0
Unshielded 39+0.4 325.7 £ 81.8 0.7+ 0.5
CROSSING THE RIVER Adaptive 4.2+0.7 0.0+0.0 0.0+0.0
Non-adaptive —5.0 +0.0 0.0 0.0 0.0 0.0
Unshielded 6.7+ 0.5 987.0 + 66.4 25.0 £ 6.7
RevIsITING ACAS X Adaptive 6.6 +0.2 0.0 0.0 0.0 0.0
Non-adaptive 4.5+ 0.0 0.0 0.0 0.0 0.0
20 20
10 10 |
g g
EN " | >
0T g or
~ ~
-10 [-10 [
—-20 1 1 -20 1]
-20 -10 0 10 20 -20 -10 0 10 20

Position x (m)

Position x (m)

Fig. 11. Visualization of the learned policy for the cROSSING THE RIVER case study. The river is drawn as a
vertical blue line at x = 0 and the bridge is drawn in brown. The range within which the agent can observe
the bridge is plotted as a bold, black dashed circle. The agent’s position is marked by a point for each control
cycle, which is blue if the lamp is off and red if it is on. A green circle around the current position indicates
some safety budget being spent. Regardless of its starting position, the agent learns to go near the river,
activate the lamp when it gets close enough and then move along the river until it observes the bridge.

7 Discussion

Runtime overhead. Our framework pushes most of the burden of safety analysis offline via static
proof obligations. Thus, it benefits from a small and predictable runtime overhead. This overhead
results from running the inference module, monitoring the proposed control actions and executing

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:24 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

2000 2000
1000 1000 |
8 g
-~ B
g £
-1000 ~1000 3
-2000 2000 1
0 10 20 30 40 30 20 10 0 0 10 20 30 40 30 20 10 0
Time ¢ (s) Time ¢ (s)

Fig. 12. Learned policy for the REvisITING ACAS X case study, in two different scenarios. The scenario on the
right features an ACAS-compliant intruder while the scenario on the left involves a non-compliant intruder.
In both cases, the ownship’s trajectory is shown on the left of the plot while the intruder’s trajectory is
shown on the right. The estimated upper and lower bounds for the intruder’s final altitude at meeting time is
shown for each time step as a dashed line. Red dots on the ownship’s trajectory indicate the observation of
information that is relevant to estimating the intruder’s compliance. Green dots indicate that the intruder
has been identified as compliant. When this happens, a less aggressive avoidance maneuver can be executed.

the fallback policy when needed. The complexity of running a cycle of the inference module is
linear in the size of the specification and in the size of the inference action being considered (e.g. the
number of measurements being aggregated), assuming that the CDF ! operator can be evaluated in
linear time (which is true in particular in the Gaussian case or when using concentration inequalities,
see details in the extended version of this paper [11, Appendix E.2]). Running the controller monitor
is inexpensive since it consists in evaluating a formula whose size does not exceed the size of
the shield itself. Finally, assuming that an explicit fallback policy is provided (see discussion in
Section 3.4), the cost of computing fallback actions is small and predictable. In our experiments, the
total overhead of shielding during training never exceeds 15% (see details in the extended version
of this paper [11, Appendix A, Table 4]).

On the complexity of designing adaptive shields. There is an inherent complexity to the engineering
task of designing adaptive monitors for rich, realistic model families, which typically necessitates
the exploitation of domain-specific insights. Our framework allows designers to focus on this
essential complexity, while eliminating the accidental complexity of enforcing end-to-end soundness
guarantees that encompass statistical inference. For example, while our paper shows how tricky and
error-prone statistical reasoning can be (e.g. reusing measurements is sound within an inference
cycle but not across cycles), our framework exposes abstractions that fully protect users from such
considerations and generates dL proof obligations that require no probabilistic reasoning. Still,
specifying formal models of hybrid systems and proving properties about them using interactive
theorem proving is a nontrivial skill to acquire. Doing so is eased by the increasing availability of
automation in tools such as KeYmaera X [14, 40]. We show the proof obligations generated by our
tool for all case studies in the extended version of this paper [11, Appendix B]. Out of 32 obligations,
27 can be discharged fully automatically or with trivial human guidance (such as providing a single
term for instantiating an existential variable). The others require more effort but can be proved in
under an hour by an experienced KeYmaera X user [11, Appendix C].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

Adaptive Shielding via Parametric Safety Proofs 109:25

8 Related Work

Safe reinforcement learning is widely studied [8, 17, 18], including several approaches without formal
verification. Several policy-search algorithms have been proposed that take into account safety
constraints specified separately from the reward signal, but do not offer any guarantee that those
constraints will not be violated during training or deployment [1, 42, 44]. In contrast, this work is
part of a family of approaches that are often called sandboxing or shielding-based [2, 15, 43], and
where the intended actions of an RL agent are monitored at runtime and overridden by appropriate
fallbacks whenever they cannot be proved safe with respect to a model of the environment.

Virtually all existing approaches to shielding aim for full-automation of the shield computation,
imposing hard tradeoffs in terms of safety, adaptivity, precision, expressivity and scalability. In
circumstances where they run fast enough to be used online, methods based on reachability
analysis [21, 26, 43] are naturally amenable to a form of adaptivity. However, they only offer
bounded-horizon guarantees and precision comes at the expense of runtime efficiency. Methods
based on LTL model-checking [2, 27] or finite-MDP solving [36] can handle infinite time-horizons
but require discretization of hybrid dynamics, often at a significant cost in terms of precision
and safety. They also tend to scale poorly with increasing dimensionality. Methods based on
Hamilton-Jacobi solving [13] face similar challenges. In contrast, our proposed framework allows
leveraging human ingenuity by extracting shields from nondeterministic, symbolic controllers that
are proved safe using interactive theorem proving. It builds on the Justified Speculative Control
(JSC) framework [15], which it generalizes in a crucial way to support adaptivity.

Our framework offers a uniquely expressive language for modelling environment uncertainty
via arbitrarily constrained function symbols. For example, reachability analysis typically uses
bounded disturbance terms [3] to model environment uncertainty, which is sufficient to model
the example from Figure 2 but not those from Figure 3 and from the ACASX case study. To the
best of our knowledge, these last two examples cannot be accommodated by any pre-existing
approach. Another standard way of representing model uncertainty for the purpose of adaptive
shielding is to use Gaussian processes to model an unknown, state-dependent term added to the
system’s dynamics [4, 5, 9, 13]. This approach offers a different form of modelling flexibility, where
assumptions about functional unknowns are implicitly encoded into prior kernels rather than hard
logical constraints. However, this also makes the resulting safety guarantees harder to interpret and
fundamentally dependent on assumptions that are nearly impossible to validate experimentally.

Another approach has been proposed to extend the JSC framework with a form of adaptivity,
in which an agent starts with a finite set of plausible models and then progressively discards
those that are found inconsistent with observations [16]. Our framework handles a more general
form of parametric model uncertainty and additionally supports noisy observations and statistical
reasoning. Finally, our idea of having experts define nondeterministic inference strategies that are
sound by construction and refined via learning - thereby making shielded agents in charge of their
own safety budget — has, to the best of our knowledge, no equivalent in the literature.

9 Conclusion

Our framework gives experts full access to the power of differential dynamic logic to build adaptive
shields for hybrid systems. Its unique flexibility raises the equally unique challenge of performing
statistical inference soundly and efficiently. We tackle this challenge with a mix of language design
and learning, introducing the concepts of an inference strategy and of an inference policy respectively.
Future work may explore the integration of reachability analysis and model-checking within our
framework, allowing hybrid combinations of symbolic and numerical, offline and online proving.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

109:26 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

Data-Availability Statement

An artifact that contains our framework implementation, instructions to replicate all experiments,
and formal proofs for all case studies is available at https://doi.org/10.5281/zenodo.14916164 [12].

Acknowledgments

This work was supported by the NSFC (Nos. 62276149, 92370124, 62350080, 92248303, U2341228,
62061136001), BNRist (BNR2022RC01006), Tsinghua Institute for Guo Qiang, and the High Perfor-
mance Computing Center, Tsinghua University. J. Zhu was also supported by the XPlorer Prize.
Finally, this work was supported by the Alexander von Humboldt Professorship program. We thank
the anonymous reviewers for their helpful feedback.

References

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained Policy Optimization. In Proceedings

—_
=
—

—
~
—

[10

[11
[12

[13

[t

—

[t}

]
]

—

of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017
(Proceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 22-31. http:
//proceedings.mlr.press/v70/achiam17a.html

Mohammed Alshiekh, Roderick Bloem, Ridiger Ehlers, Bettina Kénighofer, Scott Niekum, and Ufuk Topcu. 2018. Safe
Reinforcement Learning via Shielding. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. Mcllraith and
Kilian Q. Weinberger (Eds.). AAAI Press, 2669-2678. doi:10.1609/AAAILV32I1.11797

Matthias Althoff and John M Dolan. 2014. Online verification of automated road vehicles using reachability analysis.
IEEE Transactions on Robotics 30, 4 (2014), 903-918. doi:10.1109/TRO.2014.2312453

Felix Berkenkamp and Angela P. Schoellig. 2015. Safe and robust learning control with Gaussian processes. In 14th
European Control Conference, ECC 2015, Linz, Austria, July 15-17, 2015. IEEE, 2496-2501. doi:10.1109/ECC.2015.7330913
Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. 2017. Safe Model-based Reinforcement
Learning with Stability Guarantees. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 908-918.
https://proceedings.neurips.cc/paper/2017/hash/766ebcd59621e305170616ba3d3dac32- Abstract.html

Dimitri Bertsekas and John N Tsitsiklis. 2008. Introduction to probability. Vol. 1. Athena Scientific.

Brandon Bohrer and André Platzer. 2020. Constructive game logic. In Programming Languages and Systems: 29th
European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings 29. Springer International Publishing, 84-111.
do0i:10.1007/978-3-030-44914-8_4

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P Schoellig.
2022. Safe learning in robotics: From learning-based control to safe reinforcement learning. Annual Review of Control,
Robotics, and Autonomous Systems 5 (2022), 411-444. doi:10.1146/ANNUREV-CONTROL-042920-020211

Richard Cheng, Gabor Orosz, Richard M. Murray, and Joel W. Burdick. 2019. End-to-End Safe Reinforcement Learning
through Barrier Functions for Safety-Critical Continuous Control Tasks. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 3387-3395. doi:10.1609/aaai.v33i01.33013387

Ingy Elsayed-Aly, Suda Bharadwaj, Christopher Amato, Ridiger Ehlers, Ufuk Topcu, and Lu Feng. 2021. Safe Multi-
Agent Reinforcement Learning via Shielding. In AAMAS °21: 20th International Conference on Autonomous Agents and
Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, Frank Dignum, Alessio Lomuscio, Ulle Endriss, and
Ann Nowé (Eds.). ACM, 483-491. doi:10.5555/3463952.3464013

Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent. 2025. Adaptive Shielding via Parametric Safety Proofs.
arXiv:2502.18879 [cs.PL] https://arxiv.org/abs/2502.18879

Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent. 2025. Adaptive Shielding via Parametric Safety Proofs.
doi:10.5281/zenodo.14916164

Jaime F. Fisac, Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama, Jeremy H. Gillula, and Claire J. Tomlin.
2019. A General Safety Framework for Learning-Based Control in Uncertain Robotic Systems. IEEE Trans. Autom.
Control. 64, 7 (2019), 2737-2752. doi:10.1109/TAC.2018.2876389

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

https://doi.org/10.5281/zenodo.14916164
http://proceedings.mlr.press/v70/achiam17a.html
http://proceedings.mlr.press/v70/achiam17a.html
https://doi.org/10.1609/AAAI.V32I1.11797
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/ECC.2015.7330913
https://proceedings.neurips.cc/paper/2017/hash/766ebcd59621e305170616ba3d3dac32-Abstract.html
https://doi.org/10.1007/978-3-030-44914-8_4
https://doi.org/10.1146/ANNUREV-CONTROL-042920-020211
https://doi.org/10.1609/aaai.v33i01.33013387
https://doi.org/10.5555/3463952.3464013
https://arxiv.org/abs/2502.18879
https://arxiv.org/abs/2502.18879
https://doi.org/10.5281/zenodo.14916164
https://doi.org/10.1109/TAC.2018.2876389

Adaptive Shielding via Parametric Safety Proofs 109:27

[14]

(15

—

(16

—

(17

—

(18

—

[19]

[20

[t

[21]

[22]

[23]

[24
[25

—_

(26

—

[27]

[28]

[29]

[30
[31

—

[32]

Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Vélp, and André Platzer. 2015. KeYmaera X: An Axiomatic
Tactical Theorem Prover for Hybrid Systems. In Automated Deduction - CADE-25 - 25th International Conference
on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (LNCS, Vol. 9195), Amy P. Felty and Aart
Middeldorp (Eds.). Springer, 527-538. do0i:10.1007/978-3-319-21401-6_36

Nathan Fulton and André Platzer. 2018. Safe Reinforcement Learning via Formal Methods: Toward Safe Control
Through Proof and Learning. In 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. Mcllraith and Kilian Q. Weinberger (Eds.). AAAI Press,
6485-6492. doi:10.1609/AAALV3211.12107

Nathan Fulton and André Platzer. 2019. Verifiably Safe Off-Model Reinforcement Learning. In Tools and Algorithms for
the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I
(LNCS, Vol. 11427), Tomas Vojnar and Lijun Zhang (Eds.). Springer, 413-430. doi:10.1007/978-3-030-17462-0_28
Javier Garcia and Fernando Fernandez. 2015. A comprehensive survey on safe reinforcement learning. 7. Mach. Learn.
Res. 16 (2015), 1437-1480. d0i:10.5555/2789272.2886795

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and Alois C. Knoll
2022. A Review of Safe Reinforcement Learning: Methods, Theory and Applications. CoRR abs/2205.10330 (2022).
doi:10.48550/arXiv.2205.10330 arXiv:2205.10330

Todd Hester, Michael J. Quinlan, and Peter Stone. 2012. RTMBA: A Real-Time Model-Based Reinforcement Learning
Architecture for robot control. In IEEE International Conference on Robotics and Automation, ICRA 2012, 14-18 May,
2012, St. Paul, Minnesota, USA. IEEE, 85-90. doi:10.1109/ICRA.2012.6225072

Nathan Hunt, Nathan Fulton, Sara Magliacane, Trong Nghia Hoang, Subhro Das, and Armando Solar-Lezama. 2021.
Verifiably safe exploration for end-to-end reinforcement learning. In HSCC ’21: 24th ACM International Conference on
Hybrid Systems: Computation and Control, Nashville, Tennessee, May 19-21, 2021, Sergiy Bogomolov and Raphaél M.
Jungers (Eds.). ACM, 14:1-14:11. doi:10.1145/3447928.3456653

Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee. 2019. Verisig: verifying safety properties
of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 169-178. doi:10.1145/3302504.3311806

Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan Gardner, Aurora Schmidt, Erik Zawadzki, and André
Platzer. 2015. A formally verified hybrid system for the next-generation airborne collision avoidance system. In Tools
and Algorithms for the Construction and Analysis of Systems: 21st International Conference, TACAS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings
21. Springer, 21-36. doi:10.1007/978-3-662-46681-0_2

Aditi Kabra, Stefan Mitsch, and André Platzer. 2022. Verified train controllers for the federal railroad administration
train kinematics model: Balancing competing brake and track forces. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, 11 (2022), 4409-4420. doi:10.1109/TCAD.2022.3197690

Mykel] Kochenderfer. 2015. Decision making under uncertainty: theory and application. MIT press.

Mykel J Kochenderfer, Jessica E Holland, and James P Chryssanthacopoulos. 2012. Next generation airborne collision
avoidance system. Lincoln Laboratory Journal 19, 1 (2012), 17-33.

Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. 2018. Learning-Based Model Predictive
Control for Safe Exploration. In 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL, USA, December
17-19, 2018. IEEE, 6059-6066. doi:10.1109/CDC.2018.8619572

Bettina Kénighofer, Florian Lorber, Nils Jansen, and Roderick Bloem. 2020. Shield Synthesis for Reinforcement Learning.
In Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles - 9th International
Symposium on Leveraging Applications of Formal Methods, ISOLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 12476), Tiziana Margaria and Bernhard Steffen (Eds.). Springer, 290-306.
do0i:10.1007/978-3-030-61362-4_16

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric P. Xing. 2018. CIRL: Controllable Imitative Reinforcement Learning
for Vision-Based Self-driving. In Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part VII (LNCS, Vol. 11211), Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss (Eds.). Springer, 604-620. doi:10.1007/978-3-030-01234-2_36

Stefan Mitsch and André Platzer. 2016. ModelPlex: verified runtime validation of verified cyber-physical system models.
Formal Methods Syst. Des. 49, 1-2 (2016), 33-74. d0i:10.1007/s10703-016-0241-z

Randall Munroe. 2011. Significant. http://xkcd.com/882/.

André Platzer. 2008. Differential Dynamic Logic for Hybrid Systems. J. Autom. Reason. 41, 2 (2008), 143-189.
doi:10.1007/s10817-008-9103-8

André Platzer. 2017. A Complete Uniform Substitution Calculus for Differential Dynamic Logic. . Autom. Reason. 59,
2(2017), 219-265. doi:10.1007/s10817-016-9385-1

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 109. Publication date: April 2025.

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1609/AAAI.V32I1.12107
https://doi.org/10.1007/978-3-030-17462-0_28
https://doi.org/10.5555/2789272.2886795
https://doi.org/10.48550/arXiv.2205.10330
https://arxiv.org/abs/2205.10330
https://doi.org/10.1109/ICRA.2012.6225072
https://doi.org/10.1145/3447928.3456653
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1109/TCAD.2022.3197690
https://doi.org/10.1109/CDC.2018.8619572
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-01234-2_36
https://doi.org/10.1007/s10703-016-0241-z
http://xkcd.com/882/
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-016-9385-1

109:28 Yao Feng, Jun Zhu, André Platzer, and Jonathan Laurent

[33] André Platzer and Jan-David Quesel. 2008. Logical Verification and Systematic Parametric Analysis in Train Control.. In
HSCC (LNCS, Vol. 4981), Magnus Egerstedt and Bud Mishra (Eds.). Springer, 646-649. doi:10.1007/978-3-540-78929-1_55

[34] André Platzer and Jan-David Quesel. 2009. European Train Control System: A case study in formal verification. In
International Conference on Formal Engineering Methods. Springer, 246—-265. doi:10.1007/978-3-642-10373-5_13

[35] André Platzer and Yong Kiam Tan. 2018. Differential equation axiomatization: The impressive power of differential
ghosts. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 819-828. doi:10.1145/
3209108.3209147

[36] Stefan Pranger, Bettina Kénighofer, Martin Tappler, Martin Deixelberger, Nils Jansen, and Roderick Bloem. 2021.

Adaptive shielding under uncertainty. In 2021 American Control Conference (ACC). IEEE, 3467-3474. d0i:10.23919/

ACC50511.2021.9482889

Loris Roveda, Jeyhoon Maskani, Paolo Franceschi, Arash Abdi, Francesco Braghin, Lorenzo Molinari Tosatti, and Nicola

Pedrocchi. 2020. Model-Based Reinforcement Learning Variable Impedance Control for Human-Robot Collaboration.

J. Intell. Robotic Syst. 100, 2 (2020), 417-433. doi:10.1007/s10846-020-01183-3

[38] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe, Multi-Agent, Reinforcement Learning for
Autonomous Driving. CoRR abs/1610.03295 (2016). arXiv:1610.03295 http://arxiv.org/abs/1610.03295

[39] William D. Smart and Leslie Pack Kaelbling. 2002. Effective Reinforcement Learning for Mobile Robots. In Proceedings
of the 2002 IEEE International Conference on Robotics and Automation, ICRA 2002, May 11-15, 2002, Washington, DC,
USA. IEEE, 3404-3410. d0i:10.1109/ROBOT.2002.1014237

[40] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell, and André Platzer. 2022. Pegasus: Sound
Continuous Invariant Generation. Form. Methods Syst. Des. 58, 1 (2022), 5-41. doi:10.1007/s10703-020-00355-z Special
issue for selected papers from FM’19.

[41] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.

[42] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. 2019. Reward Constrained Policy Optimization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https:
//openreview.net/forum?id=SkfrvsA9FX

[43] Jakob Thumm and Matthias Althoff. 2022. Provably Safe Deep Reinforcement Learning for Robotic Manipulation in
Human Environments. In 2022 International Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA,
May 23-27, 2022. IEEE, 6344-6350. doi:10.1109/ICRA46639.2022.9811698

[44] Qisong Yang, Thiago D. Sim&o, Simon H. Tindemans, and Matthijs T. J. Spaan. 2021. WCSAC: Worst-Case Soft Actor
Critic for Safety-Constrained Reinforcement Learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 10639-10646.
doi:10.1609/AAALV35112.17272

[37

—

Received 2024-10-16; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 109. Publication date: April 2025.

https://doi.org/10.1007/978-3-540-78929-1_55
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.23919/ACC50511.2021.9482889
https://doi.org/10.23919/ACC50511.2021.9482889
https://doi.org/10.1007/s10846-020-01183-3
https://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295
https://doi.org/10.1109/ROBOT.2002.1014237
https://doi.org/10.1007/s10703-020-00355-z
https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX
https://doi.org/10.1109/ICRA46639.2022.9811698
https://doi.org/10.1609/AAAI.V35I12.17272

	Abstract
	1 Introduction
	2 Overview
	2.1 Extracting Shields from Verified Nondeterministic Controllers
	2.2 Adding Adaptivity via Parametric Bounds
	2.3 Handling Functional Unknowns with Local Bounds
	2.4 Inferring Statistically-Sound Bound Parameters
	2.5 System Overview

	3 Background
	3.1 Differential Dynamic Logic
	3.2 Notations for Valuations
	3.3 Reinforcement Learning
	3.4 Safe Reinforcement Learning via Shielding

	4 Adaptive Shielding
	4.1 Shield Specifications
	4.2 Symbolic Bound Instantiations
	4.3 Soundness of Symbolic Inference Assignments
	4.4 Compatible Environments
	4.5 Shielded Environments and Main Safety Theorem
	4.6 Learning in a Shielded Environment

	5 The Inference Strategy Language
	6 Experimental Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

