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3D modeling of a superconducting 
dynamo‑type flux pump
Asef Ghabeli1, Enric Pardo1* & Milan Kapolka1,2

High temperature superconducting (HTS) dynamos are promising devices that can inject large DC 
currents into the winding of superconducting machines or magnets in a contactless way. Thanks to 
this, troublesome brushes in HTS machines or bulky currents leads with high thermal losses will be 
no longer required. The working mechanism of HTS dynamo has been controversial during the recent 
years and several explanations and models have been proposed to elucidate its performance. In 
this paper, we present the first three-dimensional (3D) model of an HTS flux pump, which has good 
agreement with experiments. This model can be beneficial to clarify the mechanism of the dynamo 
and pinpoint its unnoticed characteristics. Employing this model, we delved into the screening current 
and electric field distribution across the tape surface in several crucial time steps. This is important, 
since the overcritical screening current has been shown to be the reason for flux pumping. In addition, 
we analyzed the impact of both components of electric field and screening current on voltage 
generation, which was not possible in previous 2D models. We also explored the necessary distance 
of voltage taps at different airgaps for precise measurement of the voltage across the tape in the 
dynamo.

Since 1960s, when the first generation of superconducting flux pumps have been designed and operated, the flux 
pump technology has undergone a remarkable developement1–5. Within around 60 years, various mechanically 
or electrically driven superconducting flux pumps have been operated using low-temperature superconductor 
(LTS) materials in their previous generation and high-temperature superconductor (HTS) materials in their 
last generation.

Superconducting dynamos convert mechanical energy into electromagnetic energy. They use permanent 
magnets as the source of varying magnetic field to induce DC volatge inside a superconducting wire. In their 
previous generation with LTS wires, creating normal region in superconductor was necessary to generate volt-
age and the local magnetic field needed to exceed the critical magnetic field of the wire. Generating this high 
amount of magnetic field in commercial LTS wires is not always possible, which limits the application of LTS 
superconducting dynamos. However, since Hoffmann and et al. designed and implemented the new generation 
of flux pumps with HTS materials6, the application of flux pumps and in particular HTS dynamos has became 
popular and widespread. In this type of dynamos, the existence of normal regions in superconductor is no 
more required and the voltage can be created even with very low amount of alternating magnetic field7. The 
only necessary characteristic for a material to be used in the new generation of flux pump is having non-linear 
resistivity8. This makes the HTS dynamos a reliable and efficient candidate to be utilized in superconducting 
electrical machines9–16.

The simplified working mechanism of an HTS flux pump can be explained as follows. Any magnitude of 
varying magnetic field causes circulating screening currents in the tape surface. These screening currents result 
in electric field in the areas above the local critical current of the tape. The accumulation of this induced electric 
field in one complete cycle results in certain net voltage, which causes flux pumping. However, this is not the 
case in materials with linear resistivity, where the net voltage is always zero. In other words, having non-linear 
resistivity is the key and the only necessary characteristic of a material to be used in an HTS flux pump. In addi-
tion, the local critical current is subjected to alternation based on the local magnetic field density and its angle 
with respect to tape surface. The Jc(B, θ) dependency can be measured via experiment, where θ is the magnetic 
field angle with respect to the tape surface.

Although the mechanism of HTS dynamo have been investigated and explained in7,8,17 using experiments 
and 2D modeling, there are still many aspects that have been left untouched. These issues can hardly be disclosed 
by experiments and are not feasible to be studied via 2D modeling. The first one is the complete distribution of 
screening current on tape surface during flux pumping process. The current density and electric field on the tape 
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surface have two components: Jx , Ex along the tape width and Jy , Ey along the tape length. 2D modeling assumes 
infinitely long tape along the length, thus there are only Jy and Ey components for current density and electric field 
and Jx and Ex are missing. Considering these facts and limitations of 2D modeling, the distribution of overcritical 
screening current, which has been shown to be the reason for flux pumping and its resultant electric field was 
not thoroughly pinpointed in previous literature. That is why the necessity of a 3D model to certify the previous 
proposed mechanisms of flux pumping and to better clarify the procedure is inevitable. By using an accurate 
and efficient 3D model, it is possible to pinpoint the mechanism of flux pumping and its details. In addition, 3D 
modeling gives the opportunity to analyze more complex geometries, regarding both tape or magnet shapes, 
which is also not possible via 2D modeling.

In previous literature, there have been several works focusing on modeling of flux pumps in order to inves-
tigate its performance. In18 a simplified 2D model using A-formulation was proposed, which could simulate 
the HTS dynamo mechanism. Although this model could describe some key aspects of flux pumping, it was 
unrealistic. In8 a 2D finite element numerical model based on H-formulation was presented, which had fairly 
good agreement with experiment and could explain well the mechanism behind the voltage generation in an 
HTS dynamo in open-circuit condition. An efficient and fast model, yet with good agreement with experiment 
based on minimum electromagnetic entropy production method (MEMEP) was proposed to model the pro-
cedure of voltage generation in an HTS dynamo in open-circuit mode7. In17, Mataira and et al. extended their 
2D model based on H-formulation to current-driven mode to further explain the underlying physics of voltage 
generation in an HTS dynamo. They also validated their modeling results with experiments. In19 a benchmark 
of several different models for modeling of HTS dynamo in open-circuit mode was presented. This benchmark 
includes H-formulation with shell current method8,17,20, MEMEP method7, coupled H-A method21, coupled T-A 
formulations22, Segregated H-formulation23, integral equation24 and volume integral equation-based equivalent 
circuit method25. All of the methods showed very good agreement with each other either qualitatively or quan-
titatively and the MEMEP method was the fastest in terms of computational speed.

In this article, we present the first 3D model of a dynamo-type HTS flux pump. Our modeling method, being 
MEMEP 3D, utilizes optimum number of degrees of freedom by solving all the variables of the problem only 
inside the superconducting region, which makes the model very fast and efficient. Employing the proposed 
model, the performance of the dynamo is investigated and analyzed. In particular, we pay special attention to the 
necessary distance of voltage taps at different airgaps for precise measurement of the voltage across the tape in 
the dynamo. The article structure is as follows. First, we explain the modeling method, including the introduc-
tion of the MEMEP 3D method, magnet modeling process and the model configuration. Afterwards, the article 
analyses the screening current and electric field in several critical time steps of the magnet movement over the 
HTS tape. Then, the impact of length on voltage generation and measurement is investigated and, at the end, the 
model results are compared to experiments in various airgaps.

The main results of this article were presented in a poster in the Applied Superconductivity Conference 
2020, available on-line from 23rd of October 202026, and a pre-print of this article was available in arXiv 
(arXiv:2011.00989) from 2nd of November 2020. A few days afterwards, a pre-print from L Prigozhin and V 
Sokolovsky was uploaded to arxiv (arXiv:2011.03524) reporting also modeling of flux pumps of finite length, 
which was finally published in27.

Dynamo modeling
MEMEP 3D method.  In this article, we model the HTS dynamo by means of the Minimum Electro-Mag-
netic Entropy Production method in 3D (MEMEP 3D). This variational method is based on T-formulation and 
is able to exploit several strategies to speed up calculation such as parallel computing, dividing into sectors and 
symmetry. The method works based on minimizing a functional containing the magnetic vector potential A and 
the current density J . It is proven that the minimum of the 3D functional for any given time step is the unique 
solution of Maxwell differential equations28–31.

For magnetization problems, the method uses the effective magnetization T as state variable, defined as

where J is the current density. Configurations with transport current are possible after adding an additional 
term to the equation above29. The general relation between the electric field and vector and scalar potentials is

and the current conservation equation is

where ∂tA is the change of vector potential with respect to time at a given location r and ϕ is the scalar potential. 
Equation (3) is always satisfied because ∇ · (∇ × T) = 0 . Thus, we only need to solve Eq. (2). In addition, the 
Coulomb’s gauge, ∇ · A = 0 , has been assumed to solve the 3D problem, and hence ϕ becomes the electrostatic 
potential32.

Since the current density J and T only exist inside the material, meshing is only needed in this region, increas-
ing the calculation speed significantly29. The vector potential A in the functional has two contributions including 
Aa and AJ standing for the vector potential due to the applied field and the vector potential due to the current 
density in the superconductor, respectively. The Aa component can be replaced by the vector potential due to the 
magnet in a dynamo, while AJ is calculated with the following volume integral of current density

(1)∇ × T = J,

(2)E(J) = −∂tA−∇ϕ,

(3)∇ · J = 0,
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As it was demonstrated in29, solving Eq. (2) is equivalent to minimizing the following functional

where U is dissipation factor, which can include any E − J relation of superconductor

To solve the problem in time dependent mode, the functional is minimized in discrete time steps. Assuming 
the functional variables in a certain time step t0 as T0 , AJ0 and Aa0 , the upcoming time step will be t = t0 +�t 
and the variables in the time step t will be T = T0 +�T , AJ = AJ0 +�AJ and Aa = Aa0 +�Aa , respectively, 
where �T , �AT and �Aa are the variables difference between two time steps and �t is the time difference 
between the two time steps, which does not need to be constant.

The optimum number of mesh for a tape with dimensions 12× 48× 0.001 in mm in each direction is cho-
sen as 50× 60× 1 along the x, y and z axis, respectively inside the superconductor. The results remain almost 
unchanged for higher number of meshes. However, for having better resolution on the tape surface, instead of 
60 mesh, 200 meshes has been chosen along the tape length. The thin film approximation (one mesh along the 
tape thickness) has been considered since it has no effect on the results due to low thickness of the tape. However, 
the model enables to take several elements in the thickness into account33.

3D cylindrical magnet modeling.  As explained in section “MEMEP 3D method”, for our MEMEP 3D 
method, we need to calculate the vector potential due to the magnet as Aa in the functional. For calculations 
using Jc(B, θ) , the numerical method also requires the magnetic field contribution from the magnet. Therefore, 
all we need is to calculate the vector potential and magnetic field of the magnet in certain observation points 
inside the tape, which are the central locations of each cell. Since MEMEP 3D only needs to mesh the supercon-
ductor but not the air, there are no rotating mesh issues due to moving magnets. Instead, there is just a time-var-
ying external vector potential and magnetic field created by the magnet, AM and BM , in the superconductor vol-
ume. These quantities are calculated only once at the beginning of each time step, representing a small fraction 
of the total computing time. The numerical method how to calculate these quantities is detailed in the Appendix.

The modeled permanent magnet selected for this study is a cylinderical magnet with the diameter and height 
equal to 10 mm34. The magnet type is a N42 (Nd-Fe-B magnet), possessing the remanence magnetic field of 
around 1.3 T.

HTS tape modeling.  The isotropic E–J power law is implemented in the functional within the dissipation 
factor of (6), assuming the following non-linear characteristic of the superconductor

where Ec = 10−4 V/m is the critical electric field, Jc is the critical current density and n is the n-value of the 
HTS tape.

The parameters of the modeled Superpower SF12050CF wire including Jc(B, θ) data are derived from8. The 
tape has 12 mm width, 1 µ m thickness, 48 mm length, n-value of 20, and the critical current at self field of 281 
A. The modeled tape has similar (but not identical) characteristics to the HTS tape used in34, where we aim to 
compare our modeling results with the experimental results of that article.

Figure 1a shows the experimental Jc(B, θ) dependence, where θ is the angle of the applied magnetic field 
with respect to the normal vector of the tape surface (Fig. 1b). Since the measurements were not performed in 
the whole 360◦ range, we only use the measured critical current in the range between 0° and 180° and then we 
assume that it is symmetrical in the range between − 180° and 0° for the model. In contrast to 2D modeling, in 3D 
modeling there is another angle, showed as φ in Fig. 1b, which is the angle of applied magnetic field with respect 
to the x axis. Although our modeling method allows this kind of Jc(B, θ ,φ) dependence31, the Jc measurements 
were done with φ = π/2 only. Indeed, complete Jc(B, θ ,φ) measurements are scarce for any type of sample due 
to experimental complexity. Therefore, our model only considers the angle θ , while angle φ is neglected with the 
assumption that Bx plays the same role as By . In other words, we assume that Jc(B, θ ,φ) = Jc(B, θ ,π/2) for any 
φ . As seen for other types of experiments, such as cross-field demagnetization, this assumption does not have a 
severe influence on the electromagnetic behavior33.

Model configuration.  Figure 2a,b shows the configuration of the 3D model in 2 different views. The mag-
net rotates in the xz-plane on top of the tape in counter clockwise direction, where the rotor external radius is 
35 mm. The magnet magnetization is pointed out to the outside of rotation circle. θM is defined as the magnet 
angle, where the magnet starting position ( θM = 0 ) is set when its center is aligned with the positive direction 
of z-axis. The airgap is defined as the minimum distance between the magnet outer surface and tape upper sur-
face happening at ( θM = 180 ). The rotating frequency is set to 12.3 Hz to be comparable with measurements 
conducted in34.
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The calculation time for this configuration taking the Jc(B, θ) dependency into account and meshes 
50× 200× 1 and 50× 60× 1 is around 16 h and 40 min and less than 3 h, respectively, on a desktop computer 
with two Intel(R) Xeon(R) CPUs of E5-2630 v4 @2.20 GHz with 20 virtual cores (10 physical cores) each and 
64 GB RAM. For the case of constant Jc with 50× 200× 1 mesh the computation reduces to around 6 hours 
and 40 min.

About the voltage in a flux pump.  In this article, we take into account that the voltage taps are placed at 
the ends of the tape, they are made of a conductor of negligible resistance, and they are very far away from the 
magnet at any time (Fig. 2c). With these assumptions, the output instantaneous open-circuit voltage of the flux 
pump is calculated using Eq. (2) as

where l is the tape length and w is the tape width, and Ay and Ey are y components of total vector potential and 
electric field, respectively. The DC value of the instantaneous open-circuit voltage is

where f is the rotation frequency of the magnet. VDC only depends on the electric field generated by the non-linear 
resistivity of tape, since the total vector potential A is periodic in a full cycle7.

Another important parameter is �V  since it can be obtained directly from measurements, which is defined 
as output voltage difference of the tape at 77 K (superconducting state) and at 300 K (normal state)
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Figure 1.   (a) Experimental Ic(B, θ) data used as input Jc for modeling, derived from8. Data was measured at 
77.5 K in magnetic fields up to 0.7 T from a Superpower SF12050CF wire. (b) Sketch of Ic(B, θ ,φ) showing the 
angle θ along with angle φ as the angle between the x axis and the projection of the applied magnetic field to the 
xy plane.

Figure 2.   Configuration of the 3D model: (a) view from xz-plane, (b) view from xy-plane, (c) qualitative sketch 
of the voltage taps.
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In other words, �V  eliminates the contribution of induced electric field due to the vector potential from the 
magnet and considers only the contribution from the non-linear resistivity of the superconducting tape, since 
the eddy currents in the tape at normal state are negligible (at least, when the tape is not copper stabilized). In 
open-circuit mode, �V  follows7

where Voc denotes the open-circuit voltage, AJ ,av is the volume-average vector potential due to superconducting 
screening current, and l is the tape effective length.

Modeling results and discussion
Current and electric field analysis.  In this section, all the modeling results have been calculated and pre-
sented using constant Jc , since it eliminates the complications of Jc variations due to inhomogeneous magnetic 
field from the magnet and simplifies the performance study of the dynamo. Later, in section “Comparison to 
experiments”, we take the Jc(B, θ) dependence into account.

To examine better the flux pump behavior, we defined several key positions of the magnet while traversing 
the HTS tape. Figure 3a shows the schematic of these positions along with their magnet rotation angle θM . 
These positions belong to the second cycle of the magnet rotation when the tape is already fully saturated with 
the screening current and has passed the transient state. Figure 3b shows the graph of frequency-normalized 
�V  versus magnet angle θM . As it can be seen, in position A, while the magnet projection touches the tape, 
pumping voltage has already started. This is because the magnetic field of the magnet already appeared inside 
the tape before this time, starting from around θM=154◦ . At position C, although the magnet is in the middle 
of the tape, the curve minimum happens shortly afterwards, which can be explained by the hysteresis nature of 
the tape screening currents.

Figure 4b displays the current density (maps of the modulus and current lines) for key magnet positions (see 
Fig. 4a). Step 0 belongs to the beginning of second cycle when the magnet is still far away from the tape and the 
tape is fully saturated with screening currents remained from the first cycle. In this step, no overcritical currents 
in the tape are observed (see also Fig.4c related to Jc-normalized Jy profiles in the middle of the tape length). At 
step A, the magnet projection touches the tape and starts to enter it from the left side. Since the magnet already 
creates high applied magnetic fields on the tape, overcritical currents can be observed in the left side of the tape. 
These circulating currents are induced in such a way that their resultant magnetic field can oppose the magnetic 
field of magnet and eventually repel it (based on Lenz’s law). At step B, half of the magnet has entered the tape 
and the magnet magnetic field has occupied the whole tape. Thus, the overcritical currents can be observed 
throughout the tape. At step C, the magnet has reached the middle of the tape while the tape is still fully occupied 
with the overcritical screening currents. The screening currents direction has been altered compared to step B 
because of changing the tendecy of the magnet magnetic field inside the tape from increasing to decreasing mode. 
At step D, the situation is similar to step B but with opposite direction of the overcritical screening currents. At 
step E, while the magnet is leaving the tape, the tape is still fully saturated with the overcritical screening cur-
rents and the direction of these currents are the same as step 0. While the magnet moves far enough from the 

(10)�V(t) = V77K (t)− V300K (t).

(11)�Voc ≈ [∂tAJ ,av + Eav(J)]. l

Figure 3.   (a) Sketch of key magnet positions along with their magnet rotation angles θM from Fig. 2. (b) 
Frequency-normalized �V  (equation (10)) versus magnet angle θM for airgap of 3.3 mm.
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magnet, the overcritical currents in the tape vanish completely and the remanent screening currents in the tape 
become similar to step 0.

Far away from the magnet and the main screening currents, currents of lower magnitude (just below Jc ) 
appear on the tape edges on the sides and, with even lower magnitude, at the ends. These currents have higher 
values along the left edge of the tape, where the magnet enters the tape and become maximum at step D. As it will 
be shown in Fig. 5, these low values of screening current have insignificant contribution in generating electric 
field in the tape. For example at step D, the electric field due to these low values of screening currents are 3 orders 
of magnitudes smaller than the maximum electric field in the tape at their highest values.

Figure 5b depicts electric field maps related to the key magnet positions of Fig. 5a and Fig. 5c shows the 
profiles of the y component of the electric field Ey , in the middle of the tape length (the Ex component vanishes 
there). The main area in the tape responsible for generating voltage in the tape lies under and along the magnet 
cross section (area from 19 to 29 mm along y axis), where the magnet is traversing. At steps B and D, the largest 
yellow areas are observed, showing the high values of electric field induced in these areas (around 0.4 V/m), 
which justifies the occurrence of the minimum peaks in Fig. 3 at these steps.

In Fig. 6, we study the x and y components of the current density and electric field in more detail in a certain 
time step, being when the magnet is just on the top and concentric to the tape (step C). In Fig. 6a it is obvious 
that Jx stays just below the critical current while Jy reaches up to 1.5 times of Jc [see Fig. 6b]. As a result, Ey is 
almost 20 times higher than Ex [see Fig. 6c,d]. In addition, since Jx is symmetric along the length, Ex is also 
symmetric [see Fig. 6a,c)]. Thanks to this symmetry, the average Ex in the whole sample vanishes, and thence 
Ex does not contribute to the voltage.

In addition, it is worth mentioning that the maximum value of Jx occurs at steps D and E with maximum 
Jc-normalized values of 1.23 and 1.20, respectively. The resultant Ex due to these currents is still insignificant 
compared to Ey generated by Jy . This Ex can be recognized as vague blue areas in Fig.5b at steps B and D outside 
the magnet cross section area (above and below the area between 19 and 29 mm, where the magnet traverses).

Impact of tape length on voltage generation.  Studying the impact of the tape length on voltage gen-
eration assists us to realize what is the minimum efficient tape length (along the y axis) that can be employed in 
a flux pump. From another point of view, this study help us to select the proper distance between voltage taps 
while measuring the voltage signals in a flux pump. This distance is of course a variable of magnet dimension, 
especially along the length. In this section, we study this effect with the same flux pump configuration for various 
airgaps. Now, we use Jc(B, θ) dependency in order to obtain a realistic description that is closer to experiments. 
The tape length, changing between 5 mm to 48 mm, and the airgap, varying from 1 to 10 mm, are chosen as 
variables while the frequency is kept constant as 12.3 Hz.

Figure 7a shows the result of �V  normalized by the frequency against the magnet angle θM for different tape 
lengths and for 3.3 mm airgap. It is clear that above 20 mm length, the results of �V  remain almost the same 

Figure 4.   Current modeling results for airgap 3.3 mm and constant Jc : (a) Key magnet positions including step 
0, when magnet is very far from the tape, (b) Current modulus maps and current lines regarding the key magnet 
positions, (c) Current profiles of Jc-normalized Jy regarding the key magnet positions in the mid-plane of the 
tape ( y = 24 mm). yx vanishes due to symmerty at the mid-plane.
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Figure 5.   Electric Field modeling results for airgap 3.3 mm and constant Jc , (a) Key magnet positions, (b) 
Electric field modulus maps regarding the key magnet positions, (c) Electric field profiles of Ey regarding the key 
magnet positions in the mid-plane of the tape ( y = 24 mm). Ex vanishes due to symmetry at the mid-plane.

Figure 6.   Modeling results for the x and y components of current density and electric field while the magnet 
is just on the top and concentric to the tape (step C in Figs. 4 and 5) for airgap 3.3 mm and constant Jc , (a) Jc
-normalized current map and current profile of Jx along the y axis in the middle of the tape (dashed green line), 
(b) Jc-normalized current map and current profile of Jy along the x axis in the middle of the tape (dashed green 
line), (c) Ec-normalized electric field map and electric field profile of Ex along the y axis in the middle of the tape 
(dashed green line), (d) Ec-normalized electric field map and electric field profile of Ey along the x axis in the 
middle of the tape (dashed green line).
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and the curves coincide to each other. Also, Fig. 7b shows the DC open-circuit voltage value versus tape length 
for various airgaps, from 1 mm to 10 mm. Up to the airgap of 6 mm, the DC voltage changes only a few percent 
with increasing the tape length from 24 to 48 mm. This can be justified by the distribution of current modulus 
on the tape surface for different airgaps, shown in Fig. 7c. In this figure, the dashed green rectangle show the 
area on the tape surface containing the flow of y component of current density Jy , that is responsible for crea-
tion of voltage in the tape. Almost all of the created voltage in the tape is generated in this area. As the airgap 
increases, the rectangular becomes longer accordingly. This means that current distributes over a broader area 
across the tape, and thus the voltage is generated over a wider area. This fact also can be recognized in Fig. 7b 
by the decrease in the slope of the curves from 1 to 10 mm airgap, showing that in smaller airgaps, the induced 
voltage is more concentrated in the center of the tape, where the magnet traverses.

For voltage signal measurements, the voltage taps should be placed in any area of the tape outside the two 
sides of the rectangle in order to measure the voltage signal accurately.

As a conclusion, up to airgap of 6 mm, the voltage taps distance should be at least 2.5 times larger than the 
magnet length. However, higher than this airgap, this distance is not sufficient anymore and for example at the 
airgap of 10 mm, the voltage taps distance should be around 3.5 times larger than the magnet length to be able 
to capture the voltage signal with highest accuracy.

Comparison to experiments.  In this section, we compare 3D modeling results of the modeled dynamo-
type HTS flux pump with experiments published in34 and with 2D MEMEP method presented in7. The calcu-
lations have been conducted with Jc(B, θ) dependency and with frequency of 12.3 Hz to be comparable with 
experimental results.

Figure 8 shows the results of the calculated and measured DC open-circuit voltage values for 5 different 
airgaps from 2.4 to 10.4 mm. Looking at the figure, it is obvious that the MEMEP 3D presents very good agree-
ment with experiments and even better agreement than the MEMEP 2D method. In the case of MEMEP 2D, the 
decay of the DC voltage with the airgap is less pronounced than the measurements, with substantial differences 
at high airgaps. The reason is that the magnetic field of the magnet at 2D decays with the distance, r, as 1/r2 

Figure 7.   (a) Frequency-normalized �V  (Equation (10)) against magnet angle θM for different tape lengths 
for airgap of 3.3 mm. (b) The DC open-circuit voltage value versus tape lengths for various airgaps. (c) Current 
modulus maps and current lines for different airgaps when the magnet is just in the middle and concentric to 
the tape ( θM = 180◦).
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(infinitely long dipole), while for the real cylindrical magnet the magnetic field decays as 1/r3 (point dipole). 
This is the reason why 3D modeling agrees better with experiments. It is worth mentioning that, as discussed 
also in7, the airgap measurement error is not negligible due to contraction and mechanical instability of the flux 
pump in liquid nitrogen bath (at least ±0.5 mm airgap). This error is mostly noticeable in the lowest airgap of 2.4 
mm, where a small difference in the airgap causes a high difference in the magnetic field from the magnet, and 
hence DC voltage. Should the gap be more accurately measured, we expect better agreement between model and 
experiments at low gaps. Moreover, another source of discrepancy can be that the Jc(B, θ) in the model does not 
exactly correspond to that of the measurements, since the original tape is no longer available. As well, we needed 
to assume that Jc(B, θ ,φ) = Jc(B, θ ,π/2) for any φ because of unavailable measurements of this characteristics 
(see section “HTS tape modeling”).

Conclusion
In this article, the first 3D model of an HTS flux pump has been presented and verified against experiment. This 
model can help to clarify the complicated mechanism of HTS dynamo-type flux pumps and verify the previ-
ously proposed mechanism by 2D models. The unique features of the presented 3D model, based on Minimum 
Electro-Magnetic Entropy Production (MEMEP) enable to perform computations in conveniently short times 
(solving the Maxwell equations only inside the superconductor, fast solver by division into sectors and iteration, 
and use of parallel computing). As found for cross-sectional 2D methods19, MEMEP 3D could likely be faster 
than conventional commercial finite-element methods, since it avoids the problem of rotating mesh in the air. 
However, a fair comparison will require a dedicated benchmark with several methods. Employing MEMEP 
3D, we studied the screening current distribution, which in its overcritical form is the reason for flux pumping 
phenomenon, across the tape surface and in several key positions of magnet movement. We investigate the role 
of the x and y components of electric field and screening current in generating the voltage in the flux pump. It 
was found that, while the magnet traverses the tape, the maximum value of the y component of the electric field, 
Ey , is around 20 times larger than Ex , which highlights the role of Jy to generate the voltage throughout the tape 
surface. In addition, the average Ex across the sample vanishes because of symmetry. We also studied the effect of 
tape length on voltage generation in the flux pump. We found that the distance between voltage taps for precise 
measuring of the voltage depends on not only the diameter of the magnet but also the distance between magnet 
and tape surface. This distance should be at least 2.5 times and 3.5 times larger than the magnet diameter for 
airgaps less than 0.6 and around 1 times the diameter, respectively. We expect that the minimum tape length will 
keep increasing with the separation. Finally, the calculated modeling results were compared against experiments 
for several airgaps, which showed very good agreement.

Appendix
In this appendix, we outline how to calculate AM and BM in the cylindrical coordinate system centered on the 
magnet and local z axis, z′ , pointing outwards from the center of the rotor of Fig. 2a. Once AM and BM are known 
in this coordinate system, we obtain AM and BM in the global Cartesian system of Fig. 2a by converting to the 
magnet Cartesian system with the same z′ axis as the cylindrical system and subsequent rotation and translation. 
As a result, AM and BM in the superconductor generally contains all three Cartesian components.

Numerical evaluation of A and B from the magnet.  First, we take into account that the magnetic flux 
density and vector potential in Coulomb’s gauge, generated by a uniformly magnetized body is the same as those 
generated by the effective surface magnetization current density, KM , as

Figure 8.   Comparison between DC open-circuit voltage values of different airgaps for calculated results of 
MEMEP 3D modeling against MEMEP 2D modeling presented in7 and experiments conducted in34. Better 
agreement for 3D modeling is evident at large airgaps, while for low airgaps we expect significant measurement 
errors.
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where M is the magnetization and en is the unit vector perpendicular to the surface pointing outwards. For the 
cylindrical magnet, we assume that M is uniform and parallel to the axial direction. Then, in the cylindrical 
coordinate system with origin at the magnet center, M = Mez′ , where ez′ is the unit vector in the z′ axis. As a 
result, KM follows the angular direction, KM = Meϕ′ , being eϕ′ the unit vector in that direction. We numerically 
calculate B and A from the magnet by superposition of many current loops distributed uniformly along the 
magnet height35,36 with current Il = KM�z , where �z is the separation between loops (see Fig. 9). The number 
of current loops will be increased until it reaches to a point that with further increasing, the value of vector 
potential (or magnetic field) in the observation points remains unchanged. This process leads to a high accuracy 
for calculation of magnet vector potential and it is valid for any magnet shape with rotational symmetry.

Next, we detail the calculation of the vector potential of the magnet, AM , in the magnet cylindrical coordinate 
system, where r′ and z′ are its radial and axial coordinates. Thanks to cylindrical symmetry, AM(r) = AM(r′, z′)e′ϕ , 
where e′ϕ is the unit vector in the angular direction. By dividing the cylinder into N thin loops, the vector potential 
follows AM(r′, z′) =

∑N
i Al(r

′, z′, r′i , z
′
i) , where ri and zi are the radial and axial coordinates ofthe center of loop 

i and Al is the vector potential generated by a loop, being35,37

Above, µ0 is the permeability of vaccum, Il is the loop current, r′l  and z′l are the current loop radius and axial 
position, respectively, k2 = 4r′l r

′/[(r′l + r′)2 + (z′ − z′l )
2] and K(k) and E(k) are complete elliptic integrals of the 

first and second kinds, respectively38.
The magnetic field generated by the magnet, BM , has both radial and axial components, Br and Bz , respectively, 

in the cylindrical coordinate system of the magnet. Again, the calculation of BM in the magnet coordinate system 
is calculated by superposition of N thin loops, Br(r′, z′) =

∑N
i Blr(r

′, z′, r′i , z
′
i) and Bz(r′, z′) =

∑N
i Blz(r

′, z′, r′i , z
′
i) 

where Blr and Blz are the components of the magnetic field generated by a thin loop

where z′′ = z′ − z′l and k is defined as in (13).

Rotation and translation of the magnetic field generated by the magnet.  Next, we detail how 
to take the magnet rotation into account in order to evaluate AM and BM at a certain observation point r . First, 
we transform the general Cartesian coordinates of r , r = xex + yey + zez , into local magnet Cartesian coordi-
nates, r = x′ex′ + y′ey′ + z′ez′ , with the z′ direction pointing outwards from the rotor center in Fig. 2(a). This 
transformation results in

with θ ′M = θM + π/2 ( θM defined in Fig. 2) and rM = xMex + yMey + zMez being the position of the center of 
the magnet. Later, we transform into cylindrical coordinates with respect to the circular magnet

(12)KM = M× en,

(13)Al(r
′, z′, r′l , z

′
l ) =

µ0Il

4π

√

r′l
r′

[(

1−
1

2
k2
)

K(k)− E(k)

]

.

(14)Br(r
′, z′, r′l , z

′
l ) =

µ0Il

4π

2z′′

r′
√

[(r′l + r′)2 + z′′2]

[

−K(k)+
r′2l + r′2 + z′′2

(r′l − r′)2 + z′′2
E(k)

]

(15)Bz(r
′, z′, r′l , z

′
l ) =

µ0Il

4π

2
√

[(r′l + r)2 + z′′2]

[

K(k)+
r′2l − r′2 − z′′2

(r′l − r′)2 + z′′2
E(k)

]

,

(16)

x′ =(x − xM) cos θ ′M + (z − zM) sin θ ′M

y′ =(y − yM)

z′ =(z − zM) cos θ ′M − (x − xM) sin θ ′M

Figure 9.   Simplified process of modeling a 3D cylindrical magnet by superposition of uniformly distributed 
current carrying loops.
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and z′ is given in (16). With r′ and z′ above we evaluate AM and BM in local cylindrical coordinates with the 
method given in Numerical evaluation of A and B from the magnet. Next, we transform AM and BM in local 
Cartesian coordinates and rotate back to general Cartesian coordinates, obtaining

Above, AM is the (sole) angular component of AM , and Br and Bz are the radial and axial components of BM , all 
with respect to the local cylindrical coordinate system.
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