KIT | KIT-Bibliothek | Impressum | Datenschutz

Comb, Prune, Distill: Towards Unified Pruning for Vision Model Compression

Schmitt, Jonas 1; Liu, Ruiping 1; Zheng, Junwei 1; Zhang, Jiaming ORCID iD icon 1; Stiefelhagen, Rainer ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Lightweight and effective models are essential for devices with limited resources, such as intelligent vehicles. Structured pruning offers a promising approach to model compression and efficiency enhancement. However, existing methods often tie pruning techniques to specific model ar-chitectures or vision tasks. To address this limitation, we propose a novel unified pruning framework Comb, Prune, Distill (CPD), which addresses both model-agnostic and task-agnostic concerns simultaneously. Our framework employs a combing step to resolve hierarchical layer-wise dependency issues, enabling architecture independence. Additionally, the pruning pipeline adaptively remove parameters based on the importance scoring metrics regardless of vision tasks. To support the model in retaining its learned information, we introduce knowledge distillation during the pruning step. Ex-tensive experiments demonstrate the generalizability of our framework, encompassing both convolutional neural network (CNN) and transformer models, as well as image classification and segmentation tasks. In image classification we achieve a speedup of up to ×4.3 with a accuracy loss of 1.8% and in semantic segmentation up to ×1.89 with a 5.1 % loss in mIoU.


Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-8-3315-0592-9
ISSN: 2153-0009
KITopen-ID: 1000181693
Erschienen in Proceedings of the 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC); Edmonton, Kanada, 24.-27.09.2024
Veranstaltung 27th International Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten S. 2413 – 2419
Serie IEEE Conference on Intelligent Transportation Systems
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page