KIT | KIT-Bibliothek | Impressum | Datenschutz

Dream to Drive: Learning Conditional Driving Policies in Imagination

Joseph, Tim; Fechner, Marcus 1; Abouelazm, Ahmed; Zöllner, Marius J. 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Learning driving policies to control autonomous vehicles via reinforcement learning (RL) offers a solution to learn optimal driving behavior directly from sensor data. However, designing a reward function that leads to a driving policy that works in any situation has not yet been achieved. Instead, one has to use different reward functions for different situation. While possible with model predictive control (MPC), approaches based on RL must be re-trained any time the reward function changes. We suggest a different direction: we propose a model-based RL agent that learns a conditional driving policy by simulating behavior for many different reward functions in imagination using a world model. We do so by randomly sampling parameters that shape the reward function and optimizing an actor-critic policy that is conditioned on these parameters. We evaluate our approach in CARLA and demonstrate that our approach combines the flexibility of MPC with the long-term capabilities and execution speed of RL.


Originalveröffentlichung
DOI: 10.1109/ITSC58415.2024.10919538
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-8-3315-0592-9
ISSN: 2153-0009
KITopen-ID: 1000181696
Erschienen in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC); Edmonton, Kanada, 24.-27.09.2024
Veranstaltung 27th International Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten S. 1716 – 1723
Serie IEEE Conference on Intelligent Transportation Systems
Nachgewiesen in Dimensions
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger Ungleichheiten
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page