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Abstract 
This paper explores the adoption of a clinical decision support sys-
tem (cDSS) utilizing game-based digital biomarkers for diagnosing 
mild cognitive impairment (MCI). Specifically, it investigates how 
different explanation methods, with a focus on data-centric expla-
nations, impact perceived ease-of-use, perceived usefulness, and 
trust among healthcare professionals (HCPs). Through a qualitative 
study with 12 HCPs, we assess their interactions with an explain-
able AI (XAI)-enriched cDSS. The findings indicate that HCPs are 
open to adopting XAI-enriched cDSS to communicate the outcomes 
of game-based digital biomarkers. HCPs preferred to receive key 
diagnostic information in an easily digestible format. Both local ex-
planations of intra-personal evolutionary data and global overview 
of normative data were found to be valuable for interpreting digital 
biomarkers. HCPs tended to trust the machine learning algorithms 
as a black box, but they considered the dataset used for training the 
model and the outcome prediction to be crucial. Therefore, present-
ing the uncertainty alongside the prediction was deemed important. 
These insights underscore the importance of designing cDSS tools 
that foster trust through clear, actionable explanations, paving the 
way for improved decision-making in clinical contexts. 

CCS Concepts 
• Human-centered computing → User studies; • Information 
systems → Decision support systems; • Computing method-
ologies → Artificial intelligence. 
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1 Introduction 
The increasing recognition of Artificial Intelligence (AI) by the 
healthcare sector has led to its widespread application, with diag-
nostic assistance being one of the prominent use cases [12, 51, 77]. 
While relying solely on algorithmic judgments for medical deci-
sions poses risks, collaborative efforts between healthcare profes-
sionals (HCPs) and AI have demonstrated superior performance 
in supporting case-finding and diagnosis, compared to working 
independently [20, 83, 99]. A specific and novel application of AI 
in health for diagnostic support concerns digital biomarkers, de-
fined as “objective, quantifiable physiological and behavioral data, 
collected and measured by means of digital devices such as portables, 
wearables, implantables, or ingestibles, and used to explain, influence, 
and/or predict health-related outcomes.” [28, 58, 79, 82]. Artificial in-
telligence is warranted to transform raw data captured via sensing 
devices (heart rate, blood pressure, night agitation, etc.) and the 
traces that users leave behind via interactive technologies (number 
of keystrokes, speed of finger tapping, sustained gaze on screen, 
etc.) into a digital biomarker. 

Digital biomarkers can be generated from a variety of sources 
[68]. Among them, mobile and wearable devices are popular due 
to their widespread usage, immediate access, and the plurality of 
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included sensors [49]. However, recently more specific and novel in-
teractive devices have also been found useful, such as virtual reality 
[22] or even videogames [38, 57, 104]. Games elicit user interaction 
and provide challenges that demand motor performance (hand-eye 
coordination, reaction speed, etc.), cognitive performance (dual 
tasks, wayfinding, puzzles), or social behaviors (collaborative or 
competitive play) [10]. This trail of player data [30], in combination 
with sophisticated machine learning models, can lead to specific 
metrics supporting diagnosis and case-finding, and hold potential 
as game-based digital biomarkers [63]. 

Despite the promise of digital biomarkers, their current uptake 
by domain experts remains limited [35]. The process of AI-assisted 
diagnosis and case-finding, drawing on digital biomarkers, requires 
knowledge from two distinct realms. On the one hand, disease 
diagnosis demands a high level of medical specialization. On the 
other hand, interpreting the outcome of AI models necessitates a 
certain knowledge of data analytics and algorithms [87]. Given that 
few HCPs in clinical practice possess such an AI background, the 
challenge remains to integrate medical domain knowledge with 
the outcome of an AI model, to interpret outcomes and come to a 
diagnosis. Therefore, explainable AI (XAI) has become an important 
focus of research in the health domain, “developing methods and 
frameworks to enhance the interpretability and transparency of AI 
models, bridging the gap between accuracy and explainability” [65]. 
To further promote the adoption of XAI in healthcare, a promising 
approach involves utilizing visual analytics integrated into interac-
tive dashboards, also known as clinical decision support systems 
(cDSS) [72]. Such clinical decision support dashboards 1) visualize 
the outcomes of AI models, 2) provide interactivity with AI models, 
e.g., exploring or filtering data [59] and 3) directly communicate 
(shepherding) how they work with explicit explanations. 

The main goal of XAI-enriched cDSS is to be perceived as useful 
and to align with clinical use cases. It is important that XAI-enriched 
dashboards help HCPs gain a comprehensive clinical understanding 
of digital biomarkers to aid in their case findings. In addition to 
providing usefulness, cDSS also needs to be perceived as ease to use, 
ensuring that HCPs understand how to interact with the dashboard, 
interpret cDSS outcomes, and utilize designed functionalities. Fur-
thermore, in a health context, experiences of safety and trust play a 
key role in the adoption of technology [11, 25, 31]. Therefore, exam-
ining the extent to which XAI can support HCPs in trusting digital 
biomarkers is crucial for the adoption of cDSS [108]. The need for 
trustworthiness may particularly apply to the novel, game-based 
digital biomarkers, which are associated with entertainment and 
may not be deemed credible or fit within a medical context. 

Most recently, to improve perceptions of usefulness, ease-of-
use, and trust, XAI in healthcare has particularly focused on the 
use of data-centric explanations and counterfactuals versus more 
traditional approaches such as feature importance [3, 17, 61, 107]. 
Whereas certain studies suggest non-expert users found the data-
centric explanations helpful and easy to understand, these studies 
also found that machine learning experts had concerns about over-
simplification and perceived limitations [8]. Other scholars suggest 
that providing multiple counterfactual examples improves non-
expert users’ understanding of the model’s predictions. However, 
these studies also reported that this increased the complexity of the 
explanation [18] and thus may lower the overall appreciation by 

non-AI experts. In sum, preferences for data-centric explanations 
and counterfactuals vary and may depend on different contexts of 
use. 

Consequently, several researchers [19, 52, 74], have called for 
further research on how XAI and visual analytics can support HCPs 
in their practice with the ultimate aim of increasing the adoption of 
cDSS. Therefore, this paper presents the design of an XAI-enriched 
clinical dashboard. The purpose of this cDSS is to communicate 
game-based digital biomarkers to support the diagnosis of Mild 
Cognitive Impairment (MCI). The study is an early-stage investiga-
tion aimed at understanding the adoption readiness of HPCs rather 
than an evaluation of the clinical efficacy. 

This cDSS was evaluated with 12 HCPs using qualitative meth-
ods, exploring the willingness to adopt such an XAI-enriched cDSS, 
and by zooming in on three research questions (RQs): 

• RQ1 (Perceived Ease-of-use): How easy to use do HCPs 
perceive the differ visualizations and interaction functionali-
ties in the XAI-enriched cDSS, to communicate game-based 
digital biomarkers? 

• RQ2 (Perceived Usefulness): How useful do the HCPs find 
the different visualizations and interaction functionalities in 
the XAI-enriched cDSS in supporting their clinical needs in 
case-finding and diagnosis? 

• RQ3 (Trust): How and to what extent do HCPs trust predic-
tions based on game-based digital biomarkers for screening 
MCI with our XAI-enriched cDSS? 

This paper outlines three main research contributions. Firstly, we 
introduce the design of an XAI-enriched cDSS, which facilitates clin-
ical case-finding and diagnosis through game-based digital biomark-
ers. Secondly, we analyze and report on HCPs’ perceptions of the 
XAI-enriched cDSS in terms of ease-of-use, usefulness, and trust. 
Finally, we conduct an in-depth exploration of XAI methods (data-
centric explanations, counterfactuals, and feature importance) in 
this cDSS for novel digital biomarkers, and how these offer insights 
to HCPs. 

2 Background 
In this section, we first provide more information on game-based 
digital biomarkers and their use in health. Next, we detail clinical 
decision support systems and related XAI applications. We end 
the background section with previous work on game-based digital 
biomarkers, and how player metrics are used for the screening of 
MCI. 

2.1 Game-based Digital Biomarkers 
The term biomarker is shorthand for “biological marker” and is de-
fined as an objective indication of the medical state observed from 
outside the patient. By definition, the characteristic of a biomarker is 
that it is objective, quantifiable, and reproducible [102]. Biomark-
ers are widely applied in clinical research and practices [27, 44, 
54, 90]. The most common biomarkers are laboratory evaluation 
markers (e.g., blood glucose concentration, “white dots” on MRI 
scans, etc.) [9]. With the digitization in medical and healthcare re-
search, digital health technologies have expanded possible sources 
of biomarkers. Biomarkers generated from physiological and behav-
ioral data obtained via one or more digital devices are hence called 
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digital biomarkers. Research has shown that digital biomarkers 
can assist in the diagnosis of various diseases, such as Multiple 
Sclerosis [26], Major Depression [85][64], Alzheimer’s Disease [58], 
and Parkinson’s Disease [88][111]. 

Recently, it has been argued that player metrics from video games 
can generate digital biomarkers as well [63]. Player data, generated 
naturally during gameplay (such as win/loss data, velocity or ac-
celeration of a movement [105], reaction speed [7] and pressure 
exerted on a screen in a touch-based game [66]), is reflective of cog-
nitive control, motor processing, memory performance, selective 
attention, etc. Hence, player metrics can be particularly useful to 
assess cognitive functioning and model mental health [63]. Recent 
studies have successfully explored and demonstrated the poten-
tial of game-based digital biomarkers in the assessment of mental 
diseases [37, 39, 56, 97, 104]. 

For example, Vourvopoulos et al. [104] designed a game for the 
evaluation of MCI named RehabCity. The game was designed as a 
city block containing more than 200 buildings, several parks, and 
moving vehicles. In the simulated environment, the game scores, 
the number of tasks completed, score progression, time needed for 
wayfinding, and time needed for completing tasks were adopted. 
These were evaluated as potential game-based digital biomarkers. 
The result showed that among all player metrics, the game score 
had the highest correlation with MMSE (r=0.81, p<0.05). Konstan-
tinidis et al. [56] adapted an exergame to assess MCI. The system 
comprises sessions of physical training (aerobic, resistance, flexibil-
ity, and balance) as well as five games that provide ‘light cognitive 
requirements.’ The in-game scores of different levels (game difficul-
ties) and physiological features during the game playing (heart rate, 
body flexibility, and Borg Scale) were considered as potential digital 
biomarkers. Using this data, the overall classification accuracy for 
MCI players was 0.734, and the area under the curve was also 0.734. 
Tarnanas et al. [97] modified a museum touring simulation game to 
assess MCI. The system was originally built for virtual museum ex-
hibitions, simulating a museum environment with exhibits. Players 
in this game should remember five archeological artifacts and locate 
them in the virtual museum. The reaction time and error numbers 
were evaluated as game-based digital biomarkers. The analysis of 
covariance revealed a strong effect (F(1,50)=79.9, p<.001), indicating 
that amnestic MCI patients’ recalls were impaired compared to 
healthy control participants. 

With respect to digital card games, McKanna et al. [5] designed a 
game called WarCAT, which is based on the classic card game War. 
This game was created to assess executive functions and memory. 
Convolutional neural network classifiers were trained to differen-
tiate between two groups of data, achieving an accuracy of 86.4%. 
However, it is important to note that the data used in this study 
was not collected from human participants; instead, it was gener-
ated by artificial intelligence bots trained through reinforcement 
learning. Sirály et al. [91] conducted a study on the card game 
Find-the-Pair. The researchers collected data on the playing time 
and the number of clicks needed to complete the game in order 
to evaluate cognitive functions. They employed logistic regression 
for classification. Both game metrics demonstrated the ability to 
differentiate participants with MCI. The number of clicks achieved 
83% sensitivity and 62% specificity, while the playing time resulted 
in 82% sensitivity and 67% specificity. Finally, and most recently, 

Gielis et al. [36, 39] adapted Klondike Solitaire, a popular digital 
card game among elders, to capture player metrics. The authors 
demonstrated that several of these player actions are indicative 
of MCI. In this paper, we build our cDSS further on the studies of 
Gielis et al. In section 3.1, we detail the game and the game-based 
biomarkers further. 

It is worth noting that while several studies in the literature have 
explored the use of card games for assessing MCI, none (including 
our approach) have been clinically adopted. Further research is 
required before these methods can achieve widespread clinical 
adoption. 

2.2 XAI for clinical decision support systems 
A clinical decision support system (cDSS) integrates targeted clini-
cal knowledge, patient information, and other health information 
[92], such as (digital) biomarkers [75] to provide diagnostic sup-
port for HCPs [92] and clinical case-finding. Consequently, cDSS 
have been widely applied in many disease case findings, such as 
diabetes [100][14], cancers [81][69], cardiovascular diseases [101] 
and mental diseases [29]. However, no prior research has explored 
the use of cDSS for communicating game-based digital biomarkers. 

Nevertheless, algorithm-generated findings and recommenda-
tions to support HCPs require careful design in explaining the 
findings and how the recommendation is made [48, 55]. In this re-
spect, XAI can be a helpful method to present the internal decision-
making process of machine learning. XAI is an umbrella term that 
includes concepts such as transparency[33], interpretability [62], 
explainability [34], etc. [1]. 

In the context of technology adoption [103], perceived usefulness 
and perceived ease-of-use have been found critical. First, the tool 
should be perceived as useful; it should align with clinical context-
of-use and communicate the right information at the right time.[71]. 
Specifically, in a health context, HCPs should perceive the expla-
nations and understandings derived from a cDSS as scientifically 
correct and clinically valid. 

Next to supporting perceived usefulness, recent XAI studies 
additionally foreground the need for ease-of-use,[46, 50, 71]. From 
the perspective of the HCP, who is most often not an AI expert, the 
cDSS should be designed with ease-of-use for the clinical context. A 
cDSS that lacks ease-of-use reduces users’ uptake [84]. Moreover, 
for high-stakes applications like healthcare, ease in understanding 
how the output is established not only raises the uptake of HCPs 
but is also reinforced by medico-legal and ethical requirements 
such as the European GDPR [41]. 

Finally, as a cDSS incorporating (digital) biomarkers, establishing 
trust is crucial [72]. In clinical decision-making, decisions made by 
HCPs have a significant impact on patients’ lives [41]. Therefore, 
HCPs need to understand the accuracies of algorithms’ output 
and the margins of uncertainty associated with any biomarker. 
Establishing appropriate trust [42] may even be more relevant in 
the context of novel digital biomarkers, such as those derived from 
games. Researchers have also shown that trust is not a static but 
rather a dynamic factor [47, 70, 73]. Users’ trust in a system changes 
throughout their experience with the system. That means some 
users might be skeptical of the prediction of a cDSS at the beginning, 
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but as they gain an understanding and build a relationship with the 
system, their trust could evolve [86]. 

To improve health experts’ perceived ease-of-use, perceived use-
fulness, and trust, previous studies have formulated guidelines 
regarding the suitability of different types of explanations; in partic-
ular, three types of explanations have been foregrounded: feature 
attribution, counterfactuals, and data-centric explanations [95, 106]. 
Feature attribution highlights the importance of individual input 
features in a model’s prediction, enabling users to understand which 
factors contribute most to the outcome [17]. Counterfactual ex-
planations illustrate how changing certain inputs could alter the 
prediction, thereby offering actionable insights [61]. Data-centric 
explanations focus on comparing a given instance to similar exam-
ples in the training data, helping users contextualize predictions 
by linking them to known patterns. Moreover, researchers have 
promoted contextualizing data [17] and combining local (at the 
level of the individual person) with global information (data at the 
level of the population, e.g., means, variability, distributions) [14]. 

2.3 Mild cognitive impairment and screening 
MCI by game-based digital biomarkers 

MCI is defined as a syndrome of self-reported cognitive complaint 
with one or more objective cognitive impairments but preserved inde-
pendence in functional abilities without dementia [78]. Hence, in the 
stage of MCI, despite experiencing cognitive impairments, persons 
still successfully perform activities of daily living (cooking, toilet-
ing, walking, visiting friends, etc.). Nevertheless, MCI indicates an 
elevated risk of future dementia. Therefore, a timely assessment 
of MCI is beneficial. The current golden standard to support the 
clinical diagnosis of MCI is a detailed anamnesis followed by a 
neuropsychological examination, complemented by brain imaging 
to look for structural changes and blood and cerebrospinal fluid 
tests [32]. This comprehensive assessment necessitates a team of 
medical specialists, consuming a significant number of medical re-
sources [15]. Therefore, before a detailed examination is performed, 
it is advised to administer a quick screening test and to continue 
with a full examination only if necessary [24]. The Mini-Mental 
State Examination (MMSE) is currently the most widely used in-
strument for rapid screening of Alzheimer’s and MCI [76]. It is 
fast to administer, taking only 10 minutes, but it has also shown a 
lack of sensitivity, misclassifying older adults with MCI as healthy 
[67]. The Montreal Cognitive Assessment (MoCA) is another pop-
ular instrument, evaluating similar cognitive domains, taking up 
to 20 minutes. Several studies have shown MoCA to be superior to 
the MMSE in terms of sensitivity for the MCI [80]. Yet, the MoCA 
has shown lower specificity, misclassifying healthy oldest older 
adults (with natural cognitive decline) as at risk for MCI. Review 
studies find AUC values range from 0.71 to 0.99 for MoCA (mean 
AUC: 0.883) and from 0.43 to 0.94 for MMSE (mean AUC: 0.780) 
[6]. Therefore, the outcomes of these tests are never used in iso-
lation to come to a diagnosis, and additional tools are welcomed. 
Recent research showed that utilizing digital technology and com-
mercial out-of-shelf games also has the potential to complement the 
screening of MCI and assist in diagnosis [63]. Game-based digital 
biomarkers could be a complementary resource to existing tests 
[57, 98, 104]. In a series of studies, Gielis et al. [36, 39] explored 

the potential of the popular card game Klondike Solitaire, played 
on a tablet, to screen for MCI. First, twenty-three potential digital 
biomarkers were linked with eleven cognitive functions, involving 
eleven HCPs [36]. Next, data was collected from 23 healthy par-
ticipants and 23 participants living with MCI. Machine learning 
models were trained on this data. Among the 19 models trained 
and optimized for the assessment of MCI, the best three models 
(Extra Trees model, a Gradient Boosting model, Nu-Support Vec-
tor Model) had F1 scores ranging from 0.811 to 0.824 [39]. These 
results suggest that game-based digital biomarkers obtained via 
Solitaire gameplay are comparable in performance (AUC >0.877) 
to the aforementioned widely adopted cognitive MCI screening 
tests. However, the authors also called for more research on how 
to communicate the results of such models to clinical practitioners. 
In this paper, we address this call. In particular, we focus on the 
design and evaluation of an XAI-enriched clinical dashboard to 
communicate game-based digital biomarkers for diagnosing MCI. 

3 Materials and Methods 
This section first presents the prototype of the XAI-enriched clini-
cal dashboard used in the study. Therefore, we detail the specific 
user interfaces of the cDSS, along with the design rationales. Sec-
ond, we detail the procedure used for the qualitative study. Lastly, 
we describe our analysis method on the data collected from the 
interview. 

3.1 Prototype of the XAI-enriched clinical 
dashboard | Solitaire DSS 

We designed the prototype of our XAI-enriched clinical dashboard 
for game-based digital biomarkers (Solitaire DSS) in Figma, a plat-
form for designing interactive, high-fidelity prototypes. The proto-
type visualizes risk prediction for MCI, based on the 23 potential 
game-based digital biomarkers for assessing the MCI by playing 
the card game Solitaire based on previous works by Gielis et al. 
[36, 39]. 

Based on the prior findings in game-based digital biomarkers for 
the assessment of MCI, the cDSS is designed as a web-based service 
that supports a wide range of devices used by HCPs. The digital 
biomarkers normative data shown in the prototype is simulated, 
yet based on the data from the previous studies [36, 39]. 

3.1.1 Design rationales for the XAI techniques and visual compo-
nents. In the main Overview tab (see Figure 1), there are four visual 
components (VCs). According to the design recommendations of 
Bhattacharya et al., [14], color-coded representations are found to 
be more useful than graphical representations or textual explana-
tions for HCPs and patients. Therefore, we consistently used color 
coding across the different visual components, with red signifying 
high risk and blue signifying low risk. Additionally, we prioritized 
data-centric visualizations, inspired by recent studies showing that 
such visualizations impact trustworthiness [8] and that health pro-
fessionals prefer data-centric explanations over other visuals [14]. 

The Personal Information section (VC1) encompasses basic demo-
graphic data, established neuropsychological screening test scores 
(e.g., MMSE and MOCA), and recent self-reported assessments of 
anxiety and depression, which are frequently associated with MCI. 
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Figure 1: Overview tab 

VC1 offers a succinct textual overview of cognitive health infor-
mation. Additionally, we have implemented a subtle risk indicator, 
highlighting scores in red if they surpass the recommended thresh-
old, signaling a potential risk for MCI. 

The Digital biomarker component (VC2) consists of three sub-
components. When a specific digital biomarker is selected, it first 
displays the evolution of that biomarker (VC2a) for the patient, 
allowing HCPs to track the evolution over time. This visualization 
method provides time-oriented information, as observing the evo-
lution of a health parameter over time has been found to be more 
meaningful than observing a single point in time [4]. 

VC2 also includes histograms of a digital biomarker, separated 
for individuals with MCI and cognitively healthy individuals (VC2b). 
The colors are coded based on the risk prediction. Additionally, we 
provide the position of the specific patient, contextualized with 
respect to the scores of MCI patients and healthy individuals [17]. 
These histograms combine a local explanation (the predicted risk 
for the individual patient based on the biomarker score) with a 
global overview (for the entire patient population). Research has 
shown that such contextualizations and the combination of local 
and global explanations are crucial for healthcare professionals to 
understand and trust the decision-making of the model [14] and 
improve satisfaction [17]. 

Finally, in VC2c, there are counterfactuals [2] that indicate the 
biomarker value at which the risk prediction changes. Counterfac-
tual explanations are a type of example-based method [106] that 
outlines the minimum conditions necessary to yield an alternative 

decision. In addition to providing an explanation, counterfactuals 
also aim to offer personalized, actionable insights [40], particularly 
when they involve actionable health variables [14]. 

The Importance of the digital biomarkers visual component (VC3) 
offers feature-importance explanations to help HCPs pinpoint the 
most influential biomarkers for the prediction model. On the left 
(VC3a), HCPs can find the top five digital biomarkers that support 
the prediction, along with their impact factors. On the right (VC3b), 
HCPs can find the top 3 biomarkers that challenge the prediction, 
along with their impact factors. For each of these biomarkers, a 
histogram is provided, showing the distribution of all players, with 
the position of the selected player. The color-coded regions also 
indicate the risk prediction. In this way, VC3 offers both data-centric 
information and individualized (local explanation) while providing 
a global overview for the entire population [14]). 

The Machine learning model serves as the final visual component 
(VC4). Positioned at the top of the component, it presents the risk 
prediction of the player, indicating whether they are at risk for MCI 
or not, color-coded for clarity. In accordance with the data-centric 
approach [8], it furnishes details about the dataset and models used 
for training, along with model accuracy and basic demographic 
information such as age. This level of transparency is essential for 
users to evaluate trustworthiness and apply appropriate trust [110]. 

Adhering to the overall mantra in information visualization of 
“Overview first, details on demand” [89], it was a conscious choice 
to move extra detailed information on biomarkers and the machine 
learning models to the additional tabs. 
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Figure 2: Digital biomarker details tab 

The Digital Biomarker Details tab (see Figure 2) serves as a ded-
icated section adjacent to the overview tab. It aims to provide a 
comprehensive explanation of the game metrics utilized for generat-
ing digital biomarkers. The decision to create this separate section, 
accessible through the second tab, stems from the recognition that 
HCPs may not be well-versed in the concept of game-based digital 
biomarkers. Simply encountering the name may not equip them 
with a thorough understanding. Additionally, they may be unfamil-
iar with the rules and terminology of the Solitaire card game, which 
serves as the basis for generating game-based digital biomarkers. 
Therefore, this section is designed to elucidate game-based digi-
tal biomarkers within the context of the Solitaire game and their 
correlation with cognitive functions, as specified in [36]. 

The left component of this tab contains textual annotations for 
game-based digital biomarkers, accompanied by the value type of 
digital biomarkers used in the models. The right component offers a 
graphical manual outlining the rules of the Solitaire game. To ensure 
accessibility for all HCPs, this section also includes screenshots of 
the game and utilizes visual cues to introduce the rules. 

The last tab provides access to the Machine learning details (see 
Figure 3). This section is included for cases where additional infor-
mation is required. In this third tab of the prototype, demographic 
information of groups, best-performing models, data preprocessing 
methods, and confusion matrix are available to provide further 
insight into how the machine learning models generated the pre-
dictions. 

3.2 Procedure of the study 
In our research, we engaged 12 HCPs with backgrounds in neu-
ropsychology to participate in a user evaluation study. Initially, we 
recruited participants through the researchers’ contacts, followed 
by snowball sampling through the networks of those participants. 
Each study session lasted approximately 1.5 hours. 

We collected qualitative data using a think-aloud protocol as par-
ticipants completed five tasks representing typical usage scenarios. 
Additionally, we observed their interactions with the prototype and 
assessed their levels of success. To gain deeper insights into their 
experiences, we conducted semi-structured interviews. 

The first participant, a senior geriatrician referred to as P1, served 
as a pilot tester. Due to her insightful verbalizations during the 
tasks and feedback in the interview, we included their data in the 
qualitative (thematic) analysis. The study was approved by the 
ethical committee of KU Leuven with the number G-2023-6194. 

3.2.1 Study design. A. Introduction The study commenced with 
an introduction aimed at acquainting HCPs with the concept of 
game-based digital biomarkers. The researcher elucidated the essence 
of game-based digital biomarkers and expounded on the prior sci-
entific studies that form the basis of Solitaire DSS, following a 
prepared script. Subsequently, the researcher fielded any remaining 
questions pertaining to background knowledge. Once the HCPs 
had no further queries, the researcher expounded on the study’s 
purpose in alignment with the research questions. 
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Figure 3: Machine learning details tab 

B. Scenarios with tasks The next step involved asking the 
participants to complete scenarios with tasks by interacting with 
the Solitaire cDSS. While completing the tasks, they were asked 
to think aloud. The researcher refrained from providing guidance 
or answering any questions, following a typical usability protocol. 
The tasks were designed to simulate real-world decision-making 
scenarios, ensuring alignment with clinical workflows by mimick-
ing common activities such as identifying the patient, interpreting 
patient data, assessing predictions, and evaluating model outputs. 
The participants were asked to complete five tasks: 

(1) Could you tell me whose data is shown on the prototype and 
what’s the Solitaire DSS’s prediction of this player? 

(2) Could you tell me what would be the prediction of Solitaire 
DSS in case the player’s score becomes 700 (and other be-
haviors remain the same)? 

(3) Could you tell me the second most important digital biomarker 
supporting the current prediction? 

(4) Could you tell me the meaning of a “Final beta error”? 
(5) Could you tell me which model has the highest accuracy? 

After completing all the tasks, the participants were given additional 
time to explore the Solitaire DSS. 1 

C. Semi-structured interview As the last step, the study ended 
with a semi-structured interview, during which four probe ques-
tions were used to guide the interview. 

1We also conducted a survey with questionnaires before and after the scenario with 
tasks. This survey is outside the scope of this paper and will not be discussed in the 
results. 

• To what extent did you find the system easy to use? Why or 
why not? 

• To what extent did you find the system useful? Why or why 
not? 

• To what extent could you understand the game-based biomark-
ers presented in the DSS? Why or why not? 

• To what extent would you trust the recommendations from 
this tool? Why or why not? 

3.3 Data analysis 
To thoroughly analyze the feedback provided by the participants, 
we captured the participants’ utterances during their think-aloud 
tasks and the interviews. The qualitative data underwent thematic 
analysis using Braun and Clarke’s 6-phase method [23]. Initially, 
we developed a codebook based on two related studies on DSS 
in different topics [14, 74], i.e., deductive coding. Our researchers 
then iteratively refined these codes, removing irrelevant ones, ad-
justing definitions, and incorporating new codes identified in the 
transcripts. 

Given that participants used two languages, we thoroughly ex-
amined the original transcripts in both languages to uphold the 
authenticity of their feedback. In the results section, participant 
quotes were translated into English by a researcher fluent in the 
other language. All quotes were also reviewed to rectify any gram-
mar errors and eliminate irrelevant mood words. 
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4 Results 
The following section presents the findings from our study, which 
involved 12 participants. The participants represented a wide range 
of career stages in the field of neuropsychology, including psychol-
ogy college students and senior geriatricians from both Western 
Europe and East Asia. A summary of the participants’ demographic 
information can be found in Table 1. The participants reported 
being novices in machine learning, and the majority stated that 
they either seldom played Solitaire or never played it at all. 

4.1 Perceived ease-of-use 
On the basis of the number of successfully completed tasks, the 
results paint a nuanced picture. As indicated in Table 2, Tasks 2, 
3, and 5 were not challenging for the participants; only one or 
two participants were unable to complete the task. Tasks 1 and 
4, however, were challenging for participants. Three participants 
in task 1 and four participants in task 4 were unable to complete 
it, indicating that there is room for improvement in visualizing 
model predictions and providing textual annotations for game-
based digital biomarkers. 

In the thematic analysis, three themes related to perceived ease-
of-use were raised: “Immediate access to key information for sup-
porting case-finding”, “Challenges in understanding and interpreting 
game-based digital biomarkers”, and “Counterfactuals are found too 
complex”. 

4.1.1 Immediate Access to Key Information for Supporting Case-
Finding. The utilization of colors facilitated participants in acquir-
ing information more effectively. For example, they could readily 
discern that the red area signified a disease, or that the red line 
within an area indicated that a player has a disease. Consequently, 
the current color scheme aided participants in efficiently obtaining 
information. 

“Colors in the prototype look good for me, very 
nice.” -P2 

“The colors are very clear, and because the colors 
keep coming back, I just assumed some sort of 
pattern.” -P12 

However, despite the clear color coding, a concern that six partic-
ipants mentioned is that they found the overview tab overwhelming 
due to excessive information. In the design, researchers intention-
ally chose a tab layout to prevent overwhelming HCPs with ex-
cessive information on a single screen, as detailed in section 3.1. 
However, even with the information divided over three tabs, the 
main screen still presented an overwhelming amount of data, caus-
ing participants to overlook crucial details. 

“The interface is too complex for me. I was dis-
tracted by details [in components].” -P2 

“I think there is a little bit too much information 
here [overview] and like I don’t know where to 
focus on.” -P5 

The overload of information caused participants to overlook seem-
ingly insignificant but useful details. This also impacted their perfor-
mance on the tasks. P10 did not discover this (tab menu) is clickable 
until one of the tasks’ answers was not on the screen. P12 also ignored 

the subtitles in VC3 of “... against prediction”. P11 had the same 
experience and said 

“I just ignored it. I don’t know why, but I ignored 
it completely.” -P11 

Participants overlooked not only minor but sometimes also major 
designs, such as tabs. 

“I only realized halfway through that there could 
be some information hidden somewhere because 
I also didn’t really notice that there were three 
tabs.” -P12 

In conclusion, participants preferred to have key information 
readily available to help with their practice in diagnosis. Providing 
too much information was found to be distracting, but color coding 
was deemed helpful. 

4.1.2 Challenges in understanding and interpreting game-based dig-
ital biomarkers. Game-based digital biomarkers, as a new method 
of MCI screening, differ from traditional pen-and-paper tests. HCPs 
remarked that they were not familiar with how the prediction is 
generated and, therefore, were confused about the meaning of cer-
tain digital biomarkers. 

“I need to understand what is assessed in the 
game. If you give me data from a test I haven’t 
used, I won’t understand what happened.” -P11 

“The software system must be learned before-
hand. I need some time to get familiar with it.” 
-P2 

During the interviews, participants provided feedback indicating 
that they needed more information on what specific metrics implied. 

“I think clinicians could use more explanations 
about what each move means and why you would 
choose that to be a marker.” -P12 

“It’s good that healthcare professionals play the 
game once. It’s the most direct way to understand 
what a ‘score’ or ‘time’ means, what constitutes 
a normal value of these parameters.” -P4 

Even though interactive designs were implemented to allow users 
to request extra information on demand, such as tooltips to explain 
various player metrics, none of the users actually used the tooltips 
while using the cDSS. Interestingly, rather than presenting all ex-
planatory information of the game-based digital biomarkers along 
with data, HCPs indicated they would prefer to receive this infor-
mation separately, and even beforehand. As an illustration, three 
participants requested a user manual or a tutorial for the Solitaire 
DSS, even though such explanations could be found on the second 
tab, likely as this is the format HCPs are familiar with. 

4.1.3 Counterfactuals are found too complex. Counterfactuals, a 
model-agnostic method in XAI, have the potential to offer valuable 
insights for decision-making [14]. In this cDSS, a counterfactual 
example (VC2c) was implemented in the overview tab, highlighting 
what scoring of the specific player metric would result in a differ-
ent prediction. However, during the scenarios with tasks, it was 
observed that many HCPs used this information infrequently or 
avoided it altogether. While participants were expected to utilize 
the counterfactuals in Task 2, only three of them actually used VC2c 
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Table 1: Demographic information of participants 

ID Nationality Occupation Solitaire Prof. ML Knowledge 

P1 Belgian Senior geriatrician Never Novice 
P2 Chinese College student in psychology Yearly or less Novice 
P3 Chinese Master’s student in neurology Yearly or less Novice 
P4 Chinese Master’s student in neurology Yearly or less Novice 
P5 Belgian Neuropsychology researcher Yearly or less Novice 
P6 Chinese Neurologist Yearly or less Novice 
P7 Chinese Neurologist Yearly or less Novice 
P8 Belgian Senior geriatrician Daily Novice 
P9 Chinese Neurologist in training Yearly or less Novice 
P10 Chinese Neurologist Yearly or less Novice 
P11 Chinese Neurology researcher Yearly or less Novice 
P12 Belgian Neuropsychology researcher Yearly or less Novice 

Table 2: Task Performance Summary Across Participants. VC: visual component in overview tab, DB: digital biomarker details 
tab, ML: machine learning details tab 

Participant Task 1 Task 2 Task 3 Task 4 Task 5 

P2 ✓ (VC1, VC3, VC4) ✓ (VC2c) ✗ ✓ (VC2, DB) ✓ (VC4, ML) 
P3 ✗ ✓ (VC2c) ✓ (VC3) ✗ ✓ (VC4, ML) 
P4 ✗ ✓ (VC3) ✓ (VC3) ✗ ✓ (ML) 
P5 ✓ (VC1, VC4) ✓ (VC2b) ✓ (VC3) ✓ (DB) ✓ (ML) 
P6 ✓ (VC1, VC4) ✓ (VC3) ✗ ✓ (DB) ✗

P7 ✓ (VC1, VC2, VC3, VC4) ✓ (VC3) ✓ (VC3) ✓ (DB) ✓ (ML) 
P8 ✓ (VC1, VC4) ✓ (VC2c) ✓ (VC3) ✓ (DB) ✓ (ML) 
P9 ✗ ✓ (VC3) ✓ (VC3) ✗ ✓ (ML) 
P10 ✓ (VC1, VC4) ✓ (VC2b) ✓ (VC3) ✓ (DB) ✓ (ML) 
P11 ✓ (VC1, VC4) ✓ (VC2b) ✓ (VC3) ✗ ✓ (ML) 
P12 ✓ (VC1, VC2c, VC4) ✗ ✓ (VC3) ✓ (DB) ✓ (ML) 

to complete Task 2. It was noted that many HCPs required some 
time to grasp the meaning of the counterfactuals and mentioned 
that the counterfactual example was confusing. 

“I’m not sure what is the what-if [counterfac-
tual example]. I think it might be a little bit con-
fusing. [...] But I think that’s too indirect, basi-
cally because you don’t know the probability that 
this person would score 62, so it doesn’t really re-
flect the uncertainty. And I don’t think clinicians 
would. I mean, I would not put this in a report 
because you don’t really know what it says about 
the data.” -P12 

4.2 Perceived Usefulness 
Two themes were identified under the category of perceived use-
fulness in the thematic analysis: “Investigating MCI risk via compar-
ison”, and “Details of ML algorithms are not that interesting, reports 
of neuropsychological results are”. 

4.2.1 Investigating MCI risk via comparison. The nature of video 
game play makes it much easier to collect multiple sessions of 

player data to generate game-based digital biomarkers for predic-
tion, compared to pen-and-paper screening tools. As a result, the 
digital biomarker component presents a graph showing the evo-
lution of the player’s digital biomarker over time (VC2a), which 
captured the interest of HCPs. Participants found the intra-person 
evolution data valuable as it provided additional information useful 
for diagnosis and individual case-finding. 

“It may be more reasonable as a relevant marker 
of disease progression. For example, I have the 
measurements in a year. And then look at the 
rate at which his disease progresses.” -P6 

“I think the long term [evaluation] is needed” -P9 

Participants also concurred that the normative data in the DSS 
was valuable, in addition to the intra-personal evolution. By using 
normative data visualization, participants can readily compare a 
player’s performance with that of all other players. 

“What you want to see is the position of the per-
son relative to the MCI and the healthy, I guess. 
That’s what will come here.” -P5 
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“That’s the normative data with which it com-
pares. So I would assume that that’s why that 
prediction is made.” -P12 

The preceding quotes underscore the importance of evolutionary 
and normative data for HCPs. These two dimensions allow them to 
compare data, aiding in the assessment of patients’ performance 
both internally and in comparison to others. During the tasks, par-
ticipants it was also observed that HCPs utilized this method to 
comprehend predictions in the cDSS. It was mentioned that evaluat-
ing patients’ metrics by comparing them to normative data supports 
the standard practice for HCPs. 

HCPs also gained an understanding of game-based digital biomark-
ers by comparing them with other screening tools (e.g., MMSE and 
MoCA). They utilized the results from these screening tools to com-
pare with players’ performance in game-based digital biomarkers, 
allowing them to gauge the players’ performance. 

“For the same patient, I can compare his MoCA 
score with them [digital biomarkers]” -P11 

“There are also some other games used for the 
evaluation of MCI, but not on digital devices, like 
playing with legos” -P3 

4.2.2 Details of ML algorithms are not that interesting, reports of 
neuropsychological results are. It was observed that participants 
spent less time exploring the machine learning details tab compared 
to the other two tabs. Additionally, they verbally expressed less 
interest in machine learning outcomes (such as F1 scores). Some 
HCPs explicitly stated that they considered the machine learning 
model to be a “black box.” 

“I don’t really know if people would have issues 
with the fact that the model itself is black box 
because I think people do understand that it’s a 
very complex mathematical thing.” -P12 

“I just input the clinical data [into the model]. It 
gave me a result based on all the information.” 
-P10 

Furthermore, one participant mentioned that it was possible 
that some HCPs would not be interested in understanding machine 
learning as it falls outside their area of expertise and their time is 
limited. 

“[. . . ] with the really limited time they would 
drop everything they’re doing to learn this new 
thing and pay a lot of money to do it. And I think 
that’s the problem that we have in general now 
with the gap between practice and research.” -
P12 

Compared to solely understanding machine learning models, 
HCPs expressed a preference for learning more about the connec-
tion between neuropsychological information and the new screening 
tool, i.e., how it relates to cognitive functions. 

“I think it would also help if the more traditional 
neuropsychological information is also present 
because now it’s just of the prediction of the ma-
chine learning model and the model accuracy.” 
-P5 

Some HCPs also expressed interest in receiving players’ results in 
a format resembling a neuropsychological test report. For example, 
they suggested presenting digital biomarkers grouped by cognitive 
functions, patients’ percentiles for each biomarker, performance 
comparisons with normative data, and a concise summary of find-
ings accompanied by clear statements on clinical implications and 
recommended next steps. Notably, they perceived the visualizations 
in the prototype as a representation of such a report. 

“I think it would be nicer if we would read it as a 
report with a little bit more text to guide what was 
done in the context of data and interpretation.” 
-P4 

“You can report the result like a clinical report.” 
-P10 

“This [the overview tab] looks like the general 
report after you finished the test.” -P9 

4.3 Trust 
Four themes were identified in trust: “Trusting the unfamiliar ma-
chine learning algorithms”, “Novelty of game-based biomarkers may 
cause ambiguity”,“Being critical of dataset quality and outcome”, and 
“Trust building starts before using the tool”. 

4.3.1 Trusting the unfamiliar machine learning algorithms. From 
the prior theme (“Details of ML algorithms are not that interesting”), 
it was already evident that HCPs were not keen on delving into 
understanding the intricacies of machine learning algorithms. At 
the same time, HCPs demonstrated a high level of trust in the 
algorithms, and perhaps an overly positive attitude toward machine 
learning. Additionally, participants displayed respect for knowledge 
beyond their expertise. For example, P12, said that 

“I do trust machine learning [models]. I don’t 
understand it enough to be critical of it.” -P12 

P3, who is pursuing a master’s degree in clinical neurology, 
remarked 

“The computer [algorithms] must be more accu-
rate. [...] It’s much more accurate in addition to 
the [descriptive] analysis” -P3 

Only one participant voiced her distrust in machine learning 
algorithms due to her uncertainty about how to evaluate a machine 
learning model. 

“To me, machine learning is only assistant tools. 
I can’t trust it. [...] Honestly. If you just present 
me with this and this machine learning idea. I 
don’t know what it is, so I have no idea. [...] just 
to wish that is good maybe, you have a threshold 
of ninety-five, [which] is good, right?” -P11 

4.3.2 Novelty of game-based biomarkers may cause ambiguity. While 
HCPs voiced trust in the unfamiliar machine learning models, at 
the same time, they were critical of the novelty of the biomarkers 
themselves. Playing on tablets may be a new experience for older 
adults, moreover they may be unfamiliar with card games such 
as Solitaire. In our study, HCPs expressed concerns that this new 
experience may lead to biased and inaccurate predictions. 

1590



Will health experts adopt a clinical decision support system for game-based digital biomarkers? IUI ’25, March 24–27, 2025, Cagliari, Italy 

“It’s possible that for older adults, playing [a 
game on a tablet] is a bit hard. [...] Also, I feel 
that Solitare is too complex.” -P3 

HCPs were also concerned that data in the learning stage may not 
accurately reflect players’ actual cognitive functions. The game’s 
learning effect might be significant, prompting HCPs to recommend 
a tutorial for all players before data collection. 

“The situation for an older adult to play the game 
first time, ten times, and twenty times must be 
different. Their proficiency in the game gains 
gradually. [...] Does this affect [the prediction]?” 
-P4 

“We do research with VR and also with older 
adults. [...] but what we definitely do is we have 
a session where we show it to them and kind of 
explain how it works. [...] I think it would be 
really worthwhile for older adults to be able to 
practice a little bit before they get thrown into 
this thing that’s gonna diagnose them.” -P12 

Despite the cDSS providing explanations of Solitaire rules through 
screenshots and textual annotations of the digital biomarkers, the 
actual gameplay also remained unclear to some HCPs. As a result, 
the player metrics captured were also perceived as ambiguous. Ad-
ditionally, HCPs expressed a desire for more clarity on how digital 
biomarkers are connected to cognitive functions. 

“Here it’s just the summary measure of what the 
person did, but there’s no interpretation of what 
that might mean about the cognitive process.” 
-P5 

“Like final beta error, as words together, as a clin-
ician doesn’t really mean very much to me. And 
so I think that kind of loses its worth, especially 
if that’s something that really impacts the model, 
and if it was described in more, I guess, everyday 
words, maybe it would be a bit easier to interpret 
then.” -P5 

4.3.3 Being critical of dataset quality and outcome. HCPs also ex-
pressed a critical attitude towards the data set quality and under-
scored the need for (more) information on the uncertainty of the 
prediction, which is vital for their diagnosis. 

“I think what you really want to know as a clini-
cian is the probability that somebody has mild 
cognitive impairment given the test scores. And 
the uncertainty of that probability, and not just 
a label, MCI or not?” -P5 

“I’m not sure if you have more information than 
this, but the model accuracy is 84%. It’s unclear 
whether that means the probability that this pa-
tient has mild cognitive impairments given the 
test data, or whether it means that there’s a 20% 
chance it’s a false positive diagnosis.” -P5 

In addition, participants expressed a desire for more compre-
hensive information regarding the dataset’s quality, which was 
provided by the cDSS on the “machine learning details” tab. They 

sought details on the sample size, educational level, results from 
other screening tools for the same player, and even clinical imaging 
evidence. 

“I think it’s also important to know what the edu-
cation level was of the Healthy control group. So, 
a bit more information about the control group, I 
think, is valuable as well.” -P5 

“I think the clinical imaging evidence is required.” 
-P9 

Some participants also expressed concern about the sample size 
used for generating predictions, which involved 46 players and 138 
game sessions in the cDSS. The sample size was relatively small 
compared to other clinical studies, leading some participants to feel 
that their trust in the system was greatly diminished. 

“Based on such a small sample size, how did you 
ensure the prediction is correct?” -P9 

“I think the more data you can show that it’s 
really worthwhile. [...] Then I think that there 
are people that are looking for ways to kind of 
improve their practice. [to use a new screening 
tool]” -P11 

“I think now it lacks the data in practice, that 
data generated in practice. It’s better to use it 
[collecting more data].” -P3 

4.3.4 Trust building starts before using the tool. HCPs emphasized 
that data from older adults playing the Solitaire game could be 
beneficial, e.g., P3 mentioned, “It’s great that we can play the game 
on a real device.” 

Yet they also stressed that HCPs needed to better understand 
game-based digital biomarkers and the specific game at hand. En-
gaging in a session of Solitaire and observing the results helps to 
form a direct impression of each digital biomarker. 

Moreover, several HCPs expressed that the most important trust-
building should happen before working with the Solitaire DSS. 
HCPs expressed a desire to review a manual of game-based digital 
biomarkers and its cDSS before the study, but the half-hour back-
ground introduction served as the substitute. However, it was not 
comprehensive enough, and participants may not have had suffi-
cient time to digest the information and establish trust within such 
a brief period. For HCPs, having a manual beforehand is prefer-
able to presenting textual annotations to explain the concepts and 
functions among the digital biomarkers data in cDSS. Reviewing 
the manuals before using the screening tool also aligns with HCPs’ 
habits for learning new assessment tools. 

“At the very beginning, if you give me a manual 
and I get familiar with everything, then every-
thing is fine. [...] You stop the trust in this before 
you use that right. Why I do this [using the Soli-
taire DSS] because I think it’s reliable. That’s why 
I use that. If trust is built beforehand, you won’t 
like it” -P11 
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5 Discussion 
In this study, we first presented the design rationale for a cDSS, 
incorporating various XAI methods (such as color coding, coun-
terfactuals, local versus global data, etc.) to aid in the detection 
and diagnosis of MCI. Subsequently, we assessed this cDSS with 12 
HCPs. As an early-stage investigation, the focus is on understand-
ing how different explanation methods impact adoption readiness 
rather than establishing clinical efficacy. In this section, we revisit 
the research questions through the themes identified in the the-
matic analysis, addressing perceived ease-of-use, perceived usefulness, 
and trust. We conclude with design considerations for the cDSS, 
informed by the study’s findings and aligned with insights from 
prior research. 

5.1 Will health experts adopt a clinical decision 
support system for game-based digital 
biomarkers? 

We investigated the impact of different visualizations and interac-
tion functionalities on the willingness of HCPs to adopt an XAI-
enriched cDSS for the assessment of MCI. 

Our detailed qualitative analysis provides a nuanced understand-
ing. In terms of perceived ease-of-use, we found that HCPs welcomed 
receiving key diagnostic information in an easily digestible format 
within the cDSS using color coding. However, participants also 
expressed feeling overwhelmed when examining the various visual 
components, despite our efforts to simplify the user interface by 
moving certain (more elaborate) details to separate tabs. Specifically, 
for more information explaining game-based digital biomarkers, 
HCPs preferred to review it separately from the actual patient data, 
and preferably beforehand. Furthermore, in the context of this cDSS, 
the implementation of the counterfactuals did not enhance under-
standing but rather complicated it. Participants avoided making 
use of this visualization method altogether. 

When considering perceived usefulness, participants found vi-
sualizations of both intra-person evolution data and normative 
data valuable for comparing a patient’s performance over time and 
against others. However, HCPs showed less interest in the machine 
learning aspects of the tool and expressed a greater preference 
for understanding neuropsychological information and practical 
clinical applications. Additionally, they recommended presenting 
the information in a report format that aligns with clinical practice. 

In relation to trust, HCPs expressed trust in machine learning 
algorithms despite a limited understanding of them, with most 
believing the algorithms to be more precise than manual methods. 
However, they expressed concerns about the novelty of game-based 
biomarkers, fearing that unfamiliarity with tablet games could 
potentially bias results, particularly for older adults. HCPs also 
raised questions about the quality of the dataset, seeking more 
comprehensive information on the sample size, education levels, 
and the uncertainty of predictions. Lastly, HCPs underscored the 
importance of establishing trust before using the tool, suggesting 
that a detailed manual or tutorial would be beneficial for better 
comprehension of game-based digital biomarkers. 

5.2 Considerations for Design 
On the basis of the findings of our study, we reflect on the different 
explanation methods used in the cDSS, contrast them with prior 
research findings, and formulate considerations for the design of 
the XAI-enriched cDSS to communicate digital biomarkers. 

5.2.1 Limit the use of textual annotations. When it comes to ease-of-
use, HCPs emphasized the importance of having immediate access 
to data that supports their case-finding in the cDSS. They require 
a comprehensive understanding of game-based digital biomarkers 
to effectively interpret this data. In our design, color coding was 
considered useful for data representations, which is in line with 
the recommendation of identifying coherent factors by Wang et al 
[106]. Our research also revealed that lengthy textual annotations, 
combined with game-based digital biomarker data, tended to divert 
the attention of HCPs. They did not fully utilize these functions and 
often chose to ignore textual annotations, expressing an overload 
of information on the screen. 

Here we like to point to findings by Szymanski et al. [93], users 
expressed a preference for a hybrid approach incorporating both 
textual and visual explanations. However, in this case, the textual 
annotations were brief and presented alongside visual descriptions. 
In our study, the textual annotations were not concise, for example, 
the explanation of the game rules and the description of game-based 
digital biomarkers spanned several sentences. This finding is con-
sistent with another study on DSS [14]. Striking a balance between 
visual and textual annotations is crucial for improving the perceived 
ease-of-use of the system. Textual annotations/explanations that 
are not succinct when paired with visualization should be recon-
sidered, even if they are important for providing explanations. In 
such instances, providing a manual or tutorial in advance may be 
more effective in saving time for HCPs during consultations, when 
using the cDSS. 

5.2.2 Consider data-centric methods to support the interpretation of 
data through comparison. This study revealed that HCPs favored the 
data-centric method, which significantly influenced their perceived 
usefulness. HCPs expressed interest in comparing individual patient 
data to normative data and investigating the evolution of game-
based digital biomarkers in older adults. The latter was considered 
novel, and participants believed it would be a valuable addition 
for decision-making. The finding that the usefulness of the data-
centric method in XAI is consistent with many other studies across 
various domains [8, 60, 109, 112]. This finding is also consistent 
with the theory that making comparisons can contribute to the 
development of knowledge [16]. In our specific case, HCPs analyzed 
the data both globally and locally. First, similar to many other 
neuropsychological tests, normative data helps in understanding a 
player’s performance compared to others globally and provides an 
idea of how well the player is doing in relation to a specific metric. 
Additionally, comparing the distribution of scores between MCI 
players and healthy players also provides HCPs with the quality of 
the metrics, whether it is statistically distinct to distinguish the two 
groups of players. This is in accordance with utilizing contrastive 
causal explanation proposed in the framework by Wang et al. [106]. 
Second, HCPs’ feedback indicates that they were also interested in 
local intra-person data comparisons. This presents an opportunity 
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for game-based biomarkers [63]: due to the entertaining nature of 
video games, it is much easier to collect data over a period of time. 
This supports comparing the performance of a player longitudinally, 
which is often improbable in other MCI screening tests. 

5.2.3 Transform feature importance explanations into interactive 
what-if analysis. In our study, task 2 evaluated how HCPs experi-
ence feature importance explanations in the cDSS. Most HCPs were 
able to access information about which game-based digital biomark-
ers are important for the models’ predictions. However, some HCPs 
found the concept of ’biomarkers against prediction’ confusing in 
the conventional representation of feature importance explanations, 
given the static nature in our CDSS. Understanding how certain 
biomarkers negatively contribute to the prediction was challenging 
for them. Bhattacharya et al. [14] also made similar observations. 
They addressed this challenge by enhancing actionability through 
interactive what-if analyses. The interactive design elements enable 
HCPs to modify the feature value and observe the resulting change 
in the overall prediction. This approach provides more actionable 
explanations for HCPs through hypothesis generation, as proposed 
by Wang et al. [106]. 

5.2.4 Be careful with counterfactuals that are not actionable. In 
our cDSS, we tried to explain MCI risk prediction with counter-
factuals, which have been found useful model-agnostic post-hoc 
explanations. However, this explanation method caused confu-
sion in our study, different from the result of prior studies that 
claimed that counterfactual examples might help users’ understand-
ing [18, 61, 96]. However, as emphasized by [53], likely, this is 
because the counterfactuals were not formulated as ’directives’; 
thereby, they were not actionable.Additionally, we attempted to 
explain concepts using counterfactual examples. However, this ap-
proach caused confusion for some HCPs, which contrasts with 
other studies that suggest counterfactuals help users’ understand-
ing [18, 61, 96]. Based on participant feedback, two potential reasons 
emerged for why counterfactuals were not well received. First, the 
way we visualized the counterfactuals may not have been optimal. 
HCPs preferred more direct communication, and our method of 
using textual descriptions with highlighted key numbers may not 
have been sufficiently clear. Second, HCPs may not be familiar 
with counterfactuals, as they are not commonly used in clinical 
screening reports, making them more difficult to interpret. 

5.2.5 Build trust before using the system. Appropriate trust is es-
sential for HCPs when adopting cDSS in real-world practice [110]. 
As Han et al. [43] emphasized, avoiding both mistrust and mis-
distrust is crucial. Our qualitative results indicated that trust is 
multi-faceted, consistent with previous studies [45, 70, 73]. On one 
hand, most HCPs expressed trust in the algorithms, respecting the 
mathematical and computational knowledge behind them, even 
though they were not familiar with these areas. On the other hand, 
HCPs remained cautious about the model outcomes, highlighting 
the need for transparency regarding uncertainty and the robust-
ness of the datasets used to train the models. These factors, which 
significantly influence trust, have also been similarly noted in other 
research [13, 21]. 

Moreover, HCPs emphasized that trust in the Solitaire DSS should 
be established prior to its use. HCPs tended to understand game-
based biomarkers by linking them to cognitive functions, an area 
with which they are familiar. Therefore, simply explaining how 
player metrics generate these biomarkers may not be the most ef-
fective approach, as the metrics themselves are new to HCPs, most 
of whom do not frequently play Solitaire (as was the case for most 
of our participants). This reflects the complexity of labeling par-
ticipants as “non-experts” or domain experts [17, 94]. Despite not 
being machine learning experts, HCPs have a solid grasp of statis-
tics, enabling them to critically evaluate models based on data and 
outcomes. While HCPs are well-versed in cognitive functions and 
existing screening tools, they were not familiar with player metrics 
derived from Solitaire. This distinguishes them from participants 
in other studies with less knowledge of statistics. 

6 Limitations and future work 
Firstly, we acknowledge the limitation of a small sample size, com-
prising only 12 HCPs. This highlights the inherent challenge of 
recruiting experts specializing in the assessment and diagnosis of 
neurodegenerative diseases among older adults. The findings could 
be strengthened by including participants from diverse geographi-
cal locations and with varying levels of experience using Solitaire. 
Future work should aim to involve a broader and more diverse 
population of HCPs to capture a wider range of perspectives, en-
sure generalizability, and better understand the tool’s applicability 
across different clinical contexts. 

Secondly, the introduction of game-based biomarkers, particu-
larly those derived from Solitaire, presented unfamiliar concepts for 
many HCPs. They required ample time to comprehend the game 
and its rules. However, participants were only given limited time 
to assimilate these new concepts, potentially hindering their full 
understanding. In the future, researchers may consider dividing 
such studies into two sessions. The first session could be used to 
introduce the game, player metrics, and potential biomarkers, fol-
lowed by a second session a few days later to conduct the actual 
measurements, scenarios, tasks, and interviews. Lastly, the data 
presented in the cDSS prototype was partially synthesized, and only 
one player’s data was shown to the participants. We are currently 
developing a real web application based on the feedback from this 
study. We will be using real player data, and we anticipate that this 
will lead to more insights being discovered. 

7 Conclusion 
This study explored the adoption of an XAI-enriched cDSS utilizing 
game-based digital biomarkers for diagnosing MCI. We conducted a 
qualitative evaluation with 12 HCPs to assess the system’s ease-of-
use, usefulness, and trust. Our findings reveal that HCPs prioritize 
seeing the most critical information upfront, emphasizing the value 
of providing a manual or tutorial prior to using the cDSS. We found 
that both the evolution data of individual players and normative 
data explanations helped HCPs better understand the system by en-
abling comparisons. Additionally, linking cognitive functions with 
digital biomarkers significantly improved their comprehension. In 
terms of trust, HCPs, as domain experts, were not particularly in-
terested in understanding the system’s inner workings or “black 
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box” algorithms. Instead, they built trust by assessing the quality 
of input data and the reliability of the predictions. Presenting the 
uncertainty of predictions played a crucial role in building trust. Ad-
ditionally, we discovered that trust-building should commence well 
before the system is presented to HCPs. These insights contribute to 
the broader application of digital biomarkers and XAI in healthcare. 
Future work should focus on refining the explanations of digital 
biomarkers and ensuring these tools are seamlessly integrated into 
clinical workflows to maximize their potential impact. 
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