KIT | KIT-Bibliothek | Impressum | Datenschutz

Feature-Based Test Scenario Selection in Automated Driving: Insights from SHAP Values

Sohn, Tin Stribor ; Gorhan, Nora ; Dillitzer, Maximilian ; Ewecker, Lukas; Brühl, Tim; Schwager, Robin; Nägele, Ann Therese 1; Sax, Eric 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Scenario-based testing is seen as a promising approach for evaluating automated driving systems, by grouping potential real-world events into representative test scenarios within their intended operational design domain. However, the complexity of the open world creates countless scenario variations, making it essential to select relevant scenarios efficiently while avoiding those that are not relevant for the test object. Traditional expert-driven methods struggle with this complexity, as causes for certain events related to the target domain are often unknown leading to incomplete specifications of the test space. This is highlighting the need for data-driven approaches to analyse and identify key parameters contributing to unwanted system behavior. In this paper a novel method for selecting scenario parameters is introduced, using explainable machine learning. It consists of two parts: a model trained on vehicle measurement data describing the operational design domain in order to predict test outcomes and a feature explainer based on SHapely Additive exPlanations to highlight important features contributing to these outcomes. The effectiveness of the proposed method is demonstrated using real driving data from a predictive Adaptive Cruise Control system. ... mehr


Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-8-3315-0592-9
ISSN: 2153-0009
KITopen-ID: 1000181699
Erschienen in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC); Edmonton, Kanada, 24.-27.09.2024
Veranstaltung 27th International Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten S. 4180 – 4187
Serie IEEE Conference on Intelligent Transportation Systems
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page