KIT | KIT-Bibliothek | Impressum | Datenschutz

Applying Extended Object Tracking for Self-Localization of Roadside Radar Sensors

Han, Longfei 1; Xu, Qiuyu; Kefferpütz, Klaus; Elger, Gordon; Beyerer, Jürgen 2
1 Karlsruher Institut für Technologie (KIT)
2 Fakultät für Informatik – Lehrstuhl IES Beyerer: Interaktive Echtzeitsysteme (Lehrstuhl IES Beyerer: Interaktive Echtzeitsysteme), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Intelligent Transportation Systems (ITS) can benefit from roadside 4D mmWave radar sensors for large-scale traffic monitoring due to their weatherproof functionality, long sensing range and low manufacturing cost. However, the localization method using external measurement devices has limitations in urban environments. Furthermore, if the sensor mount exhibits changes due to environmental influences, they cannot be corrected when the measurement is performed only during the installation. In this paper, we propose selflocalization of roadside radar data using Extended Object Tracking (EOT). The method analyses both the tracked trajectories of the vehicles observed by the sensor and the aerial laser scan of city streets, assigns labels of driving behaviors such as “straight ahead”, “left turn”, “right turn” to trajectory sections and road segments, and performs Semantic Iterative Closest Points (SICP) algorithm to register the point cloud. The method exploits the result from a down stream task – object tracking – for localization. We demonstrate high accuracy in the sub-meter range along with very small orientation error. The method also shows good data efficiency. ... mehr


Originalveröffentlichung
DOI: 10.1109/ITSC58415.2024.10920198
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Fakultät für Informatik – Lehrstuhl IES Beyerer: Interaktive Echtzeitsysteme (Lehrstuhl IES Beyerer: Interaktive Echtzeitsysteme)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-83-315-0592-9
ISSN: 2153-0009
KITopen-ID: 1000181704
Erschienen in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC)
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 2152 – 2158
Schlagwörter Location awareness, Point cloud compression, Laser radar, Urban areas, Radar tracking, Trajectory, Registers, Object tracking, Driver behavior, Intelligent transportation systems
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page